This publication may only be reproduced in accordance with London Qualifications Limited copyright policy. ©2005 London Qualifications Limited.Printer’s Log. No.N23490AW850/R6663/57570 7/7/5/5/3/Paper Reference(s)6663/01Edexcel GCECore Mathematics C1Advanced SubsidiaryMonday 10 January 2005 – AfternoonTime: 1 hour 30 minutes Materials required for examinationItems included with question papersMathematical Formulae (Green)NilCalculators may NOT be used in this examination.Instructions to CandidatesIn the boxes above, write your centre number, candidate number, your surname, initial(s) andsignature.You must write your answer for each question in the space following the question.If you need more space to complete your answer to any question, use additional answer sheets.Information for CandidatesA booklet ‘Mathematical Formulae and Statistical Tables’ is provided.Full marks may be obtained for answers to ALL questions.This paper has ten questions. Pages 2 and 20 are blank.The total mark for this paper is 75.Advice to CandidatesYou must ensure that your answers to parts of questions are clearly labelled.You must show sufficient working to make your methods clear to the Examiner. Answers withoutworking may gain no credit.*N23490A*Turn overExaminer’s use only Team Leader’s use onlyQuestion LeaveNumberBlank12345678910TotalCentreNo.Candidate No.SurnameInitial(s)SignaturePaper Reference666301www.mymathscloud.com
Leaveblank31.(a) Write down the value of .(1)(b) Find the value of .(2)____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________3216−1216Turn overN23490AQ1(Total 3 marks)www.mymathscloud.com
Leaveblank42.(i) Given that y= 5x3+ 7x+ 3, find(a)(3)(b)(1)(ii) Find (4)______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2113d.xxx⎛⎞+√ −⎜⎟⎝⎠∫22d.dyxd,dyxN23490Awww.mymathscloud.com
Leaveblank5Question 2 continued____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Turn overN23490AQ2(Total 8 marks)www.mymathscloud.com
Leaveblank63.Given that the equation kx2+ 12x+ k= 0, where kis a positive constant, has equal roots,find the value of k.(4)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________N23490AQ3(Total 4 marks)www.mymathscloud.com