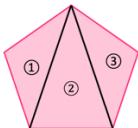
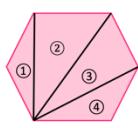


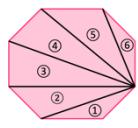
Polygon Formulae Reminders


Let n = number of sidesSum Of All Interior Angles

$$180(n - 2)$$

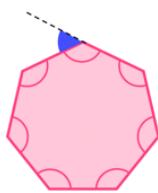

Why is the formula true?
There are always 2 triangles less than sides & triangles add to 180° .

4 sides
2 triangles
 180×2


5 sides
3 triangles
 180×3

6 sides
4 triangles
 180×4

7 sides
5 triangles
 180×5

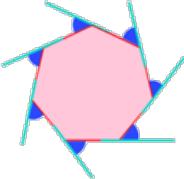


8 sides
6 triangles
 180×6

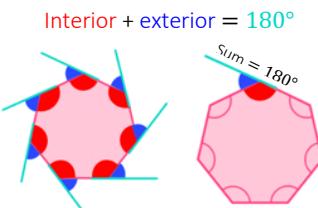
etc

triangle(n of sides - 2)1 Interior Angle

$$\frac{180(n - 2)}{n}$$


1 Exterior Angle

$$\frac{360}{n}$$


We can also use the formula

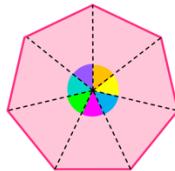
$$180 - \text{interior angle}$$

Why can we use the first formula?
All exterior angles add to 360° , so to find 1 exterior angle we divide by the number of sides

Why can we use the second formula? This is because the interior and exterior angles are **straight line angles**

Number Of Sides

$$\frac{360}{\text{exterior angle}}$$

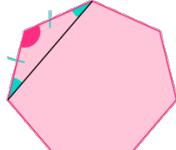

We can also use the formula

$$\frac{360}{180 - \text{interior angle}}$$

Alternative method:
This requires being good at algebra though!

Solve the following equation for n

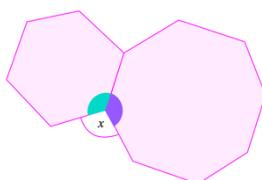
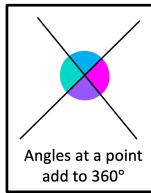
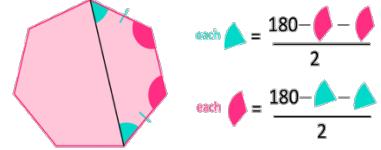
$$\frac{180(n - 2)}{n} = \text{interior angle}$$


Angles At The Centre

Each angle at the centre

$$\frac{360}{n}$$

This is just the same as the formula for an exterior angle.




You may also need to use some angle rules:

Isosceles Triangle

The base angles are equal
each $\triangle = \frac{180 - \text{top angle}}{2}$

Isosceles Triangle

The base angles are equal
each $\triangle = \frac{180 - \text{top angle}}{2}$

Isosceles Trapezoid

$$\frac{180(5 - 2)}{5} = 108^\circ$$

© mymathscloud

$$\frac{180(8 - 2)}{8} = 135^\circ$$

$$360 - 108 - 135 = 117^\circ$$