

Type	Way 1: Pyramid	Way 2: Algebra	Way 3: Formulaic	Examples © mymathscloud
Type 1: One amount as a % of the other amount (wants answer as a %) To help recognise: Look for the words: write "... as a percent(age) of ..." OR write "... out of ..." as a percentage MEMORIZE ALL THE PERCENTAGES!!	Way 1: This line means divide (÷) This line means multiply (x) Cross off what you want and do the resulting operation (multiplication or division) 	Way 2: $\frac{\%}{100} = \frac{\text{part}}{\text{of whole}}$ Fill into what you know into the template above and call the unknown x (we are given part of the total and the whole/total amount and want to find the percent) Cross multiply and use algebra to solve for the unknown %	Way 3: $\frac{\text{part}}{\text{whole}} \times 100$ There are 3 ways to simplify this Option 1: write as $\frac{\text{part}}{\text{whole}} \times \frac{100}{1}$ and then multiply the fractions using fraction multiplication knowledge Option 2: simplify $\frac{\text{part}}{\text{whole}}$ first if possible, turn into a decimal and then multiply by 100 Option 3: Type straight into a calculator if allowed a calculator	Paul got 68 out of 80 in a science test. Work out 68 out of 80 as a percentage Way 1: Way 3: $\frac{68}{80} \times 100$ Option 1: $\frac{68}{80} \times \frac{100}{1} = \frac{6800}{80} = \frac{680}{8} = \frac{340}{4} = 85\%$ Option 2: $\frac{68}{80} = \frac{34}{40} = \frac{17}{20}$ Turn into a decimal using short division $0.85 \times 100 = 85\%$ Option 3: Type into a calculator $\frac{68}{80} \times 100 = 85\%$
Type 2: Find a percentage of an amount To help recognise: Look for the words: "find % of ..." 😊😊 75% of students are good at Math I belong to the rest 14%	Way 1: This line means divide (÷) This line means multiply (x) Where % is the decimal form Where % is the decimal form i.e. $\frac{\%}{100}$ Cross off what you want and do the resulting operation (multiplication or division) 	Way 2: $\frac{\%}{100} = \frac{\text{part}}{\text{of whole}}$ Fill into what you know into the template above and call the unknown x (we are given the % and the whole/total amount and want to find part of the total) Cross multiply and use algebra to solve for the unknown "part"	Way 3: $\text{amount} \times \frac{\%}{100}$ There are 3 ways to simplify this Option 1: write as $\frac{\text{amount}}{1} \times \frac{\%}{100}$ and then multiply using fraction multiplication knowledge Option 2: Turn $\frac{\%}{100}$ into a decimal and then multiply by the amount Option 3: Type straight into a calculator if allowed a calculator	900 people attended a festival. 16% of them were children. Work out the number of children at the festival This question is asking us to find 16% of 900. Way 1: Way 2: Part is unknown and whole is 900 $\frac{16}{100} = \frac{x}{900}$ Cross multiply $100x = 14400$ $x = 144$ Way 3: $900 \times \frac{16}{100}$ Option 1: write as $\frac{900}{1} \times \frac{16}{100}$ $= \frac{14400}{100} = 144$ Option 2: $\frac{16}{100} = 0.16$ $0.16 \times 900 = 144$ Option 3: Type into calculator $\frac{16}{100} \times 900 = 144$ $16\% = 90 + 45 + 9 = 144$ Way 4: We know that $100\% = 900$ Find an easy percentage like 10% (divide by 10) $10\% = 90$ We need a combination that adds up to 16% $10\% + 5\% + 1\% = 16\%$ So, let's find 5% and 1% now $10\% = 90$ $(\div 2) \quad 5\% = 90 \div 2 = 45$ $(\div 5) \quad 1\% = 90 \div 10 = 9$ $16\% = 90 + 45 + 9 = 144$
Type 3: Increase/decrease an amount by a % HOW TO LOSE WEIGHT BY 50% This is the direct reverse of type 2. Here we are basically given the answer to type 2 and want to work backwards to work out the total amount (i.e. given the answer to type 2 and want to work out the amount we took the percentage of) I GAVE IT MY 10% ALL 10 PERCENTS OF IT!	Way 1: This line means divide (÷) This line means multiply (x) Where % is the decimal form i.e. $\frac{\%}{100}$ Notice the $1 \pm$ in the bottom right box for this type since we are increasing/decreasing. Use + if increase - if decrease 	Way 2: $\frac{100 \pm \%}{100} = \frac{\text{part}}{\text{of whole}}$ Fill into what you know into the template above and call the unknown x (we are given the % and the whole/total amount and want to find the part of the total amount) Use: + if increase - if decrease Notice the $100\% +$ in the numerator now, not just % like the 2 types before. We use \pm since we increase or decrease. Cross multiply and use algebra to solve for the unknown "part"	Way 3: $\text{amount} (1 \pm \frac{\%}{100})$ Use: + if increase - if decrease Note: The reason we have 1 is because it is the "decimal form" of $100\% = 1$ So, we could have also written: $\text{amount} (\frac{100}{100} \pm \frac{\%}{100})$	Way 4: Find the percent using any of the 4 ways in the row above and then add or subtract it on The price of a TV was £80. The price increases by 15%. Work out the new price of the TV? Way 1: Way 2: Part is unknown and whole is 900 $\frac{100+15}{100} = \frac{x}{80}$ $\frac{115}{100} = \frac{x}{80}$ Cross multiply $100x = 9200$ $x = 92$ Way 3: $80 (1 + 0.15) = 92$
Type 4: Reverse Percentage Given % of an amount, find the full amount This is the direct reverse of type 2. Here we are basically given the answer to type 2 and want to work backwards to work out the total amount (i.e. given the answer to type 2 and want to work out the amount we took the percentage of) I GAVE IT MY 10% ALL 10 PERCENTS OF IT!	Way 1: This line means divide (÷) This line means multiply (x) Where % is the decimal form i.e. $\frac{\%}{100}$ Cross off what you want and do the resulting operation (multiplication or division) 	Way 2: $\frac{\%}{100} = \frac{\text{part}}{\text{of whole}}$ Fill into what you know into the template above and call the unknown x (we are given the % and part of the total i.e. given the amount after the percentage has been taken and want to find the whole amount/total amount BEFORE the percentage was taken) Cross multiply and use algebra to solve for the unknown "of whole"	Way 3: $\frac{\text{amount}}{\%} \times 100$ This should make sense that we divide here, since it is the opposite type 2 and division is the opposite of multiplication	Way 4: Step 1: set the percent equal to the amount that you are given Step 2: Build back up to 100% (the full amount by multiplying or dividing only) Paul got 75 marks in a maths test. 75 is 30% of the total marks. Work out the total number of marks This question is telling us what 30% represents and asking us to find what the full amount was (i.e. 100% is). Way 1: Way 2: $\frac{30}{100} = \frac{75}{x}$ Cross multiply $30x = 7500$ $x = 250$ Way 3: $\frac{75}{0.30} = 250$ Way 4: Given 30% = 75 We want to build back to 100% $(\div 3) \quad 10\% = 75 \div 3 = 25$ We multiply by 10 to find 100% $100\% = 25 \times 10 = 250$

Type 5: Reverse percentage
Given % of an amount after an increase or decrease and want find the original/full amount

To help recognise:
Look for the words: "originally/at the beginning/before..."

This is the reverse of type 3. Here we are basically given the answer to type 3 and want to work backwards to work out the total amount (i.e. we are given what the amount AFTER the percentage has been added or subtracted and want the original/full amount).

Where % is the decimal form i.e. $\frac{\%}{100}$

Notice the $1 \pm$ in the bottom right box for this type, like with type 2. Use

+ if increase
- if decrease

$$\frac{100 \pm \%}{100} = \frac{\text{part}}{\text{of whole}}$$

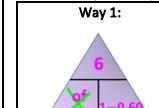
Fill into what you know into the template above and call the unknown x (we are given the % and part of the total i.e. given the amount after the percentage has been added or subtracted and want to find the whole/amount/total/original amount BEFORE the percentage was added to or subtracted from the total)

Use:
+ if increase
- if decrease

Notice the $100\% +$ in the numerator now like with type 3 since we increase or decrease. (unlike types 1,2,4 where we just have the %)

Cross multiply and use algebra to solve for the unknown "of whole"

$$\frac{\text{amount}}{1 \pm \frac{\%}{100}}$$


Use:
+ if increase
- if decrease

This should make sense that we divide here, since it is the opposite type 3 and division is the opposite of multiplication

Step 1: Add/subtract the percent that you are given from 100% and set equal to the amount that you are given
Step 2: Build back up to 100% (the full amount by multiplying or dividing only)

Amanda has some pocket money. She spends 60% of it and is left with £6.00. How much money did she start off with?

This question is telling us what 40% represents and asking us to find what the full amount was (i.e. 100%) is.

$$\frac{100 - 60}{100} = \frac{6}{x}$$

$\frac{40}{100} = \frac{6}{x}$

$$40x = 600$$

$$x = 15$$

Way 4:

Spends 60% so we take this away from 100%

$$100\% - 60\% = 40\%$$

$$40\% = 6$$

$$\begin{aligned} &\text{We need to build back up to 100\%} \\ &(\div 2) \quad 20\% = 3 \\ &(\times 5) \quad 100\% = 15 \end{aligned}$$

Way 3:

$$\frac{6}{1 - \frac{60}{100}} = 15$$

Type 6: Percentage gain/loss

(wants answer as a %)

To help recognise:
Look for the words: "percentage gain/loss/increase/decrease"

Use the formula $\frac{\text{difference}}{\text{original}} \times 100$

There are 3 ways to simply this

Option 1:
write as $\frac{\text{difference}}{\text{original}} \times \frac{100}{1}$

And then multiply using fraction multiplication knowledge

Option 2:
simplify $\frac{\text{difference}}{\text{original}}$ first if possible and turn into a decimal before multiplying the 100

Option 3:
Type straight into a calculator if allowed a calculator
 $\frac{80-54}{60} \times 100 = 10\%$

Nyali paid £60 for a bicycle. She sold it later for £54. What was her percentage loss?

$$\frac{60-54}{60} \times 100$$

Option 1:
write as

$$\frac{60-54}{60} \times 100$$

$$\frac{6}{60} \times \frac{100}{1} = \frac{3}{30} \times \frac{100}{1} = \frac{3}{3} \times \frac{10}{1} = 10\%$$

Option 2:

$$\frac{60-54}{60} = \frac{6}{60} = \frac{1}{10} = 0.1$$

$$0.1 \times 100 = 10\%$$

Option 3:

Type the following into a calculator
 $\frac{60-54}{60} \times 100 = 10\%$

Example 1: Meg has £1200 in her savings account. The account pays 5% simple interest per year. How much **interest** will she earn in 4 years?

Example 2: Chris borrows £6000 at a simple interest rate of 10% per year. He pays the money back after 4 years. How much does he pay back in **total**?

$$\text{Interest} = 6000 \times \frac{10}{100} \times 4 = 2400$$

$$6000 + 2400 = 8400$$

Example 3: Match units

Celine invests £800 for 5 months at 3% simple interest per year. Calculate the interest she receives.

$$\text{Interest} = \text{amount} \times \text{rate} \times \text{time} = 800 \times \frac{3}{100} \times \frac{5}{12} = 10\%$$

Example 4: Finding %

Neil invested £8000 in a savings account for 2 years. He earned £640 simple interest over the two years. What was the **interest rate**?

Example 1: Finding Future Amount (most common type)

Tony invests £3000 for 6 years at 4% per annum compound interest. How much money is in the account after 6 years?

$$3000 \left(1 + \frac{4}{100}\right)^6 = £3,795.96$$

Example 2: Finding Future Amount (match units)

Henry places £6000 in an account which pays 4.6% compound interest **quarterly**. Calculate the amount in his account after 2 years.

$$6000 \left(1 + \frac{4.6}{400}\right)^{2 \times 4} = 6000 \left(1 + \frac{4.6}{400}\right)^8 = £6,574.74$$

Example 3: Finding Interest

Susan places £7900 in an account which pays 2.4% compound interest per year. How much **interest** does she earn in 3 years?

$$\text{New amount} = 7900 \left(1 + \frac{2.4}{100}\right)^3 = £8482.56$$

$$\text{Interest} = £8482.56 - 7900 = £582.56$$

Example 4: Finding Future Amount (repeated)

Liam invests £8000 in a savings account for 4 years. The savings account pays compound interest at a rate of 4.5% for the first year 2.75% for all subsequent years. Work out the value of Liam's investment at the end of 4 years

Example 5: Finding Initial Amount

Spencer wants to save £10,000 for a holiday in 3 years' time. How much does he need to invest at 6.8% per annum compounded annually to make this happen?

$$\begin{aligned} x \left(1 + \frac{6.8}{100}\right)^3 &= 10000 \\ x(1.21819) &= 10000 \\ x &= £8208.92 \end{aligned}$$

Note: Could have used the formula $\text{Future Amount} = \frac{10000}{\left(1 + \frac{6.8}{100}\right)^3} = \frac{10000}{1.21819} = £8208.92$

Example 6: Finding Time (use trial and error)

When Ruby invested £2800 at 4.5% per annum compounded annually, she earned £1000 interest. How long was her money invested?

$$\begin{aligned} 2800 \left(1 + \frac{4.5}{100}\right)^t &= 3800 \\ 2800(1.045)^t &= 3800 \end{aligned}$$

Try $t = 2$: $2800(1.045)^2 = \text{too small}$

Try $t = 6$: $2800(1.045)^6 = \text{too small}$

Try $t = 7$: $2800(1.045)^7 = \text{Hence 7 years}$

Type 7: Simple Interest
Look for the words: "simple interest"

You can memorise the formulae:

- Interest = $\text{initial amount} \times \frac{\%}{100} \times \text{time}$
- Future amount = $\text{initial amount} + \text{interest} = \text{initial amount} + \left(\text{initial amount} \times \frac{\%}{100} \times \text{time}\right)$

Note: Make sure time and % are same unit of time. It is easiest to edit the time to make sure it matches the % time

You are sometimes asked for time, initial amount or % for harder types of questions. You'll need to re-arrange to find these.

Note: Make sure t and % are the same unit of time.

Note: The formulae for future amount and initial amount are basically the same as for increasing/decreasing by a % and reverse percentage, except we now have a power of time since the percent is applied more than once (compounded)

$$\text{Future Amount: } \text{amount} \left(1 \pm \frac{\%}{100}\right) \Rightarrow \text{amount} \left(1 \pm \frac{\%}{100}\right)^t$$

$$\text{Initial Amount: } \frac{\text{amount}}{1 \pm \frac{\%}{100}} \Rightarrow \frac{\text{amount}}{\left(1 \pm \frac{\%}{100}\right)^t}$$

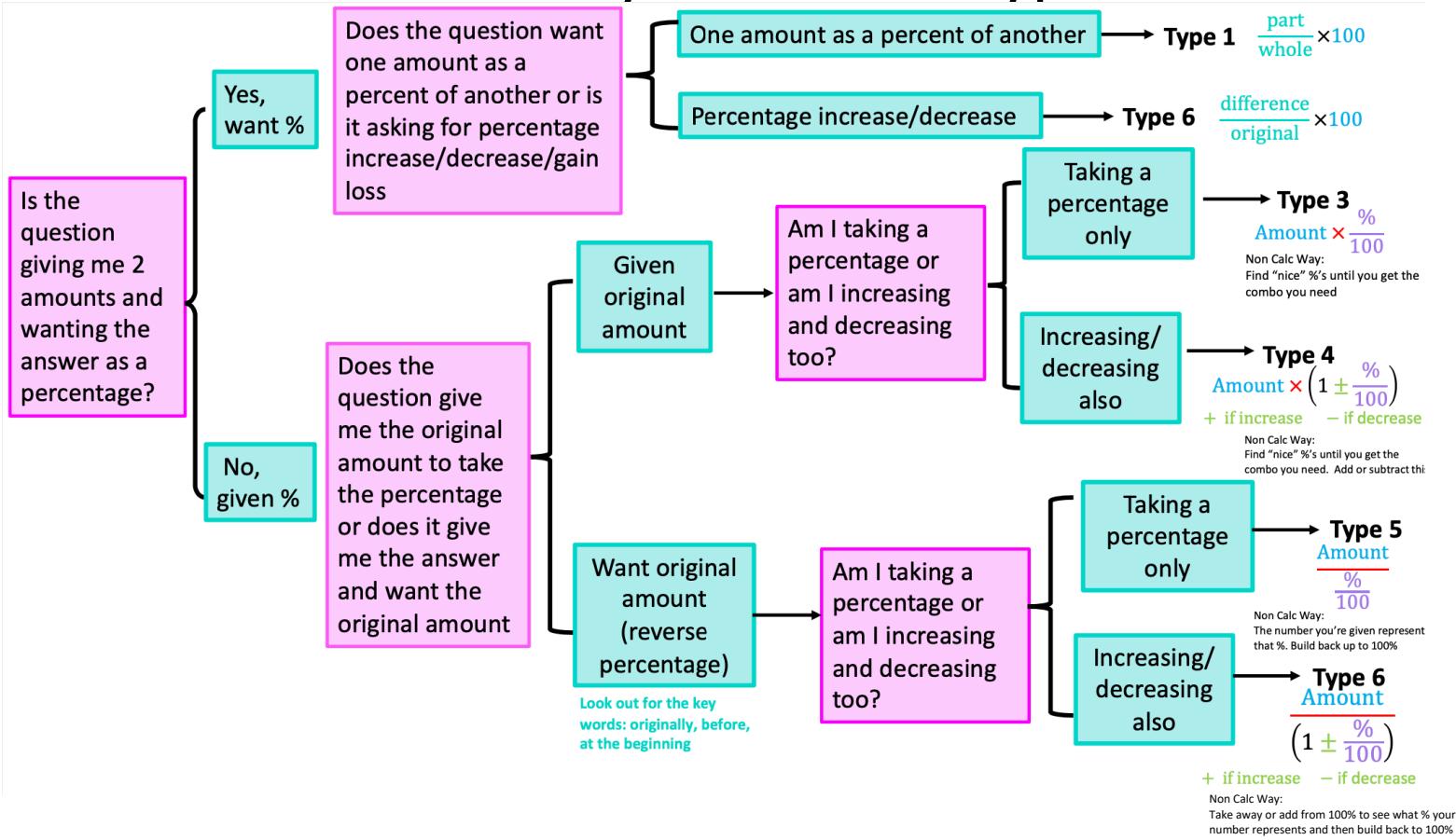
More generally:

$$\text{New amount} = \text{Initial amount} \left(1 + \frac{\%}{100 \times k}\right)^k \text{ where } k = \text{number of times invest per 1 unit of time } t$$

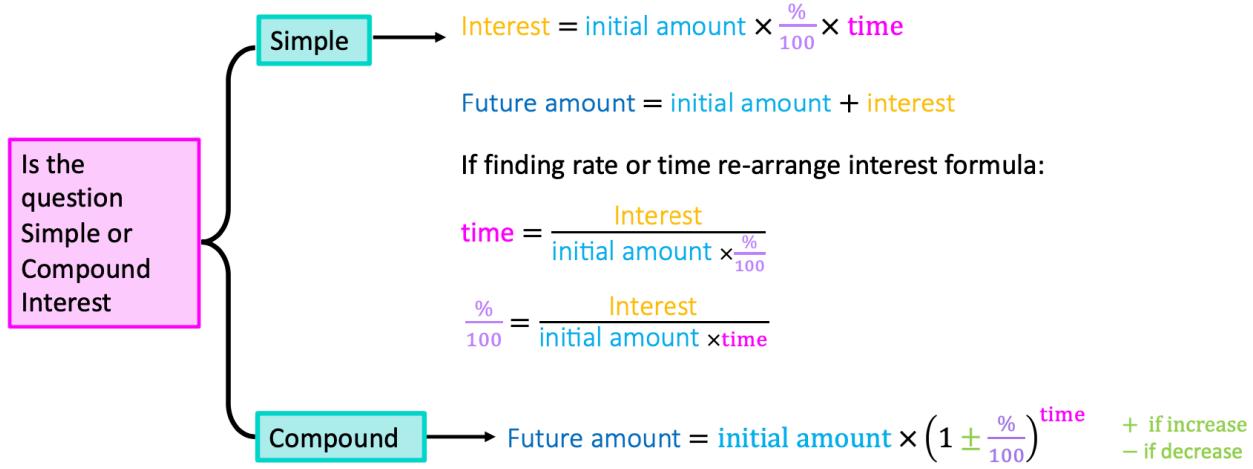
Yearly $k=1$

Biannually $k=2$

Quarterly $k=4$


Monthly $k=12$

Weekly $k=52$


Daily $k=365$

$$\text{Continuously: } (\text{initial amount})^{e^{\frac{\%}{100}t}}$$

Summary Of 6 Basic Types

Note: Simple and compound interest have not been included in the flow chart above as they are obvious when to use

$$\text{Initial Amount} = \frac{\text{Future Amount}}{(1 \pm \frac{\%}{100})^{\text{time}}}$$

$$\text{Interest} = \text{Future amount} - \text{Initial Amount}$$

If finding time use trial and error

If finding rate re-arrange future amount formula:

$$\% = \pm 100 \left(\sqrt[\text{time}]{\frac{\text{Future amount}}{\text{initial amount}}} - 1 \right)
 \begin{array}{l}
 + \text{ if increase} \\
 - \text{ if decrease}
 \end{array}$$

Formula

Type 1 $\frac{\text{part}}{\text{whole}} \times 100 = ?$

Type 2 $\text{amount} \times \frac{\%}{100} = ?$

Type 3 $\text{amount} \left(1 \pm \frac{\%}{100}\right) = ?$

Type 4 $\frac{\text{amount}}{\frac{\%}{100}} = \text{given}$

Type 5 $\frac{\text{amount}}{1 \pm \frac{\%}{100}} = \text{given}$

Type 6 $\frac{\text{difference}}{\text{original}} \times 100 = ?$

Type 6 is like type 1 but we want the difference/change/gain/lose/increase/decrease

Given/Want

Given part and whole and want the percent

Note: For harder questions you might have to use type 2, 3 or 4 to get the numerator

$\frac{\text{given}}{\text{given}} \times 100 = \text{want}$ Given original amount and percent, **want answer**

$\text{given} \left(1 \pm \frac{\text{given}}{100}\right) = \text{want}$ Given original amount and percent, told to INCREASE or DECREASE and **want answer**

$\frac{\text{want}}{\frac{\text{want}}{100}} = \text{given}$

Given answer (given what increase or decrease represents want original amount).

- Kazia spends £204 a week on rent. £204 is 30% of her weekly pay. Work out her weekly pay
- An airline increases the price of its flights by 8%. The increase in price of a flight to Mumbai was £48. Work out the price of a flight to Mumbai after the increase.

$\frac{\text{want}}{1 \pm \frac{\text{want}}{100}} = \text{given}$

Given answer (given amount after increase or decrease has been applied to the original amount, want original amount)

- Kelly bought a boat. Later she sold the boat for £9519. She made a profit of 14%. Work out the original price of the boat.

Give both parts and want the percent

Note: For harder questions you might have to use type 2, 3 or 4 to get the numerator

$\frac{\text{given}}{\text{given}} \times 100 = \text{want}$