© MyMathsCloud

Differentiation Rules – Short Method

Type	Rule				Examples	Comments		
"Fasy Powers"	$x^n \Rightarrow nx^{n-1}$		$y = 3x^4 + 4x^2 - 5x + 6$		This is the first type you learn and			
aka power rule				$\frac{dy}{dx^2} = 12x^3 + 8x = 5$		should find this easy by now		
	"bring the power down to the fr	ont and subtract one from the		$\frac{dx}{dx} =$	$12x^{2} + 8x - 5$			
	powe	er"	Don't forget: terms w	ith an x go	to their coefficient and constants go to zero			
We also deal with harder composite function as $f(g(x))$. In other words, we now have to deal with a function within a function, or a function whereby there is an inside function and an outside function.								
inner inner inner								
$\cos(1-x^2)$ $(1-x^2)^2$ e^{1-x^2} $\ln(1-x^2)$								
outer outer outer								
We must apply what is known as "chain rule". There is a long and short way to apply chain rule for composite functions. It is MUCH quicker to apply the rules as laid out below (see the cheat sheet differentiation rules a sheet differentiation rules are the set of								
- shorter and longer m	lethods if you want both methods. If	ne longer method involves a substit	ution). We can remember	the rule by	: acthor and logue the haby inside times the	a differentiate the haby"		
"Harder Dowers"	$(f(x))^n \rightarrow x(f(x))^n$	$y = 4(3r^3 - 4r)^3$			This is similar to year 1 nower			
naruer Powers	$(f(\mathbf{x})) \rightarrow h(f(\mathbf{x})) f(\mathbf{x})$		y = 1(0x - 1x)		rule except we now have a			
	"bring the power down to the fr	ont and subtract one from the	$\frac{dy}{dx} = 4(3)(3x^3 - 4x)^2(9x^2 - 4)$		function inside the bracket and			
	power (keep what is inside the	bracket the same)" and then	dx		have to apply chain rule by			
	multiply by the derivative of	f what is inside the bracket	$= 12(9x^2 - 4)(3x^3 - 4x)^2$		differentiating the inner function			
Exponentials	Type 1: With a base e		$y = 4e^{x^2} \qquad \qquad y = 3(4^{x^2})$		Notice how the <i>ln a</i> appears for			
	$e^{f(x)} \Rightarrow e^{f(x)}$	$e^{f(x)} \Rightarrow e^{f(x)}f'(x)$		r ²	dy $\partial(x^2)$ $(0, y)$	the second example, which		
	"copy the exponential" and multiply by the derivative of the power		$\frac{1}{dx} = 4e^x (2x) = 8$	Sxe ^x	$\frac{1}{dx} = 3(4^x)(2x)\ln 4$	doesn't nappen when we		
	Type 2: With a base other than $e^{-rf(x)} = f(x) f(x) h x^{2}$				$= 6(\ln 4)x4^{x^2}$	unrerentiate with a base of e		
	$a' \Leftrightarrow \Rightarrow a' \Leftrightarrow f'(x)$ in a "convite exponential" and multiply by the derivative of the power							
	and multip	ly by ln a						
	Why is this second result true? You	need to know the proof of this!						
	Proof 1: Use implicit	Proof 2: Write $a^{f(x)} = e^{\ln a^{f(x)}}$						
	differentiation	We can use log rules to bring						
	$y = a^{f(x)}$	the power down						
	Log both sides $ln y = ln a^{f(x)}$	$e^{f(x)\ln a} = e^{\ln a f(x)}$						
	$ln y = f(x) \ln a \iff \ln y =$	Now this just becomes like						
	ln a f(x)	base of e						
	$\frac{1}{y}\frac{dy}{dx} = \ln a f'(x)$	$\Rightarrow e^{\ln a f(x)} \ln a f'(x)$						
	$\frac{dy}{dy} = y \ln a f'(x)$	$= \ln a f'(x) e^{\ln a f(x)}$						
	Put back v gives	$= \ln a f'(x) e^{f(x) \ln a}$						
	$\frac{dy}{dt} = a^{f(x)} \ln a f'(x)$	Use a log rule again $f(x)$						
	$\int dx = a f(x) f'(x) lna$	$= \ln a f'(x) e^{\ln a f(x)}$						
	- u j (u)inu	$= \ln a f'(x) a^{j(x)}$						
Natural	$\ln(f(x))$		<i>y</i> =	$=\ln(x^2+2x)$	Don't fall into the trap of always			
Logarithmic	$f(\mathbf{x})$ derivative of argument			dy 2	2x + 2 = 2x + 2	writing $\frac{1}{x}$. It's only $\frac{1}{x}$ for $\ln x$		
Function	This goes to a fraction: copy of argument		$\overline{dx} = \frac{1}{x^2 + 2x} = \frac{1}{x^2 + 2x}$			because derivative happens to be		
	Note: If given a log instead we turn			<u>1</u>				
	$\log_a f(x) = \frac{\ln f(x)}{\ln x} = -$				x			
	loga (co) lna lr	$\int a^{(x)} \int \ln a f(x)$. (1.2)		2 3(2)			
Trig	$\sin f(x) \Rightarrow f'(x) \cos f(x)$	Trick to help you remember	$y = \sin(4x^2)$		$y = 2\cos^3(x^2)$ First lot's write this in power form	Watch out for the second		
	$\cos f(x) \Rightarrow -f'(x)\sin f(x)$	Integrate Differentiate	$\frac{dy}{dx} = 8x\cos(4x)$	²)	$v = 2(\cos(x^2))^3$	Trig with powers!		
	$\tan f(x) \Rightarrow f'(x) \sec^2 f(x)$	a. S	$ux = 9x \cos(4x^2)$		Now this is just a harder power type, but be			
	$\sec f(x) \Rightarrow f'(x) \sec f(x) \tan f(x)$		$= 8x \cos(4x^2)$		careful when differentiating the $f(x)$ inside			
	$\operatorname{see}_{\mathcal{F}}(x) \to \operatorname{f}(x) \operatorname{see}_{\mathcal{F}}(x) \operatorname{unf}(x)$				the bracket as you have to use the rule for			
	$cosec f(x) \Rightarrow -f'(x)cosec f(x)c$	$\operatorname{sot} f(x) = \sqrt{3}$			trig also	Write this as		
	$\cot f(x) \Rightarrow -f'(x) \csc^2 f(x)$				$\frac{dy}{dx} = 2(3)(\cos(x^2))^2 (-2x\sin(x^2))$	$y = 2(\cos(x^2))^3$ and then these are just a barder power type and		
	"change the trig function to what	t it is meant to go to (keep the			$= -12x\sin(x^2)\cos^2(x^2)$	trig in one question		
	angle the same) and multiply b	by the derivative of the angle						
Inverse Trig				у	$=\sin^{-1}4x^2$	Way 2 is longer as you can see. It		
	$\sin^{-1} f(x) = \arcsin f(x) \Rightarrow \frac{1}{\sqrt{2}}$	f'(x)	Way 1: Use the formula on the left is much quict the mula			is much quicker to just memorise		
		dy = 8x = 8x			therules			
	$\cos^{-1} f(x) = \arccos f(x) \Rightarrow -$	$-\frac{f'(x)}{}$	$\frac{dy}{dx} = \frac{dx}{\sqrt{1 - (4x^2)^2}} = \frac{dx}{\sqrt{1 - 16x^4}}$					
	, (,) <u></u>	$\sqrt{1-(f(x))^2}$	$\sqrt{1 - (4x^2)^2}$ $\sqrt{1 - 16x^4}$					
	$\tan^{-1} f(x) = \arctan(x) \Rightarrow -\frac{1}{2}$	f'(x)	Way 2: Use implicit differentiation (if you already know it)					
	$\tan f(x) = \operatorname{urctunf}(x) \Rightarrow \frac{1}{1+(f(x))^2}$		Get rid of inverse notation: $\sin y = 4x^2$					
	$\sec^{-1} f(x) \Rightarrow \frac{f'(x)}{2}$		Differentiate implicitly: $\cos y \frac{dy}{dx} = 8x \iff \frac{dy}{dx} = \frac{8x}{\cos y}$					
	$f(x) \sqrt{\left(f(x)\right)^2 - 1}$		Need to eliminate the letter y as want everything in terms of x . To do this we					
	$cosec^{-1}f(x) \Rightarrow -\frac{f'(x)}{\sqrt{2}}$		build a triangle with $sin = \frac{opp}{hyp}$ and use Pythagoras to find 3 rd side. From there we					
	$f(x)\sqrt{(f(x))^2}$	-1	can find what cos y is in	term of x				
	$\cot^{-1} f(x) \Rightarrow -\frac{f'(x)}{1-x^2}$		$\sin y = 4x^2 = \frac{0}{H} = \frac{4x^2}{1}$					
	$1+(f(x))^2$		"N		Using the triangle and SOHCAHTOA			
			Lising Pythagoras y		We can find $\cos y$ in terms of x:			
			$\sqrt{1-(4x^2)^2}$	1	$\cos y = \frac{\sqrt{1-16x^4}}{1} = \sqrt{1-16x^4}$			
			$=\sqrt{1-16x^4}$	Tenu.	I			
				36				
			_ ор	posite	7			
			4	x^2				
			$\therefore \frac{dy}{dx} = \frac{8x}{\cos y}$ can now be written in terms of $x \operatorname{as} \frac{8x}{\sqrt{1-16x^4}}$					
			Note: Instead of building	a triangle	to eliminate y we could have used the			
			pythagorean identitiy si	$n^2 y + \cos^2 y$	$y = 1$. We're given $\sin y = 4x^2$ in the $y + \cos^2 y = 1$			
			question, so can sub this into $\sin^2 y + \cos^2 y = 1$ $(4x^2)^2 + \cos^2 y = 1 \Rightarrow \cos^2 y = 1 - 16x^4 \Rightarrow \cos y = \sqrt{1 - 16x^4}$					
			$\frac{dy}{dy} = \frac{8x}{x} = \frac{8x}{x}$	203 y - 1	$2 20x \rightarrow cosy = v1 10x$	© MyMathsCloud		
Droduct 9			$dx = \cos y = \sqrt{1 - 16x^4}$					
Product &	Product rule:				Quotient rule:			
(a combination of 2 or		$-uu \rightarrow \frac{dy}{dv} - \frac{du}{dv} + \frac{dv}{dv}$		$\frac{du}{dt}$				
more of the 6 types	у		$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v dx}{v^2} - \frac{u dx}{dx}$					
above multiplied	(differentiate 1st function)(conv	ferentiate 2 nd function)	$v - v - dx = v^2$					
each other)	(uncrentiate 1- function)(copy)	2 Interiority + (copy 1- function)(all all all all all all all all all all	referitiate 2 ^{re} function)	(copy deno	ominator)(differentiate numerator)-(copy numer	ator)(differentiate denominator)		
	Ultimately you're just differen	tiating one function at a time and a	ding them together (denominator) ²					

Basic Examples

Harder Powers:

$$y = (3x - 2)^5$$
. Find $\frac{dy}{dx}$

 $y = (3x - 2)^5$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the harder powers type. The rule for harder powers is:

"bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket"

$$\frac{dy}{dx} = 5(3x - 2)^4(3)$$

Let's re-order and simplify since we can multiply in any order.

$$\frac{dy}{dx} = 5(3)(3x-2)^4$$

$$\frac{dy}{dx} = 15(3x - 2)^4$$

$$3(5+x^2)^{\frac{3}{2}}$$
. Find $\frac{dy}{dx}$.

$$y = 3(5+x^2)^{\frac{3}{2}}$$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the harder powers type. The rule for harder powers is:

"bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket"

https://www.khanacademy.org/math/trigonometry/trig-equations-and-identities/solving-

sinusoidal-models/e/inverse-trig-word-problems?modal= $1\frac{dy}{dx} = 3\left(\frac{3}{2}\right)(5+x^2)^{\frac{1}{2}}(2x)$

Let's re-order and simplify since we can multiply in any order

$$\frac{dy}{dx} = 3\left(\frac{3}{2}\right)(2) (x)(5+x^2)^{\frac{1}{2}}$$

$$\frac{dy}{dx} = 9x(5+x^2)^{\frac{1}{2}}$$

$$f(x) = \frac{5}{\sqrt{2-4x}}$$
. Find $\frac{dy}{dx}$.

Firstly, we can bring the power up using indices rules and then it is just the harder powers type of differentiation

$$f(x) = 5(2 - 4x)^{-\frac{1}{2}}$$
$$f'(x) = 5\left(-\frac{1}{2}\right)(2 - 4x)^{-\frac{3}{2}}(-4)$$
$$f'(x) = 10(2 - 4x)^{-\frac{3}{2}}$$

Note: A lot of students will try and use quotient rule for this. It is not necessary to use quotient rule here, but you can and it would work!

$$f(x) = \frac{5}{\sqrt{2-4x}}$$

We use quotient rule when we have division of one of the 6 differentiation types (easy power, harder power, ln, exponential, trig, inverse trig) (here we have a constant and a harder power type and a constant is not considered one of the necessary types, that is why is it not necessary to use quotient rule). Also note that we can even always avoid quotient rule when we do have division of one of the 6 differentiation types, by bringing the denominator up and always just using product rule, but this can require more simplification at the end. Therefore, I would suggest using Quotient rule when it is necessary.

Exponentials: Base e

$$y = e^{4x}$$
 . Find $\frac{dy}{dx}$.

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the exponentials type. The rule for exponentials with base *e* is:

"copy the entire exponential and then multiply by the derivative of the power"

$$\frac{dy}{dx} = e^{4x}(4)$$

$$\frac{dy}{dx} = 4e^{4x}$$

$$y = 5e^{5x}$$
. Find $\frac{dy}{dx}$.
 $y = 5e^{5x}$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the exponentials type. The rule for exponentials with base *e* is:

"copy the entire exponential and then multiply by the derivative of the power"

$$\frac{dy}{dx} = 5e^{5x}(5)$$

$$\frac{dy}{dx} = 25e^{5x}$$

 $y = e^{4x}$

Exponentials: Base other than e

$$y = 2^{4x}$$
 . Find $\frac{dy}{dx}$

 $y = 2^{4x}$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the exponentials type. The rule for exponentials (with a base other than e) is:

"copy the entire exponential and then multiply by the derivative of the power and also by ln of the base" Notice the extra purple part when we have an exponential which doesn't have a base of e.

$$\frac{dy}{dx} = 2^{4x}(4) \ln 2$$
$$\frac{dy}{dx} = (4 \ln 2)(2^{4x})$$

$$y = 5(3^{2x})$$
. Find $\frac{dy}{dx}$.

 $y = 5(3^{2x})$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the exponentials type. The rule for exponentials (with a base other than e) is:

"copy the entire exponential and then multiply by the derivative of the power and also by ln of the base "

Notice the extra purple part when we have an exponential which doesn't have a base of *e*.

Don't worry about the 5 at the front, that is just hanging around at the front.

$$\frac{dy}{dx} = 5(3^{2x})(2)\ln 3$$

simplify

$$\frac{dy}{dx} = (10\ln 3)(3^{2x})$$

Natural Logarithms:

 $y = \ln(3x + 2)$. Find $\frac{dy}{dx}$.

$$y = \ln \left(3x + 2 \right)$$

We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the logs type. The rule for logs is: "This turns into to a fraction which looks like $\frac{derivative of argument}{copy of argument}$. Notice how the *ln* disappears" $\frac{dy}{dx} = \frac{3}{3x+2}$

© MyMathsCloud

$$y = 3\ln(x^2 + 3x + 5)$$
. Find $\frac{dy}{dx}$.

 $y = 3 \ln (x^2 + 3x + 5)$ We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the logs type. The rule for logs is: "This turns into to a fraction which looks like $\frac{derivative of argument}{copy of argument}$. Notice how the *ln* disappears" Don't worry about the 3 at the front, that is just hanging around at the front. $\frac{dy}{dx} = 3\left(\frac{2x+3}{x^2+3x+5}\right)$ simplify $\frac{dy}{dx} = \frac{6x+9}{x^2+3x+5}$

Trig:

$$y = \cos 3x$$
. Find $\frac{dy}{dx}$.

 $y = \cos(3x)$ We have 6 types of differentiation (easy powers, harder powers, exponentials, logs, trig and inverse trig). This is the trig type. The rule for trig is: "Change the trig function to what it is meant to go to (keep the angle the same) and then multiply by the derivative of the angle" Our 6 trig functions that we have to remember are: $sin \Rightarrow cos$ $cos \Rightarrow -sin$ $tan \Rightarrow sec^2$ $sec \Rightarrow sec tan$ $cosec \Rightarrow -cosec \ cot$ $cot \Rightarrow -cosec^2$ Here we have the 2nd one: $cos \Rightarrow -sin$ $\frac{dy}{dx} = -\sin 3x \ (3)$ simplify $\frac{dy}{dx} = -3\sin 3x$

Harder Examples

$$y = \sin(4x^2)$$
. Find $\frac{dy}{dx}$.

 $y = e^{\cos x}$

Here we have a mix of 2 types (exponential and trig)
Recall the rule for exponentials:
"copy the entire exponential and then multiply by the derivative of the power"
Recall the rule for trig:
"Change the trig function to what it is meant to go to (keep the angle the same) and then multiply by the
derivative of the angle"
Our 6 trig functions that we have to remember are:

$$sin \Rightarrow cos$$

 $cos = -sin$ (we have this one in this example)
 $tan \Rightarrow sec^2$
 $sec \Rightarrow sec tan$
 $cosec \Rightarrow -cosec cot$
 $cot \Rightarrow -cosec^2$
We deal with the exponential first since that is the main function, but when we differentiate the power which
is part of the exponential differentiation rule, we have to use our trig differentiation rule to do this
 $\frac{dy}{dx} = e^{cosx}(-\sin x)$
 $\frac{dy}{dx} = (-\sin x)e^{\cos x}$

 $y = (e^{4x} + 5)^6$

Here we have a mix of 2 types (harder power and exponential)

Recall the rule for harder powers:

"bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket"

Recall the rule for exponentials:

"copy the entire exponential and then multiply by the derivative of the power"

We deal with the harder power since that is the main function, but when we differentiate inside the bracket which is part of the harder power differentiation rule, we have to use our exponential differentiation rule to do this

$$\frac{dy}{dx} = 6(e^{4x} + 5)^5(4e^{4x})$$

$$\frac{dy}{dx} = 24e^{4x}(e^{4x} + 5)^5$$

$$f(x) = \sqrt{e^{2x} + e^{-2x}}$$

Firstly we need to write this as
$$f(x) = (e^{2x} + e^{-2x})^{\frac{1}{2}}$$

Here we have a mix of 2 types (harder power and exponential)

Recall the rule for harder powers:

"bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket"

Recall the rule for exponentials:

"copy the entire exponential and then multiply by the derivative of the power"

We deal with the harder power since that is the main function, but when we differentiate inside the bracket which is part of the harder power differentiation rule, we have to use our exponential differentiation rule to do this

$$f'(x) = \frac{1}{2}(e^{2x} + e^{-2x})^{-\frac{1}{2}}(2e^{2x} + (-2)e^{-2x})$$

$$f'(x) = (e^{2x} - e^{-2x})(e^{2x} + e^{-2x})^{-\frac{1}{2}}$$

 $f'(x) = \frac{e^{2x} - e^{-2x}}{\sqrt{e^{2x} + e^{-2x}}}$

 $y = \ln(sinx)$

Here we have a mix of 2 types (log and trig)

Recall the rule for logs:

"This turns into to a fraction which looks like $\frac{derivative of argument}{copy of argument}$. Notice how the ln disappears"

Recall the rule for trig:

"Change the trig function to what it is meant to go to (keep the angle the same) and then multiply by the derivative of the angle" Our 6 trig functions that we have to remember are:

 $sin \Rightarrow cos$ (we have this one in this example) $cos \Rightarrow -sin$ $tan \Rightarrow sec^2$ $sec \Rightarrow sec tan$ $cosec \Rightarrow -cosec cot$

 $cot \Rightarrow -cosec^2$

We deal with the log first since that is the main function, but when we differentiate inside the argument part which is part of the log differentiation rule, we have to use our trig differentiation rules to do this

$$\frac{dy}{dx} = \frac{\cos x}{\sin x}$$
$$\frac{dy}{dx} = \cot x$$

 $y = \ln(1 - 2x)^3$

Here we have a mix of 2 types (log and harder powers)

Recall the rule for logs:

"This turns into to a fraction which looks like $\frac{derivative \ of \ argument}{copy \ of \ argument}$. Notice how the ln disappears"

Recall the rule for harder powers:

"bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket"

We deal with the log first since that is the main function, but when we differentiate inside the argument part which is part of the log differentiation rule, we have to use our harder power differentiation rules to do this

$$\frac{dy}{dx} = \frac{3(1-2x)^2(-2)}{(1-2x)^3}$$

$$\frac{dy}{dx} = \frac{-6(1-2x)^2}{(1-2x)^3}$$

$$\frac{dy}{dx} = -\frac{6}{1-2x}$$

$$f(x) = \sin^3 4x$$

This is one that students so often get wrong. We have to first write the trig to a power in a more familiar way $f(x) = \sin^3 4x = (\sin 4x)^3$ Here we have a mix of 2 types (harder power and trig) Recall the rule for harder powers: "bring the power down to the front (and multiply it by the number at the front if there is one), then subtract one from the power (keeping what is inside the bracket the same) and then multiply by the derivative of what is inside the bracket" Recall the rule for trig: "Change the trig function to what it is meant to go to (keep the angle the same) and then multiply by the derivative of the angle" Our 6 trig functions that we have to remember are: $sin \Rightarrow cos$ (we have this one in this example) $cos \Rightarrow -sin$ $tan \Rightarrow sec^2$ $sec \Rightarrow sec tan$ $cosec \Rightarrow -cosec \ cot$ $cot \Rightarrow -cosec^2$ We deal with the harder power since that is the main function, but when we differentiate inside the bracket which is part of the harder power differentiation rule, we have to use our trig differentiation rule to do this $f'(x) = 3(\sin 4x)^2 (4\cos 4x)$ $f'(x) = 12\cos 4x (\sin 4x)^2$ $f'(x) = 12\cos 4x\sin^2 4x$

Product and Quotient Rule Examples

$$y = 2x(x^2 - 1)^5.$$
 Find $\frac{dy}{dx}$.

$y = 2x(x^2 - 1)^5$

We must use **product rule** here since we have one of the 6 differentiation types (easy power, harder power, ln, exponential, trig, inverse trig) **multiplied together** (here we have an easy power and a harder power).

Important: People often fall into the trap of not thinking that product rule is necessary here, because they fail to realise that the easy power counts as a type so we have multiplication of 2 of the types.

Way 1: Use the formula $y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

 $y = 2x(x^2 - 1)^5$

Note: We call one function u and the other v. It doesn't matter which we call u or v since the formula is

$$\frac{dy}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}$$

We are just multiplying and then adding the two multiplications. Multiplication can be done in any order and so can the addition be done in any order afterwards.

Let's call the pink function u and the blue function v

$$u = 2x, v = (x^2 - 1)^5$$

We differentiate each

$$\frac{du}{dx} = 2, \frac{dv}{dx} = 5(x^2 - 1)^4 (2x)$$

Plug into the formula $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

$$\frac{dy}{dx} = 2x(5)(x^2 - 1)^4(2x) + (x^2 - 1)^5(2)$$

Simplify by re-ordering the constants from each term. Let's colour code to explain this.

$$\frac{dy}{dx} = 2x(5)(x^2 - 1)^4(2x) + (x^2 - 1)^5(2)$$

$$\frac{dy}{dx} = 20x^2(x^2 - 1)^4 + 2(x^2 - 1)^5$$

Way 2: Understand what formula is telling us

$$y = 2x(x^2 - 1)^5$$

The formula basically says in English, differentiate one function at a time

(differentiate 1st function)(copy 2nd function)+(copy 1st function)(differentiate 2nd function)

$$\frac{dy}{dx} = 2(x^2 - 1)^5 + 2x(5)(x^2 - 1)^4(2x)$$

simplify

$$\frac{dy}{dx} = 20x^2(x^2 - 1)^4 + 2(x^2 - 1)^5$$

$$y = x^2 e^x$$
. Find $\frac{dy}{dx}$.

 $y = x^2 \overline{e^x}$

We must use **product rule** here since we have one of the 6 differentiation types (easy power, harder power, ln, exponential, trig, inverse trig) **multiplied together** (here we have an easy power and an exponential).

Way 1: Use the formula $y = uv \Rightarrow \frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

 $y = x^2 e^x$

Note: We call one function u and the other v. It doesn't matter which we call u or v since the formula is $dy \quad dv \quad du$

$$\frac{dy}{dx} = u \times \frac{dv}{dx} + v \times \frac{du}{dx}$$

We are just multiplying and then adding the two multiplications. Multiplication can be done in any order and so can the addition be done in any order afterwards.

Let's call the pink function u and the blue function v

$$u = x^2, v = e^x$$

We differentiate each

$$\frac{du}{dx} = 2x$$
, $\frac{dv}{dx} = e^x$

Plug into the formula $\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$

$$\frac{dy}{dx} = (x^2)(e^x) + e^x(2x)$$

Simplify by re-ordering the 2x in the second term

$$\frac{dy}{dx} = x^2 e^x + 2x e^x$$

Way 2: Understand what formula is telling us

$$y = x^2 e^{x^2}$$

The formula basically says in English, differentiate one function at a time

(differentiate 1st function)(copy 2nd function)+(copy 1st function)(differentiate 2nd function)

$$\frac{dy}{dx} = (2x)e^x + (x^2)(e^x)$$

Simplify

$$\frac{dy}{dx} = 2xe^x + x^2e^x$$

$$y = \frac{3x+1}{2x+1}.$$
 Find $\frac{dy}{dx}$.

$$y = \frac{3x+1}{2x+1}$$

 $y = \frac{3x+1}{2x+1}$

We must use quotient rule here since we have **division** of one of the 6 differentiation types (easy power, harder power, In, exponential, trig, inverse trig) (here we have an easy power and an easy power type)

Way 1: Use the formula
$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Note: We call one function u and the other v.

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

This time it MATTERS which we call u or v since we are subtracting and the denominator of the original fraction is what must be squared, not the numerator. Subtraction cannot be done in any order. For example, 4-2 is not the same as 2-4

So we must call u the numerator (pink function) and v the denominator (blue function)

$$u = 3x + 1, v = 2x + 1$$

We differentiate each

$$\frac{du}{dx} = 3$$
, $\frac{dv}{dx} = 2$

Plug into the formula $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

www.mymathscloud.com	© MyMathsCloud				
$\frac{dy}{dx} = \frac{(2x+1)(3) - (3x+1)(2)}{(2x+1)^2}$					
$ax \qquad (2x+1)^{2}$					
Simplify the numerator					
$\frac{dy}{dx} = \frac{(6x+3) - (6x+2)}{(2x+1)^2}$					
$\frac{dy}{dx} = \frac{1}{(2x+1)^2}$					
Way 2: Understand what formula is telling us					
$y = \frac{3x+1}{2x+1}$					
The formula basically says in English:					
(copy denominator)(differentiate numerator) – (copy numerator)(dif	ferentiate denominator)				
(denominator) ²					
$\frac{dy}{dx} = \frac{(2x+1)(3) - (3x+1)(2)}{(2x+1)^2}$					
Simplify the numerator					
$\frac{dy}{dx} = \frac{(6x+3) - (6x+2)}{(2x+1)^2}$					
$\frac{dy}{dx} = \frac{1}{(2x+1)^2}$					

$$y = \frac{x^2}{\ln x}$$
. Find $\frac{dy}{dx}$

$$y = \frac{x^2}{\ln x}$$
tient rule here since we have **division** of one of the 6 differentiation types

We must use quotient rule here since we have **division** of one of the 6 differentiation types (easy power, harder power, In, exponential, trig, inverse trig) (here we have an easy power and a log type)

Way 1: Use the formula
$$y = \frac{u}{v} \Rightarrow \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

$$y = \frac{x^2}{\ln x}$$

Note: We call one function u and the other v.

$$\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

This time it MATTERS which we call u or v since we are subtracting and the denominator of the original fraction is what must be squared, not the numerator. Subtraction cannot be done in any order. For example, 4-2 is not the same as 2-4

So we must call u the numerator (pink function) and v the denominator (blue function)

$$u = x^2, v = \ln x$$

We differentiate each

$$\frac{du}{dx} = 2x$$
, $\frac{dv}{dx} = \frac{1}{x}$

Plug into the formula $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$

 $\frac{c}{c}$

$$\frac{ly}{lx} = \frac{\ln x \left(2x\right) - x^2 \left(\frac{1}{x}\right)}{(\ln x)^2}$$

Simplify the numerator

$$\frac{dy}{dx} = \frac{2x\ln x - x}{(\ln x)^2}$$

Way 2: Understand what formula is telling us

$$y = \frac{x^2}{\ln x}$$

The formula basically says in English:

(copy denominator)(**differentiate** numerator) – (copy numerator)(**differentiate** denominator) (denominator)²

$$\frac{dy}{dx} = \frac{(\ln x)(2x) - x^2\left(\frac{1}{x}\right)}{(\ln x)^2}$$

Simplify the numerator

$$\frac{dy}{dx} = \frac{2x\ln x - x}{(\ln x)^2}$$

Product and Quotient - Getting Into Certain Forms

$$y = (x + 1)^4 (2x - 2)^5$$
. Show that $\frac{dy}{dx} = 2(9x + 1)(x + 1)^3 (2x - 2)^4$

$$y = (x+1)^4 (2x-2)^5$$

We must use product rule

$$\frac{dy}{dx} = (x+1)^4 (5)(2x-2)^4 (2) + (2x-2)^5 (4)(x+1)^3$$

Simplify by multiplying constants and re-ordering. Let's colour code this for ease of explanation.

$$\frac{dy}{dx} = (x+1)^4 (5)(2x-2)^4 (2) + (2x-2)^5 (4)(x+1)^3$$
$$\frac{dy}{dx} = 10(x+1)^4 (2x-2)^4 + 4(2x-2)^5 (x+1)^3$$

To simplify further and get into the required form we must factorise by taking out what is common to both terms. Let's colour code this again for ease of explanation.

$$\frac{dy}{dx} = 10(x+1)^4(2x-2)^4 + 4(x+1)^3(2x-2)^5$$

Take out the HCF of the numbers

Take out the HCF of the pink terms (lowest power of each) Take out the HCF of the blue terms (lowest power of each) $= 2(x + 1)^3(2x - 2)^4[5(x + 1) + 2(2x - 2)]$

Notice how we subtracted the powers in order to get the powers of the terms inside the square bracket (or asked ourselves what power we need to add to the power we have outside the bracket to end up with the power we want)

Simplify what is inside the square bracket

$$= 2(x+1)^3(2x-2)^4[5x+5+4x-4]$$

www.mymathscloud.com © MyMathsCloud

Simplify again

 $= 2(x+1)^3(2x-2)^4(9x+1)$

$$= 2(9x+1)(x+1)^3(2x-2)^4$$

$$y = \frac{x^2 - 4x + 12}{(x-3)^2}$$
. Show that $\frac{dy}{dx} = -\frac{2(x+6)}{(x-3)^3}$

$$y = \frac{x^2 - 4x + 12}{(x - 3)^2}$$

We must use quotient rule

$$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - (x^2 - 4x + 12)(2)(x-3)}{(x-3)^4}$$

Re-order: Bring the constant of 2 to the front of the second term in the numerator

$$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - 2(x-3)(x^2 - 4x + 12)}{(x-3)^4}$$

We still have not achieved the required form. There are 2 ways to proceed to do this. Since the powers are small and it is easy to simplify we don't have to factorise straight away

Way 1: Factorise the numerator straight away	Way 2: Simplify the numerator first		
$\frac{dy}{dx} = \frac{(x-3)^2(2x-4) - 2(x-3)(x^2 - 4x + 12)}{(x-3)^4}$	This is not always the best method as it can be hard to factorise the numerator after in order to cancel		
Take out the HCF of the pink terms in the numerator (lowest power)	$\frac{dy}{dx} = \frac{(2x-4)(x-3) - 2(x^2 - 4x + 12)}{(x-3)^3}$		
$\frac{dy}{dx} = \frac{(x-3)[(x-3)(2x-4) - 2(x^2 - 4x + 12)]}{(x-3)^4}$ Simplify what is inside the square bracket	Simplify the numerator by expanding the brackets $\frac{dy}{dx} = \frac{2x^2 - 10x + 12 - 2x^2 + 8x - 24}{(x - 3)^3}$		
$\frac{dy}{dx} = \frac{(x-3)[2x^2 - 10x + 12 - 2x^2 + 8x - 24]}{(x-3)^4}$	Collect like terms $\frac{dy}{dx} = \frac{-2x - 12}{(x - 3)^3}$		
$\frac{dy}{dx} = \frac{(x-3)[-2x-12]}{(x-3)^4}$	Factorise the numerator $dy = 2(x+6)$		
$\frac{dy}{dx} = \frac{-2x - 12}{(x - 3)^3}$	$\frac{1}{dx} = -\frac{1}{(x-3)^3}$		
$\frac{dy}{dx} = -\frac{2(x+6)}{(x-3)^3}$			

© MyMathsCloud

$$y = \frac{\sqrt{x^2 + 1}}{x - 1}$$
. Show that $\frac{dy}{dx} = \frac{-(x + 1)}{(x - 1)^2 \sqrt{x^2 + 1}}$

$$y = \frac{\sqrt{x^2 + 1}}{x - 1}$$

Firstly, let's rewrite the numerator using an exponent

$$y = \frac{(x^2 + 1)^{\frac{1}{2}}}{x - 1}$$

We must use the quotient rule

$$\frac{dy}{dx} = \frac{(x-1)\left(\frac{1}{2}\right)(x^2+1)^{-\frac{1}{2}}(2x) - (1)(x^2+1)^{\frac{1}{2}}}{(x-1)^2}$$

Simplify the numerator by multiplying constants in first term and rewriting $(x^2 + 1)^{-\frac{1}{2}}$

$$\frac{dy}{dx} = \frac{\frac{x(x-1)}{\sqrt{x^2+1}} - \sqrt{x^2+1}}{(x-1)^2}$$

Way 1: Way 2: Multiply every term in the numerator and Work on each of the numerators and denominator by $\sqrt{x^2 + 1}$ to kill the fractions denominators separately Note: This is just multiplying through by $\frac{\sqrt{x^2+1}}{\sqrt{x^2+1}}$ $\frac{dy}{dx} = \frac{\frac{x(x-1)}{\sqrt{x^2+1}} - \sqrt{x^2+1}}{(x-1)^2}$ $\frac{dy}{dx} = \frac{\frac{x(x-1)}{\sqrt{x^2+1}} \times \sqrt{x^2+1} - \sqrt{x^2+1} \times \sqrt{x^2+1}}{(x-1)^2 \sqrt{x^2+1}}$ We get a common denominator in the numerator $\frac{dy}{dx} = \frac{\frac{x(x-1)}{\sqrt{x^2+1}} - \frac{x^2+1}{\sqrt{x^2+1}}}{(x-1)^2}$ $\frac{dy}{dx} = \frac{x(x-1) - (x^2+1)}{(x-1)^2\sqrt{x^2+1}}$ Combine fractions in the numerator Expand the numerator $\frac{dy}{dx} = \frac{\frac{x(x-1) - (x^2 + 1)}{\sqrt{x^2 + 1}}}{(x-1)^2}$ $\frac{dy}{dx} = \frac{x^2 - x - x^2 - 1}{(x - 1)^2 \sqrt{x^2 + 1}}$ Combine like terms in the numerator Simplify the numerator $\frac{dy}{dx} = \frac{-(x+1)}{(x-1)^2\sqrt{x^2+1}}$ $\frac{dy}{dx} = \frac{\frac{-x-1}{\sqrt{x^2+1}}}{\frac{(x-1)^2}{(x-1)^2}}$ Rewrite the fraction as numerator ÷ denominator $\frac{dy}{dx} = \frac{-x-1}{\sqrt{x^2+1}} \div (x-1)^2$ "keep change flip" $\frac{dy}{dx} = \frac{-x-1}{\sqrt{x^2+1}} \times \frac{1}{x+\sqrt{x^2+1}}$ $\frac{dy}{dx} = \frac{-(x+1)}{(x-1)^2\sqrt{x^2+1}}$

$$y = \ln(x + \sqrt{x^2 + 1})$$
. Show that $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$

$$y = \ln\left(x + \sqrt{x^2 + 1}\right)$$

We must use the log differentiation rule. This turns into to a fraction which looks like $\frac{derivative of argument}{copy of argument}$.

$$\frac{dy}{dx} = \frac{1 + \frac{1}{2}(x^2 + 1)^{-\frac{1}{2}}(2x)}{x + \sqrt{x^2 + 1}}$$

Multiplying the constants in the second term in the numerator and rewrite $\sqrt{x^2 + 1}$ as $(x^2 + 1)^{-\frac{1}{2}}$

$$\frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$$

Way 2: Way 1: Work on each of the numerators and denominators Multiply ALL terms by $\sqrt{x^2 + 1}$ to "kill" the fraction separately $\frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{\frac{x}{x + \sqrt{x^2 + 1}}}$ $\frac{dy}{dx} = \frac{1 + \frac{x}{\sqrt{x^2 + 1}}}{x + \sqrt{x^2 + 1}}$ $\frac{dy}{dx} = \frac{1\sqrt{x^2 + 1} + \frac{x}{\sqrt{x^2 + 1}}}{x\sqrt{x^2 + 1} + \sqrt{x^2 + 1}\sqrt{x^2 + 1}}$ We get a common denominator in the numerator $\frac{dy}{dx} = \frac{\frac{\sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} + \frac{x}{\sqrt{x^2 + 1}}}{\frac{x}{x + \sqrt{x^2 + 1}}}$ $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}(x + \sqrt{x^2 + 1})}$ Combine fractions in the numerator $\frac{dy}{dx} = \frac{\frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}}{\frac{x + \sqrt{x^2 + 1}}{x + \sqrt{x^2 + 1}}}$ "Cancel" common factors $\frac{dy}{dx} = \frac{\sqrt{x^2 + 1} + x}{\sqrt{x^2 + 1}(x + \sqrt{x^2 + 1})}$ Rewrite the fraction as numerator ÷ denominator $\frac{dy}{dx} = \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \div x + \sqrt{x^2 + 1}$ $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$ "keep change flip" $\frac{dy}{dx} = \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \times \frac{1}{\frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}}$ "Cancel" common factors $\frac{dy}{dx} = \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \times \frac{1}{x + \sqrt{x^2 + 1}}$ $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}}$

$$y = \frac{x-1}{\sqrt{x+1}}$$
 Show that $\frac{dy}{dx} = \frac{x+c}{k\sqrt{(x+1)^p}}$, where $c, k, p \in \mathbb{N}$

$$y = \frac{x - 1}{(x + 1)^{\frac{1}{2}}}$$

Use Quotient Rule

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}}(1) - (x-1)\left(\frac{1}{2}\right)(x+1)^{-\frac{1}{2}}}{x+1}$$

Reorder the constants in the numerator

$$\frac{dy}{dx} = \frac{(x+1)^{\frac{1}{2}} - \frac{1}{2}(x-1)(x+1)^{-\frac{1}{2}}}{x+1}$$

To get the form that the answer wants we need to factorise the numerator by taking out what is common,

which is x + 1 and the lowest power is $-\frac{1}{2}$

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[(x+1) - \frac{1}{2} (x-1) \right]}{x+1}$$

Notice how we subtracted the powers in order to get the powers of the terms inside the square bracket (or asked ourselves what power we need to add to the power we have outside the bracket to end up with the power we want)

Simplify what is inside the square brackets

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[x+1 - \frac{1}{2}x + \frac{1}{2} \right]}{x+1}$$

Simplify again

$$\frac{dy}{dx} = \frac{(x+1)^{-\frac{1}{2}} \left[\frac{1}{2}x + \frac{3}{2}\right]}{x+1}$$

Use indices rules on the common terms. The best way to think of this is that anytime we move a term between the numerator and denominator we change the sign of the power

$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)(x+1)^{-\frac{1}{2}}}$$
$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)^{1+\frac{1}{2}}}$$

$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{(x+1)^{\frac{3}{2}}}$$

Use indices rule $x^{\frac{a}{b}} = \sqrt[b]{x^a}$. Note when b = 2 we don't write it.

$$\frac{dy}{dx} = \frac{\frac{1}{2}x + \frac{3}{2}}{\sqrt{(x+1)^3}}$$

We multiply all terms by 2 to get rid of the fractions i.e. we multiply by $\frac{2}{2}$

$$\frac{dy}{dx} = \frac{x+3}{2\sqrt{(x+1)^3}}$$

$$\therefore c = 3, k = 2, p = 3$$