Close icon

GCSE and IGCSE Paper 2 Predictions

Further Formula Sheet

Download Link
www.mymathscloud.com©MyMathsCloudA Level FurtherFormula SheetSummationResultsProperties(3)(These work similar to integrals)Can take constants out: "#!="#!"!#$"!#$Can split up: (#!±(!)"!#$=#!"!#$±((!)"!#$inclusive exclusive principle (#!)"!#%=(#!)"!#$(#!)%&$!#$Results(5)1"'#$=,""'#$=",-"'#$="(")$)+-+"'#$="(")$)(+")$),--"'#$="!(")$)!.Matrix TransformationsReflection in the line!=(#$%')).cos23sin23sin23cos236Horizontal stretch by scale factor *.70016Vertical stretch byscale factor *.10076Enlargement by scale factor *centre (0,0).70076Anti-clockwise rotation of angle 'about origin.cos3sin3sin3cos36, 3>0Clockwise rotation of angle 'about origin.cos3+sin3sin3cos36,3>0MatricesDeterminant<×<:?.#("@6?=#@("A×A:BC#("@DEF-HB=#?DE-?(I@EF-I+"I@DFI=#(D-E)((@-EF)+"(@DF)Inverse1,-.-/01232.×3,5673.-<×<:.#("@6&$=$/0&12.@"(#6A×A:C#("@DEF-H&3To find adjugate:Step 1: Find matrix of minors(cross of corresponding row and column for each element andthedeterminant of each remaining part forms the new element)Step 2: Find matrix of cofactors(get the correct signs)Step 3: Transpose all the elements. In other words swap their positions over the diagonal (the diagonal stays the same)3 types of solutionsfor systemsof linear equationsConsistent/unique -one solution (a point)To find unknowns: Use basic elimination or solve det 0(ifunknowns onLHS) Consistent/non-unique infinite solutions (det =0)To find unknowns: Use basic elimination with 2 pairs of the same variable eliminated and look to get 0=0Inconsistent/non unique no sol (det =0)To find unknowns: Use basic elimination with 2 pairs of the same variable eliminated and look to get an inconsistencyRootsQuadratics, Cubics and QuarticsQuadratic: form: (KL)(KM)Land Mas the rootsform: K++(K+"sum roots = (=L+Mproduct roots ="=LMform: #K++(K+"sum: 1/=L+,product:2/="=LMCubic form: (KL)(KM)(KN)L, Mand Nare the rootsform: aK-+(K++"K+@=0sum:L+M+N= 1/, product: LMN= 0/sum of all possible products of pairs of roots:LM+MN+LN=2/Quartic:form : (KL)(KM)(KN)(KO)L, M, N#,@Oare the rootsform: aK.+(K-+"K++@K+D=0sum :L+M+N+O=1/, product:LMNO=4/sum of all possible products of pairs of roots:LM+LN+LO+MN+MO+NO=2/sum of all possible products of triples of roots:LMN+MNO+NLO+OLM=0/form $!)!"!#$= 0Sum=&/"#$/", Product=(&$)"/%/"Polar CoordinatesArea of sector12PQ+@3Complex NumbersDefinition1=-, -+=1Cartesian FormS=#+(-ModulusArgumentFormS=Q("TU3+-U-,3)=Q"-U3Q=#++(+#QF=3=V#,&$WI(#IXThen draw the angle 3in the quadrant where the complex number #+(-lies. Read off 3by starting on the positive Kaxis (like when you solve for trig using the CAST diagram). Remember that Y3<Y)Or you can use the followingto get 3:3=tan&$W(#X(-Ebc#@Q#,V1TQ4)tan&$W(#X+Y(-Ebc#@Q#,V2)tan&$W(#XY(-Ebc#@Q#,V3)Eulers FormS=QD'5De Moivres’ TheoremS"=Q"("TU,3+-U-,,3)=Q""-U,3Roots of 9"=;S=D+6!'",ETQ7=0,1,2,...,,1Linear AlgebraEigenvaluesSet characteristic polynomial which is det(A-gh)or det(gih)equal to zero 0, where A =matrix and I=identity matrix. solve thisforthe eigenvalueEigenvectorsAv=gjwhere g=eigenvector &v=eigenvectorAvgj=ki.e. A.786=g.786. Solve with value of gaboveQuickway: Put. ginto (igh)and you’ll obviously have a matrix. Multiply this matrix by .786and set equal to 0. Solve for Kin termsof lConicsEllipseParabolaHyperbolaRectangularHyperbolaStandard FormK+#++l+(+=1l+=4#KK+#+l+(+=1Kl="+Parametric Form(acos3,(sin3)(#V+,2#V)(asec3,(V#,3(±acosh3,(sinh3)."V,"V6EccentricityD<1(+=#+(1D+)D=1D>1(+=#+(D+1)D=2Foci(±#D,0)(#,0)(±#D,0)o±2",±2"pDirectricesK=±#DK=#K=±#DK+l=±2"AsymptotesnonenoneK#=±l(K=0,l=0GroupsOrderof a group: Number of elements in the groupOrder of an element:Least positive integer n such that F"=D(how many times before you get e in modular arithmetic). If grthen g......g=e i.e. F"=D. If no n such that K"=ethen we say element has infinite orderDefinition:A set G with a binary operation * on G such that i.G is associativeii.G is closed under *iii.G has an identity element (usually denoted e)iv.Each element of G has an inverseVectorsNotationssD"VTQ=t, #, uvwwwwwwdistance=OAVector Form#y+(z+"{}#("~Properties(addition/subtraction, multiplication and scalar product)}#("~±C@DEH=C#±@(±D"±EHg}#("~=Cg#g(g"H}#("~.C@DEH=#@+(D+"EMagnitude of a vectorNotation is ||Å}#("~Å=#++(++"+Unit VectorUnit vector of ./126=$/!)1!)2!./1"6Parallel and Perpendicular toParallel means vectors are a multiple of eachotherPerpendicular means scalar product equalszeroAngle Between 2 vectorsAlways use the direction vectors3=cos&$}#("~.C@DEHÅ}#("~ÅBC@DEHBVector Equation of a lineTo find this we need:Point and direction(if given 2 points find the directions and use either point)Q=C#("H+gà@DEâ./126=äTU-V-T,,.04:6@-QD"V-T,(ä#Q#ããDãVT)Cartesian Equationof a lineK#@=l(D=S"EParametric Form of a lineK=#+g@,l=(+gD,S="+gEEquation of a planeå.ç=}#("~.çwhere n is the normal vectorVector Equation of a planeTo find this we need: a point in plane and perp direction. If not given perp direction take the cross product of 2 directionvectors. Remember to find a direction we subtract 2 position vectors.78;6=./126+gW04:X+é.<=>6./126=äTU-V-T,.04:6#,@.<=>6=@-QD"V-T,U(ä#Q#ããDãVT)Cartesian Equationof aplane#K+(l+"S=@@=@-UV#,"DETQèTQ-F-,VTäã#,DC#("H=@-QD"V-T,sD"VTQ(äDQäD,@-"cã#QVT)Scalar ProductNote: 3is the angle between }#("~and C@DEH}#("~.C@DEH=Å}#("~ÅBC@DEHB"TU3Vector ProductNote: 3is the angle between }#("~and C@DEH}#("~×C@DEH=C(ED"(#E"@)#D(@HorB}#("~×C@DEHB=Å}#("~ÅBC@DEHBsin3Area of a Parallelogrami=B}#("~×C@DEHB}#("~and C@DEHform 2 adjacent sides of a parallelogramPerp Distance between point and planefrom (L,M,N)to #K+(l+"S=@|#(L)+((M)+"(N)+@|#++(++"+ScalarProduct Properties 0.t=tt.ê=ê.t(t).ê=(t.ê)(7t).ê=7(t.ê)t.(ê+ë)=t.ê+t.ëIf a and b are parallel: t.ê=|t||ê|, moreover t.t=|t|+CrossProduct Propertiesí×t=0t×0=0×t=0g(t×ê)=(gt)×ê=t×(gê)t×(ê+ë)=(t×ê)+(t×ë)t×ê=(ê×t)ê.(ë×t)=ë.(t×ê)TrigonometryIf V=tan$+KU-,K=+>$)>!and "TUK=$&>!$)>!HyperbolicsDefinitionsU-,K=4&&4#&+coshK4&)4#&+V#,K=?@AB7DE?B7=4&&4#&4&)4#&cschK=$?@AB7=+4&&4#&sechK=$DE?B7=+4&)4#&"TVK=$FGAB7=4&)4#&4&&4#&Identitiescosh+Ksinh+K=1tanh+K+sech+K=1coth+Kcsch+K=1tanhK=sinhKcoshKsinh2K=2sinhK"TUKcosh2K=cosh+K+sinh+KInverse#Q"TUK=cosh&$K=ln(K+ïK+1), K1#QU-,K=sinh&$K==ln(K+K++1)artanhK=tanh&$K==$+ã,.$)7$&76, |K|<1Number TheoryFermats Theorem#H#(èT@ä)if äis prime and #is any integerMechanicsCentres Of Mass For Uniform BodiesTriangular Lamina: +-along median from vertexCircular arc, radius Q,angle at centre 2L<?@AIIfrom centreSector of circle, radius Q,angle at centre 2L:+<?@AI-Ifrom centreSolid hemisphere, radius Q:-JQfrom centreHemispherical Shell, radius Q:$+Qfrom centreSolid cone or pyramid of height : $.above the base on the line from centre to base of vertexSolid cone or pyramid of height : $.above the base on the line from centre to base of vertexSolid cone or pyramid of height : -.from vertexConical shell of height :$.above the base on the line from centre to base of vertexMotion In A CircleTransverse velocity: s=Q3̇Transverse acceleration: ṡ=Q3̈Radial acceleration: Q3+̇=K!<. Note: Mag =Q3+̇TQK!<Motion of a ProjectileEquation of a trajectory: l=Ktan3L7!+M!DE?!5Elastic Strings and SpringsF=ForceneededtoextendorcompressT=tensionK=lengthofextension/compressionk=stiffnessconstant(springconstantmeasuredinN/mg=modulus of elasticity (spring modulus)measured in Newtonsã=natural length of the springHookes Lawú=7KTension in elastic spring/string :ù=NOK=N7OEnergy Note: if answeris negative then means a lossKinetic Energy:$+ès+Gravitational Potential Energy:èFElastic Potential Energy:N7!+OChange in kinetic energy: $+è$s$+$+è+s++Change in potential energy: è$F$è+F+Work DoneW=work doneF=magnitude of the force@=distance moved IN THE DIRECTION of the force3=angle between the force and the displacementTotal energy = Kinetic + Potential + ElasticIf work done against an opposing force:Final total energy=Initial total energy work done against forcewhere work is done against opposing force is Wû=üú@@cos3VTV#ãD,DQFlãTUV(#7#†TQ7D,DQFläQ-,"-äãD)äTVD,V-#ãD,DQFl(-EV#ã7-,F#(TcV#F-#,UVFQ#s-Vl)Note: Total energy lost = change in total energy = change in kinetic+ change in potentialIf no work done against an opposing forceFinal total energy = Initial total energyInductionTemplateLet °"be the proposition ...Let ,=1: Plug in ,=1 to both the LHS and RHS. Show that LHS=RHS°$trueAssume ,=7true i.e. °!true: Replace ,with 7. There is nothing to prove here, we just assumethis to be true. Let ,=7+1:Replace ,with 7+1. Usually only need work on the LHS by simplifying and using assumed £Pstep to show that what we get for LHS is equal to RHS (sometimes we may need to work on the RHS also) °!)$trueSo °!true °!)$true °$true then °+,°-,°.,...truetrue ETQ#ãã,Typesof questionsto know: sigmaresults, divisibilityand matricesStatistics & ProbabilityBinomial Distribution(discrete)K~®(,,ä)E(X)=Mean=np,Var(X)=(1ä), °©ú=°(=K)=o"7pä7(1ä)"&7Calculator: =use pd, cUD"@PoissonDistribution(discrete)(happeningataverage rate)K~°T(g)Mean=g,variance=g, °©ú=°(=K)=D&NN&7!Calculator: =use pd, cUD"@Uniform Distribution(discrete)K~ ́[#,(]Mean=$+(#+(),variance=$$+((#)+, PMF=°(=K)=$1&/To find unknowns: use fact that area of rectangle is the probabilityTo find probabilities: Find area of rectangleGeometric(discrete)(how long until 1st success)~rDT(ä)Mean=$H,variance=$&HH!PMF=P(X=K)=ä(1ä)7&$P(X>Q)=(1ä)7By hand: Need to turn all into =or >and use formulae aboveCalculator: =use pd, cUD"@Negative Binomial(discrete)(how long until r successes)K~Æ®(Q,ä)°©ú=°(K=7)=.71Q16ä<(1ä)7&<Mean=<Hvariance=<($&H)H!Exponential(waiting time between poisson events)K~DKä(g)°Øú=°(K=7)=gD&N7Mean=$Nvariance=$N!Normal Distribution(continuous)K~Æ(é,+)Mean=é,variance=+, °Øú=°(=K)=$R+6D&$!S&#'(T!Standardised variable S=7&URTo find probabilities: use invnorm on calculatorTo find x, é,TQ: use invnorm on calculatorExpected ValueDiscreteE(X)=(=K)For a function: ±(F())=F(K)°(=K)Expected Value Continuous±()=PKE(K)@KFor a function: ±(F())=F(K)E(K)@KV&VVarianceDiscreteVar()=K+°(=K)±()+=K+°(=K)é+VarianceContinuous≥#Q()=PK+E(K)@K±()+=PK+E(K)@Ké+PDF and CDF°Øú:E(KW)=P(=KW)¥Øú:ú(KW)=°(KW)=E(V)@V7%&VPDF to CDF i.e. f to F integrate (or find areas undergraph)Careful with integration if more than 2 functions, always start from the beginningCDF to PDF i.e.F to f differentiate (find gradients of graph)To find probabilities: find areas orintegrate E(K)or plug value straight into F(x)Median=Find m such that E(K)@K%OXY4<O'%'>=0.5Mode: Solve EZ(K)=0or if piecewise graph and see which Kgives you highest pointFinding unknowns or showing valid PDF:Use fact that E(K)@K=1Probability Generating Function(PGF)PGF is forDRV’s only and represents the PMF as a power series i.e.you can find certain (=) probabilities from itBinomial: (1ä+äV)"Poisson: DN(>&$)Geometric:H>$&($&H)>Negative Binomial:.H>$&($&H)>6<Definition of PGF:(S)TQr(S)TQr7(S)=±(S7)=!°(=7V!#WX<$)Note: Sometimes uselettert instead of zProperties: r(1)=1, Mean=E(X)=G’(1)Variance=Var(X)=G’’(1)+G’(1)(r(1))+=G’’(1)é(é1)If Z=+, where X and Y independent: r[(V)=r\(V)×r](V)Finding probabilities: P(X=,)=$"!r(")(0)PMF to PGF: Want answer as a power seriesFill °(=7)into !°(=7)V!#WX<$using PMF andgetrid of sigma notationusing geometric sum orbinomial expanbackwardsPMF to PGF: PGF should be of the form P(=0)+SP(X=1)+S+°(X=2)+...Moment Generating Function©7(V)=±(D>7)using either discrete or continuous Expected value defUniform=4)*&4+*(1&/)>, Exponential=NN&>, Normal=DU>)$!R!>!Binomial=[(1ä)+äD>]", Poisson =DN(4*&$), Geometric=H4*$&($&H)4*Goodness of FitK+2/O2=(^&_)!_. Reject if K+2/O2>K+2<'>'2/OSpearman’s Rank16@+,(,+1)Expectation Algebra±(#™±()=()±(, ≥i∫(#™±()=#+≥#Q()hEX and Y independent:±(™∏)=±()±(), ≥#Q(#™±(∏)=#+≥#Q()+(+≥#Q()Unbiased EstimatorsK=K,,U=ªK+,1(K)+,(,1)=ª(KK̅)+,1=Ω,,1Central LimitTheoremK~Æ}é,+,~Sample Proportionä̂~ÆWä,ä(1ä),XTest StatisticsZ=H`&Ha,($#,)",Z=(H$b&H!b)&(H$&H!)H`($&H`)a$"$)$"!, Z/T=7̅&U/", Z =\$dddd&\!dddd&(U$&U!)a/$!"$)/!!"!, T=\$dddd&\!dddd&(U$&U!)=,a$"$)$"!Where ä$ø=7$"$,ä+¿=7!"!,ä̂=7$)7!"$)"!UH=Ω("$&$)=$!)("!&$)=!!"$)"!&+Differentiation and IntegrationDerivativessin&$E(K):1(7)a$&e:(7)f!cos&$E(K):1(7)a$&e:(7)f!tan&$E(K):1(7)$)e:(7)f!sec&$E(K):1(7):(7)ae:(7)f!&$"TUD"&$E(K):1(7):(7)ae:(7)f!&$cot&$E(K):1(7)$)e:(7)f!sinhE(K)=fZ(K)coshf(K)coshE(K)f′(K)sinhf(K)tanhE(K)f(K)sech+f(K)sinh&$E(K)E(K)ï1+E(K)+cosh&$E(K)E(K)ïE(K)+1tanh&$E(K)E(K)1E(K)+Integrals$g/!&(17)!@K=$1sin&$.17/6+"$&g/!&(17)!@K=$1cos&$.17/6+"$/!)(17)!@K=$/1tan&$.17/6+"$g/!)(17)!@K=$1sinh&$.17/6+"=$1lno(K+ï((K)++#+p+"$g(17)!&/!@K=$1cosh&$.17/6+"= $1lno(K+ï((K)+#+p+",K>a$/!&(17)!@K=$/1tanh&$.17/6+"=$+/1ã,?/)17/&17?+", |K|<1$(17)!&/!@K=$+/1ã,?17&/17)/?+"Volume of RevolutionAbout K#K-U=Yl+@K1/, About laxis: =YK+@l1/Surface area of revolutionCartesian: 2YlΩ1+.08076+@KParametric: 2YlΩ.070>6++.080>6+@VPolar: 2YQU-,3ΩQ++.0<056+@3Arc LengthCartesian:Ω1+.08076+@KParametric:Ω.070>6++.080>6+@VPolar: ΩQ++.0<056+@3Differential EquationsIntegrating FactorlZ+°(K)l=(K)h,VDFú#"VTQ=Di(7)07Homogeneous and Non-Homogeneous(Second Order)Solution Form:l=l2:+lHcomplementary function l2:(set LHS 0)real roots:è$,è+l2:=iD%$7+®D%!7=DH7[i"TU(èK)+iU-,(èK)]if roots are ä±èrepeated roots:èl2:=iD%7+®KD%7=D%7(i+®K)complex roots:ä+-bl2:=DH7(i"TUbK+®U-,bK)Non-homogeneous lH(plug intoRHS ofequation&solve for unknowns)l=7(constant) use l=7l=Kl=ä+bKl=#K"l=iK"+®K"&$++©K+Æl=#D17l="D17l="KD17(if b matches rootof CF)l="K+D17(if b matches repeated rootof CF)l=#"TU(KTQ#U-,(Kor l=any linear combo of U-,or "TUl=Ø"TU(K+±U-,(Kl=K(Ø"TU(K+±U-,(K)if b matches repeated rootof CF)Maclaurin SeriesE(K)=E(0)+KEZ(0)+7!+!EZZ(0)+Taylor’s SeriesE(K)=E(#)+(K#)EZ(#)+(7&/)!+!EZZ(#)+...Maclaurin and Taylors Series Common Results(5)D7=1+K+7!+!+for all Kln(1+K)=K7!++--+for 1<K1U-,K=K72-!+73j!++(1)<7!45$(+<)$)!for all K"TUK=17!+!+76.!++(1)<7!4(+<)!for all KarctanK=K72-+73j++(1)<7!45$(+<)$)!for 1K1sinhK=K+72-!+73j!++7!45$(+<)$)!for all KcoshK=1+7!+!+76.!++7!4(+<)!for all KtanhK=K+72-+73j++7!45$(+<)$)!for 1K1
Clouds Background
Clouds Background

Maths Revision and Resources For All Maths Courses

What are you waiting for? It's time to get started!

Contact us