Topic Checklist - Complex Numbers (years 1 and 2)

Download Link
Complex NumbersBasicsDefinition Of π’Šβˆšβˆ’1=𝑖𝑖!=βˆ’1Calculating Powers Of π’Š: Use 𝑖!=βˆ’1 and indices rule (π‘₯")#=π‘₯"#𝑖$%=(𝑖!)!$=(βˆ’1)!$=1𝑖!&=(𝑖!)'(𝑖=(βˆ’1)𝑖=βˆ’π‘–Calculating Square Rootsβˆšβˆ’10βˆšβˆ’40=βˆšβˆ’1√10βˆšβˆ’1√40=π‘–βˆš10π‘–βˆš40=𝑖!√400=βˆ’20.Do not make the mistake of saying βˆšβˆ’10βˆšβˆ’40=√400=20Cartesian FormCartesian FormWe usually use the letter z to denote a complex number𝑧=real part ±𝑖(imaginary part)Note: This can also be written as 𝑧=real part Β±(imaginarypart)𝑖We usually use the letters π‘Žand 𝑏or π‘₯and 𝑦𝑧=a+𝑖𝑏or 𝑧=π‘₯+𝑖𝑦𝑅𝑒(𝑧)means the real part of π‘§πΌπ‘š(𝑧)means the imaginary part of 𝑧Complex ConjugateWe swap the sign of the imaginary part for the complex conjugate𝑧=π‘Ž+π‘π‘–βŸΉπ‘§βˆ—=π‘Žβˆ’π‘π‘–π‘§=π‘Žβˆ’π‘π‘–βŸΉπ‘§βˆ—=π‘Ž+𝑏𝑖We use the notation π‘§βˆ—π‘œπ‘Ÿπ‘§Μ…to denote the complex conjugate of z.Representation On An Argand DiagramAdding and Subtracting When we add/subtract we combinethe real parts together and the imaginary parts(π‘Ž+𝑏𝑖)+(𝑐+𝑑𝑖)=(π‘Ž+𝑐)+(𝑏+𝑑)𝑖Multiplying When we multiply, we expand the brackets as normal and then collect like terms. Remember that 𝑖!can be replaced with βˆ’1=12+9π‘–βˆ’8π‘–βˆ’6𝑖!=12βˆ’6(βˆ’1)+𝑖=12+6+𝑖=18+𝑖Dividing Multiply numerator and denominator by the complex conjugate. !"#$%"&$=!"#$%"&$Γ—%'&$%'&$=!%'!&$"#%$'#&$!%!'%&$"%&$'&!$!=!%'#&$!'!&$"#%$%!'&!$!Finding The Modulus And ArgumentThe modulusof a complex number denoted, |𝑧|,is the distance from the origin to that numberon an argand diagram.The argument of a complex number, arg 𝑧, is the angle between the positive real axis and the line joining the number to the origin on an Argand diagram. Method to calculate modulus and argument:Given 𝑧=π‘₯+𝑦𝑖⇒Mmodulus=|z|=Tπ‘₯!+𝑦!argument=arg𝑧=π‘‘π‘Žπ‘›+'X,#,"Ywhereβˆ’Ο€<πœƒ<πœ‹Note: The red parts are always a plusNext step for argument: Draw π‘₯+𝑦𝑖out to know which quadrant you’re in, start from positive x axis and find the anti-clockwise angle to find the value of thetaPropertiesOf Modulus And Complex Conjugate:β€’|𝑧'𝑧!|=|𝑧'||𝑧!|β€’`-"-!`=|-"||-!|β€’(𝑧±𝑀)βˆ—=π‘§βˆ—Β±π‘€βˆ—β€’(𝑧𝑀)βˆ—=π‘§βˆ—π‘€βˆ—β€’'$%(βˆ—=$βˆ—%βˆ—if 𝑀≠0β€’π‘§Γ—π‘§βˆ—=|𝑧|&Use of factor theoremand polynomial divisionFactorisingQuadratics: Use quadratic formula and work backwardsUnderstanding Roots of Quadratics and Cubics:β€’A cubic with real coefficients either has:oall three roots realoone root real and the other two form a complex conjugate pairthe middle terms cancel out
β€’A quarticwith real coefficients either has:oall fourroots realotwo roots real and the other two form a complex conjugate pairotwo roots form a conjugate pair and the other two roots also form a conjugate pairFactorisingCubics, Quarticsand Above:Use the factor theorem to find one of the factors and then use algebraic division or comparing coefficients until we have all the factors/roots.Recall that for 2 roots of the polynomial π‘Žand𝑏, then we have factors β€œ(π‘§βˆ’π‘Ž)” and β€œ(π‘§βˆ’π‘)”, and can multiply/expand them to get another factor: 𝑧!βˆ’(π‘Ž+𝑏)𝑧+(π‘Žπ‘)In other words when we have 2 roots we can build the equation, 𝑧!βˆ’(sumofroots)𝑧+(productofroots)Remember that complex number roots occur in conjugate pairs, so if we know one root, then the conjugate is necessarily another root.Solving/Finding RootsOf Quadratics:We can use the quadratic formula. For an equation π‘Žπ‘§!+𝑏𝑧+𝑐=0, we get𝑧(='#"√#!'*!%+!and 𝑧+='#'√#!'*!%+!Solving/Finding RootsOf Cubics, Quartics And Above:To solve polynomial equations that may have complex roots, we can use the same approach as above to factoriseand then we just go one step further bysettingthefactors equal to 0 after. Remember that complex number roots occur in conjugate pairs, so if we know one root, then the complex conjugate is necessarily another root.Given Some Of The Roots, Find The EquationWe must use the fact that complex number roots occur in conjugate pairs, so if we know one root, then the conjugate is necessarily another root and then build the equation with the roots π‘Žand 𝑏as:𝑧!βˆ’(π‘Ž+𝑏)𝑧+(π‘Žπ‘)Now we can use the comparing coefficients methodto find the unknownsEquating Real and Imaginary Coefficients In Order To:β€’Find unknownsin equationsβ€’Find square rootsβ€’Solve equationsProving purely real or purely imaginaryModulus Argument FormConverting cartesian to modulus argument form:𝒂+π’ƒπ’Šβ†’π’“(π’„π’π’”πœ½+π’Šπ’”π’Šπ’πœ½)=π’“π’„π’Šπ’”πœ½We just need to find π‘Ÿπ‘Žπ‘›π‘‘πœƒ. To find π‘Ÿand πœƒwe use the formulaπ‘Ž+𝑏𝑖⇒lπ‘Ÿ=βˆšπ‘Ž!+𝑏!πœƒ=π‘‘π‘Žπ‘›+'X`#"`Yand then draw the angle πœƒin the quadrant where the complex number π‘Ž+𝑏𝑖liesRead off πœƒby starting on the positive π‘₯axis (like when you solve for trig using the CAST diagram, but remember: βˆ’πœ‹β‰€πœƒ<πœ‹which means we can only go 180Β°in either a clockwise or anti clockwise direction. Representation On An Argand DiagramLength and angleComplex Conjugateπ‘§βˆ—=𝑧̅=π‘Ÿ(cosπœƒβˆ’π‘–sinπœƒ)De Moivre’s Theorem(π‘π‘œπ‘ π‘₯+𝑖𝑠𝑖𝑛π‘₯)/=cos𝑛π‘₯+𝑖𝑠𝑖𝑛𝑛π‘₯Useful the following follow-on results:‒𝑧+/=π‘Ÿ+/(cosπ‘›πœƒβˆ’π‘–sinπ‘›πœƒ)‒𝑧+'-=2cosπœƒβ€’π‘§βˆ’'-=2𝑖sinπœƒβ€’π‘§/+'-'=𝑧/+𝑧+/=2cosπ‘›πœƒ.Rearranging β‡’cosπ‘›πœƒ=-',-('!‒𝑧/βˆ’'-'=𝑧/βˆ’π‘§+/=2𝑖sinπ‘›πœƒ. Rearranging β‡’sinπ‘›πœƒ=-'+-('!0Multiplying and DividingMultiplying(multiply the moduli and add the arguments)[π‘Ÿ'(cosπœƒ'+𝑖sinπœƒ')][π‘Ÿ!(cosπœƒ!+𝑖sinπœƒ!)]= π‘Ÿ'π‘Ÿ![cos(πœƒ'+πœƒ!)+𝑖sin(πœƒ'+πœƒ!)]=π‘Ÿ'π‘Ÿ!𝑒0(2",2!)Dividing(divide the moduli and subtract the arguments)4"(5672",07892")4!(5672!,07892!)can be divided quickly and is 4"4![cos(πœƒ'βˆ’πœƒ!)+𝑖sin(πœƒ'βˆ’πœƒ!)]Representing 𝑧=π‘Ÿ(cosπœƒ+𝑖sinπœƒ)as 𝑧=π‘Ÿ(cos(πœƒ+2π‘˜πœ‹)+𝑖sin(πœƒ+2π‘˜πœ‹))Finding cube roots and above(solutions to 𝑧/=𝑠)and representation on an argand diagram(we use De Moivre’s Theorem)𝑧/=π‘ βŸΉπ‘§=π‘Ÿ'/tcosπœƒ+2π‘˜πœ‹π‘›+𝑖sinπœƒ+2π‘˜πœ‹π‘›uSolutions to 𝑧/=1𝑧=cos!:;/+𝑖sin!:;/for π‘˜=1,2,3,4,...𝑛nth roots of unity 1,πœ”,πœ”!,πœ”(,...,πœ”/+'(solutions to 𝑧/=1where n is positiveinteger)and properties:β€’1,πœ”,πœ”!,πœ”(,...,πœ”/+'form the vertices of a regular n-gonwith centre at the originβ€’1+πœ”+πœ”!+πœ”(+β‹―+πœ”/+'=0If we know one solution to 𝑧/=𝑠(call it 𝑧')and the solutions to 𝑧/=1(roots of unity) then the roots of 𝑧/=𝑠are 𝑧',𝑧'πœ”,𝑧'πœ”!,...𝑧'πœ”/+'
Euler’s FormConvertingModulus Argument Form To Euler’s Form π‘Ÿ(π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ)=π‘Ÿπ‘’02Note: If given Cartesian form we must turn it into modulus argument form firstConvertingCartesian Form To Euler’s Form:𝒂+π’ƒπ’Šβ†’π’“π’†π’Šπœ½Turn it into modulus argument form and then into Eulers formMultiplying and Dividing:Multiplying (multiply the moduli and add the arguments)π‘Ÿ'𝑒2"Γ—π‘Ÿ!𝑒2!=π‘Ÿ'π‘Ÿ!𝑒0(2",2!)Dividing (divide the moduli and subtract the arguments)π‘Ÿ'𝑒2"π‘Ÿ!𝑒2!=π‘Ÿ'π‘Ÿ!𝑒0(2"+2!)Inequality Propertiesβ€’|𝑅𝑒(𝑧)|≀|𝑧|and |πΌπ‘š(𝑧)|≀|𝑧|β€’|𝑧+𝑀|≀|𝑧|+|𝑀|β€’|𝑧+𝑀|β‰₯|𝑧|βˆ’|𝑀|Loci|𝑧|=π‘˜β‡’circle centre origin and radius π‘˜|𝑧|<π‘˜β‡’Inside of circle centre origin and radius π‘˜|𝑧|β‰₯π‘˜β‡’outside of circle including circumference centre origin and radius π‘˜|π‘§βˆ’π‘Ž|=π‘˜β‡’circle centre π‘Žand radius π‘˜|π‘§βˆ’π‘Ž|<π‘˜β‡’Inside of circle centre π‘Žand radius π‘˜|π‘§βˆ’π‘Ž|β‰₯π‘˜β‡’outside of circle including circumference centre π‘Žand radius π‘˜|π‘§βˆ’π‘Ž|=|π‘§βˆ’π‘|β‡’let 𝑧=π‘₯+𝑖𝑦and use |π‘Ž+𝑖𝑏|=βˆšπ‘Ž!+𝑏!and see which equation you getarg(π‘§βˆ’π‘Ž)=πœƒis a line from π‘₯=π‘Žon the π‘₯axis with angle πœƒfrom the positive π‘₯axisTrig Powers and Linear FunctionsWriting Trig Powers In Terms of Linear Functions Of Trig:To write powers of π‘π‘œπ‘ in terms of cos and sinUseX𝑧+'-Y/=(2π‘π‘œπ‘ π‘₯)/to write π‘π‘œπ‘ /π‘₯in terms of cos𝑛π‘₯and/orsin𝑛π‘₯Do binomial on LHS and then group using 𝑧/Β±'-'results using 𝑧/+'-'=2cosπ‘›πœƒUse indices rule (π‘₯/)>to simplify RHSRearrange for power termTo write powers of 𝑠𝑖𝑛in terms of cos and sinXπ‘§βˆ’'-Y/=(2𝑖sinπ‘₯)/to write 𝑠𝑖𝑛/π‘₯in terms of cos𝑛π‘₯and/orsin𝑛π‘₯Do binomial on LHS and then group using 𝑧/Β±'-'results using 𝑧/βˆ’'-'=2𝑖sinπ‘›πœƒUse indices rules (π‘₯/)>on RHSRearrange for power termWriting Linear Functions Of Trig In Terms Of Trig Powers:use(π‘π‘œπ‘ π‘₯+𝑖𝑠𝑖𝑛π‘₯)/=cos𝑛π‘₯+𝑖𝑠𝑖𝑛𝑛π‘₯to write cos𝑛π‘₯or sin𝑛π‘₯in terms of 𝑠𝑖𝑛>π‘₯and/orπ‘π‘œπ‘ >π‘₯Note: The equality is true because of De’ Moivres theoremUse binomial expansion on LHSEquate LHS with the real part of RHS want π‘π‘œπ‘ π‘›π‘₯Equate LHS the imaginary part of RHS want 𝑠𝑖𝑛𝑛π‘₯Sum of SeriesUse results about sum of geometric series with complex numbers(sum and sum to infinity)
TypeExplanationsExamplesDefinitionβˆšβˆ’1=𝑖𝑖&=βˆ’1We are often asked to do calculate powers of 𝑖.Relate to 𝑖&using indices rules to deal with. Example 1: 𝑖)*=(𝑖&)&)=(βˆ’1)&)=1Example 2:𝑖&+=(𝑖&),-𝑖=(βˆ’1)𝑖=βˆ’π‘–Example 3:βˆšβˆ’10βˆšβˆ’40=βˆšβˆ’1√10βˆšβˆ’1√40=π‘–βˆš10π‘–βˆš40=𝑖&√400=βˆ’20. Do not make the mistake of saying βˆšβˆ’10βˆšβˆ’40=√400=20Jargon Form: Real + Imaginary so we have 𝑧=π‘₯+𝑖𝑦with π‘₯,π‘¦βˆˆβ„Note: we can also write 𝑧=π‘₯+𝑦𝑖‒π‘₯=𝑅𝑒(𝑧)means the real part of 𝑧‒𝑦=πΌπ‘š(𝑧)means the imaginary part of 𝑧‒Modulus π‘Ž+𝑏𝑖=|π‘Ž+𝑏𝑖|=βˆšπ‘Ž&+𝑏&β€’Complex conjugate π‘§βˆ—π‘œπ‘Ÿπ‘§Μ…=π‘₯βˆ’π‘–π‘¦is the complex conjugate of z.Remember if you know one root, then the conjugate is necessarily another root.Properties: o(𝑧±𝑀)βˆ—=π‘§βˆ—Β±π‘€βˆ—o(𝑧𝑀)βˆ—=π‘§βˆ—π‘€βˆ—o'$%(βˆ—=$βˆ—%βˆ—if 𝑀≠0o𝑧.π‘§βˆ—=|𝑧|&β€’Argand diagramExample 1:Find the complex conjugate, modulus and state the real and imag parts of 2βˆ’3𝑖The complex conjugate is 2+3𝑖. 2 is the real part, βˆ’3is the imaginary partModulus =G2&+(βˆ’3)&=√4+9=√13Example 2:𝑧=2+3𝑖,𝑀=5βˆ’8𝑖Find (𝑧+𝑀)βˆ—(2βˆ’3𝑖)+(5+8𝑖)=7+5𝑖Adding/Subtractingβ€’Adding: (π‘Ž+𝑖𝑏)+(𝑐+𝑖𝑑)=(π‘Ž+𝑐)+𝑖(𝑏+𝑑)β€’Subtracting: (π‘Ž+𝑖𝑏)βˆ’(𝑐+𝑖𝑑)=(π‘Žβˆ’π‘)+𝑖(π‘βˆ’π‘‘)Example 1:(3βˆ’2𝑖)+(4+3𝑖)=(3+4)+(βˆ’2+3)𝑖=7+𝑖Example 2:(3βˆ’2𝑖)βˆ’(4+3𝑖)=(3βˆ’4)+(βˆ’2βˆ’3)𝑖=βˆ’1βˆ’5𝑖Multiplying/Dividingβ€’Multiplying: (π‘Ž+𝑖𝑏)(𝑐+𝑖𝑑)=π‘Žπ‘+π‘Žπ‘‘π‘–+𝑏𝑐𝑖+𝑖&𝑏𝑑=(π‘Žπ‘βˆ’π‘π‘‘)+𝑖(π‘Žπ‘‘+𝑏𝑐)β€’Dividing: /0123014Multiply by complex conjugate π‘βˆ’π‘–π‘‘/0123014Γ—35143514=/35/41023151"243"51"4"=/35/4102310243"04"and then simplify furtherExample 1:(3βˆ’2𝑖)(4+3𝑖)=12+9π‘–βˆ’8π‘–βˆ’6𝑖&=12+9π‘–βˆ’8π‘–βˆ’6(βˆ’1)=18+𝑖Example 2:-5&1)0-1=-5&1)0-1Γ—)5-1)5-1=,&5615*157,706=75,+1&8=7&8βˆ’,+&8𝑖Solving with Complex NumbersWe commonly equate real and imaginary parts in order to solve equations with complex numbers in them.Example 1:Find the values of π‘₯and 𝑦if (1βˆ’π‘–)𝑧=1βˆ’3𝑖Let 𝑧=π‘₯+𝑖𝑦.(1βˆ’π‘–)(π‘₯+𝑖𝑦)=1βˆ’3𝑖𝐿𝐻𝑆=π‘₯+π‘–π‘¦βˆ’π‘–π‘₯+𝑦=(π‘₯+𝑦)+𝑖(βˆ’π‘₯+𝑦)Equating realand imaginaryparts gives π‘₯+𝑦=1and βˆ’π‘₯+𝑦=βˆ’3⟹π‘₯=2,𝑦=βˆ’1Example 2:Given that $$5*=βˆ’1βˆ’2𝑖,find z in the form π‘Ž+𝑖𝑏𝑧=(βˆ’1βˆ’2𝑖)(π‘§βˆ’8)π‘Ž+𝑖𝑏=(βˆ’1βˆ’2𝑖)(π‘Ž+π‘–π‘βˆ’8)π‘Ž+𝑖𝑏=βˆ’π‘Žβˆ’π‘–π‘+8βˆ’2π‘Žπ‘–+2𝑏+16π‘–π‘Ž+𝑖𝑏=(βˆ’π‘Ž+2𝑏+8)+𝑖(βˆ’π‘βˆ’2π‘Ž+16)Equating real and imaginary givesβˆ’π‘Ž+2𝑏+8=βˆ’1,βˆ’π‘βˆ’2π‘Ž+16=βˆ’2βŸΉπ‘Ž=6,𝑏=2𝑧=6+2𝑖Example 3:Find the square roots of 8βˆ’6𝑖Write as 𝑧&=8βˆ’6π‘–βŸΊπ‘§=√8βˆ’6𝑖(π‘₯+𝑖𝑦)&=8βˆ’6𝑖𝐿𝐻𝑆=π‘₯&+2π‘₯π‘¦π‘–βˆ’π‘¦&=(π‘₯&βˆ’π‘¦&)+𝑖(2π‘₯𝑦)Compare coefficients: π‘₯&βˆ’π‘¦&=8,2π‘₯𝑦=βˆ’6Solving simultaneously gives π‘₯=Β±3,𝑦=βˆ“1,so we get 𝑧=3βˆ’π‘–,βˆ’3+𝑖Factorising & Solving PolynomialsFactorising: Find a factor and then divide by it like usual.Solving: ØQuadratics: use quadratic formula as usualØCubicsand above: Normally given a root. Remember if you know one root, then the conjugate is necessarily another root. It is quicker to usethe equationπ‘₯&βˆ’(π‘ π‘’π‘šπ‘Ÿπ‘œπ‘œπ‘‘π‘ )π‘₯+π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘Ÿπ‘œπ‘œπ‘‘π‘ instead of writing (π‘₯βˆ’π‘Ÿπ‘œπ‘œπ‘‘1)(π‘₯βˆ’π‘Ÿπ‘œπ‘œπ‘‘2)to build an equation based on the 2 conjugate pair roots that we know. We can then divide by this equation to find further roots. These can be hard for students. For more practice, try the following harder examples after seeing the easier examples on the right.β€’Factorise the polynomial 𝑃(π‘₯)=π‘₯)βˆ’5π‘₯-+2π‘₯&+22π‘₯βˆ’20completely with integer coefficients given 3βˆ’π‘–is a root of 𝑃(π‘₯)β€’Given that (π‘§βˆ’1βˆ’2𝑖)is a factor of 2𝑧-βˆ’3𝑧&+8𝑧+5solve the equation 2𝑧-βˆ’3𝑧&+8𝑧+5=0over the complex number fieldβ€’Let 𝑃(𝑧)=2𝑧-+π‘Žπ‘§&+𝑏𝑧+𝑐, where π‘Ž,𝑏,π‘Žπ‘›π‘‘π‘βˆˆβ„. Two of the roots of 𝑃(𝑧)are βˆ’2 and (βˆ’3+2𝑖). Find the values of π‘Ž,𝑏and 𝑐(ans a=16, b=50, c=52)Example 1:Solve 𝑧&+4𝑧+8=0𝑧=5)Β±:)"5)(,)(*)&(,)=5)±√5,7&=5)Β±)1&=βˆ’2Β±2𝑖Example 2:Completely factorise 𝑓(π‘₯)=π‘₯)βˆ’2π‘₯-+2π‘₯&βˆ’2π‘₯+1𝑓(1)=0so dividing by (π‘₯βˆ’1)gives 𝑔(π‘₯)=π‘₯-βˆ’π‘₯&+1π‘₯βˆ’1𝑔(1)=0so divide again by π‘₯βˆ’1which gives π‘₯&+1π‘₯)βˆ’2π‘₯-+2π‘₯&βˆ’2π‘₯+1=(π‘₯βˆ’1)(π‘₯βˆ’1)(π‘₯&+1)=(π‘₯βˆ’1)&(π‘₯βˆ’π‘–)(π‘₯+𝑖)Example 3:Find all complex numbers z, such that 𝑧)βˆ’π‘§-+6𝑧&βˆ’π‘§+15=0and𝑧=1+2𝑖is a solution to the equation1βˆ’2𝑖must be another root since roots occur in conjugate pairs𝑧&βˆ’(π‘ π‘’π‘šπ‘Ÿπ‘œπ‘œπ‘‘π‘ )𝑧+π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘π‘Ÿπ‘œπ‘œπ‘‘π‘ =𝑧&βˆ’2𝑧+5(𝑧)βˆ’π‘§-+6𝑧&βˆ’π‘§+15)Γ·(𝑧&βˆ’2𝑧+5)=𝑧&+𝑧+3Solve 𝑧&+𝑧+3𝑧=5,Β±:,"5)(,)(-)&(,)=5,±√,,1&=βˆ’,&±√,,&𝑖Lociβ€’|𝑧|=π‘˜β‡’circle center origin and radius kβ€’|𝑧|<π‘˜β‡’inside of circle, centered at origin and radius kβ€’|𝑧|β‰₯π‘˜β‡’outside of circle including circumference, centered at origin and radius kβ€’|π‘§βˆ’π‘§>|=π‘˜β‡’is a circle of radius π‘Žcentered at 𝑧>β€’|π‘§βˆ’π‘§>|<π‘˜β‡’inside of circle centered 𝑧>and radius kβ€’|π‘§βˆ’π‘§>|β‰₯π‘˜β‡’outside of circle including circumference, centered at 𝑧>and radius kβ€’|π‘§βˆ’π‘§>|=|π‘§βˆ’π‘§,|To deal with this we let 𝑧=π‘₯+𝑖𝑦and the take the modulus of each side and see which equation you get. Might be a straight line or circle etc.β€’π‘Žπ‘Ÿπ‘”(π‘§βˆ’π‘§>)=πœƒis a line from π‘₯=𝑧>on the π‘₯axis with angle πœƒfrom the positive π‘₯axisDescribe clearly the locus in the complex plane defined by the equation |𝑧+2𝑖|=|2π‘–π‘§βˆ’1||π‘₯+𝑖𝑦+2𝑖|=|2𝑖(π‘₯+𝑖𝑦)βˆ’1||π‘₯+𝑖(𝑦+2)|=|(βˆ’1βˆ’2𝑦)+2π‘₯𝑖|Gπ‘₯&+(𝑦+2)&=G(βˆ’1βˆ’2𝑦)&+4π‘₯&π‘₯&+(𝑦+2)&=(βˆ’1βˆ’2𝑦)&+4π‘₯&3π‘₯&+3𝑦&=3π‘₯&+𝑦&=1Unit circle i.e. circle centre (0,0)radius 1Inequalitiesβ€’|𝑅𝑒(𝑧)|≀|𝑧|and |πΌπ‘š(𝑧)|≀|𝑧|β€’|𝑧+𝑀|≀|𝑧|+|𝑀|β€’|𝑧+𝑀|β‰₯|𝑧|βˆ’|𝑀|β€’|𝑒?@/A|=𝑒?@/A
3 FormsCartesian Form𝑧=π‘₯+𝑖𝑦,with π‘₯,π‘¦βˆˆβ„All above methods and properties have dealt with this formModulus Argument Form (aka Polar form)𝑧=π‘Ÿ(cosπœƒ+𝑖sinπœƒ)where, |𝑧|=π‘Ÿand arg𝑧=πœƒBasic Properties:β€’π‘§βˆ—=𝑧#=π‘Ÿ(cosπœƒβˆ’π‘–sinπœƒ)‒𝑧"=π‘Ÿ"(cosπ‘›πœƒ+𝑖sinπ‘›πœƒ) by De Moivre’s Theorem‒𝑧#"=π‘Ÿ#"(cosπ‘›πœƒβˆ’π‘–sinπ‘›πœƒ)by De Moivre’s TheoremMultiplying and Dividing Properties:Mod Resultsβ€’|𝑧$𝑧%|=|𝑧$||𝑧%|β€’3&#&"3=|&#||&"|Arg Resultsβ€’arg(𝑧$𝑧%)=arg(𝑧$)+arg(𝑧%). This works like indices rules. When we multiply, we add the powers.So [π‘Ÿ$(cosπœƒ$+𝑖sinπœƒ$)][π‘Ÿ%(cosπœƒ%+𝑖sinπœƒ%)]can be multiplied quickly and is π‘Ÿ$π‘Ÿ%[cos(πœƒ$+πœƒ%)+𝑖sin(πœƒ$+πœƒ%)]=π‘Ÿ$π‘Ÿ%𝑒((*#+*")β€’π‘Žπ‘Ÿπ‘”<&#&"==arg(𝑧$)βˆ’arg(𝑧%)This works like indices rules. When we divide. we subtract the powers.So -#(./0*#+(012*#)-"(./0*"+(012*")can be divided quickly and is -#-"[cos(πœƒ$βˆ’πœƒ%)+𝑖sin(πœƒ$βˆ’πœƒ%)]Useful Results: ‒𝑧+$&=2cosπœƒβ€’π‘§βˆ’$&=2𝑖sinπœƒβ€’π‘§"+$&$=𝑧"+𝑧#"=2cosπ‘›πœƒrearranging β‡’cosπ‘›πœƒ=&$+&%$%‒𝑧"βˆ’$&$=𝑧"βˆ’π‘§#"=2𝑖sinπ‘›πœƒrearranging β‡’sinπ‘›πœƒ=&$#&%$%(Euler’s Formπ‘Ÿπ‘’$,Basic Properties:‒𝑧=π‘Ÿπ‘’(*=π‘Ÿ(cosπœƒ+𝑖sinπœƒ)β€’π‘§βˆ—=𝑧#=π‘Ÿπ‘’#(*=π‘Ÿ(cosπœƒβˆ’π‘–sinπœƒ)‒𝑧"=π‘Ÿ"𝑒("*=π‘Ÿ"(cosπ‘›πœƒ+𝑖sinπ‘›πœƒ)‒𝑧#"=π‘Ÿ#"𝑒#("*=π‘Ÿ#"(cosπ‘›πœƒβˆ’π‘–sinπ‘›πœƒ)Converting Between The 3 FormsModulus Argumentβ†’Cartesian 𝒓(π’„π’π’”πœ½+π’Šπ’”π’Šπ’πœ½)→𝒂+π’ƒπ’Š:Work out values of the trig function and this will immediately be in cartesian formExample: Convert 2<π‘π‘œπ‘ 34+𝑖𝑠𝑖𝑛34=into cartesian form=2M<$%=+𝑖<√4%=N=1+√3𝑖Cartesianβ†’Modulus Argument𝒂+π’ƒπ’Šβ†’π’“(π’„π’π’”πœ½+π’Šπ’”π’Šπ’πœ½)Need to find π‘Ÿπ‘Žπ‘›π‘‘πœƒ. To find π‘Ÿand πœƒwe use the fomrulaπ‘Ž+𝑏𝑖⇒Tπ‘Ÿ=βˆšπ‘Ž%+𝑏%πœƒ=π‘‘π‘Žπ‘›#$<3673=and then draw the angle πœƒin the quadrant where the complex number π‘Ž+𝑏𝑖liesRead off πœƒby starting on the positive π‘₯axis (like when you solve for trig using the CAST diagram)(remember: βˆ’πœ‹β‰€πœƒ<πœ‹)Or use the formula πœƒ=⎩βŽͺ⎨βŽͺ⎧tan#$<67=(π‘–π‘“π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘1π‘œπ‘Ÿ4)tan#$<67=+πœ‹(π‘–π‘“π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘2)tan#$<67=βˆ’πœ‹(π‘–π‘“π‘žπ‘’π‘Žπ‘‘π‘Ÿπ‘Žπ‘›π‘‘3)Sub this r and πœƒfound into π‘Ÿ(π‘π‘œπ‘ πœƒ+π‘–π‘ π‘–π‘›πœƒ)Example: Convert 𝑧=1βˆ’βˆš3𝑖into modulus argument formπ‘Ÿ=b(1)&+(βˆ’βˆš3)&=√4=2πœƒ=π‘‘π‘Žπ‘›5,'√-,(=B-Complex number is in 4thquadrant so angle is βˆ’B-Plugging this into the form we get2'cos(βˆ’B-)+𝑖𝑠𝑖𝑛(βˆ’B-()=2fcos'B-(βˆ’π‘–π‘ π‘–π‘›'B-(gModulus Argumentβ†’Euler 𝒓(𝐜𝐨𝐬𝜽+π’Šπ¬π’π§πœ½)β†’π’“π’†π’Šπœ½Get into Modulus Argument form if given cartesian form and then you can read Euler’s form straight off by locating r and πœƒThis is easy since we already know π‘Ÿand πœƒfrom modulus argument formExample:Convert 2<π‘π‘œπ‘ 34+𝑖𝑠𝑖𝑛34=into Euler form=2𝑒(34Cartesianβ†’Euler 𝒂+π’ƒπ’Šβ†’π’“π’†π’Šπœ½Turn this into modulus argument form using second column and then see third columnExample:Convert βˆ’2βˆ’2𝑖into Euler Formπ‘Ÿ=G(βˆ’2)&+(βˆ’2)&=√8=2√2πœƒ=π‘‘π‘Žπ‘›5,'&&(=B)πœƒ=βˆ’πœ‹βˆ’-B)Complex number is in 3rd quadrant so angle is βˆ’-B)Plugging this into the form we get2√2'cos'βˆ’-B)(+𝑖𝑠𝑖𝑛'βˆ’-B)((=2√2𝑒51-B)We commonly use mod/arg form to find the roots of complex numbers. Finding square roots is easy since we can compare coefficients instead like in example 3 under solving with complex numbers section, but when we get to third roots and above the algebra becomes messy and it is easier to put into modulus argument form and use De Moivre’s Example:Find the cube roots of 8𝑖𝑧4=8π‘–βŸΊπ‘§=(8𝑖)#&Let’s turn 8𝑖into modulus argument form: r=√8%=8, πœƒ=π‘‘π‘Žπ‘›#$<:;==3%𝑧=M8kπ‘π‘œπ‘ <3%+2π‘›πœ‹=+𝑖𝑠𝑖𝑛<3%+2π‘›πœ‹=lN#&=8#&kπ‘π‘œπ‘ <3<+%"34=+𝑖𝑠𝑖𝑛<3<+%"34=l𝑧=2kπ‘π‘œπ‘ <3<+%"34=+𝑖𝑠𝑖𝑛<3<+%"34=lChoose 3 values for 𝑛Let 𝑛=βˆ’1:2kπ‘π‘œπ‘ <3<βˆ’%34=+𝑖𝑠𝑖𝑛<3<βˆ’%34=l=2kπ‘π‘œπ‘ <#43<=+𝑖𝑠𝑖𝑛<#43<=l=2kπ‘π‘œπ‘ <3%=βˆ’π‘–π‘ π‘–π‘›<3%=l=2𝑒#'"Let 𝑛=1: 2kπ‘π‘œπ‘ <3<+%34=+𝑖𝑠𝑖𝑛<3<+%34=l=2kπ‘π‘œπ‘ <>3<=+𝑖𝑠𝑖𝑛<>3<=l=2𝑒(')Let 𝑛=0: 2kπ‘π‘œπ‘ <3<=+𝑖𝑠𝑖𝑛<3<=l=2𝑒')These roots are equispaced around a circle of radius r (see the diagram on the right)
Clouds Background
Clouds Background

Maths Revision and Resources For All Maths Courses

What are you waiting for? It's time to get started!

Contact us