

5 Basic Indices Rules/Laws

Multiplication**Rule 1:** Add the powers when multiplying

$$x^a \times x^b = x^{a+b}$$

The bases must be the same to use this rule and notice how they do not change (x stays x)

Why is this rule true?

$$x^2 \times x^3 = (x \times x) \times (x \times x \times x)$$

We have five x 's
 $= x^5$

(the power simply tells us how many of the base we have in total)

Hence, we add the powers

Simplify $5x^4 \times x^3$

$$5x^4 \times x^3$$

 $= (5 \times 1)x^{4+3} = 5x^7$

Rule 2: Multiply the powers with a bracket

$$(x^a)^b = x^{ab}$$

Notice how the base does not change (x stays x)

Why is this rule true?

$$(x^2)^3$$

We have x^2 three times

$$= x^2 \times x^2 \times x^2$$

Now use rule 1 to add the powers
 $= x^6$

Hence, we multiply the powers when we have a bracket

Rule 3: Rule 2 can be extended for when we have more than 1 term inside the bracket

$$(cx^a y^b)^d = (c)^d (x^a)^d (y^b)^d$$

Now apply rule 2 for each bracket
 $= c^d x^{ad} y^{bd}$ Or: Think of this rule as keep the bases the same, multiply the powers
 $(c^1 x^a y^b)^d = c^d x^{ad} y^{bd}$ Simplify $(4x^2 y^3)^4$

$$\text{Colour code as } (4x^2 y^3)^4$$

 $= (4)^4 (x^2)^4 (y^3)^4$
 $= 256x^8 y^{12}$

Mistake 1: The base DOES NOT change
 $2^3 \times 2^6$ doesn't equal 4^9
Instead, $2^3 \times 2^6 = 2^9$ **Mistake 2:** Don't ignore the power when it isn't written (it means power 1)
 $2x^2 \times 3x$ doesn't equal $6x^2$
Instead, $2x^2 \times 3x^1 = 6x^3$ **Mistake 3:** The power affects the first number term also
 $(2x^2 y^4)^3$ doesn't equal $2x^6 y^{12}$
Instead, $(2x^2 y^4)^3 = 8x^6 y^{12}$ **Mistake 4:** We raise the first number to the power, we don't multiply it
 $(5x)^3$ does not equal $15x^3$
Instead, $(5x)^3 = 5^3 x^3 = 125x^3$ VERY COMMON Mistakes**Mistake 5:** Don't mistake rule 3 when there is a sign (+ or -) in the middle.
 $(2x)^2$ is not the same as $(2 + x)^2$
 $(2x)^2 = 4x^2$
whereas $(2 + x)^2 = 4 + 4x + x^2$
The latter is expanding brackets**Mistake 6:** Don't confuse addition/ subtraction with multiplication.
We can only add/subtract "like" terms and when we add/subtract the algebra part doesn't change

- $2x + 3x$ is not the same as $2x \times 3x$
 $2x + 3x = 5x$ by collecting like terms
- $2x \times 3x = 6x^2$ using indices rule 1
- $2x^2 + 3x^2$ is not the same as $2x^2 \times 3x^2$
 $2x^2 + 3x^2 = 5x^2$ but $2x^2 \times 3x^2 = 6x^4$
- $2x^2 + 3x^3$ cannot be done/simplified but $2x^2 \times 3x^3 = 6x^5$

Division**Rule 1:** Subtract the powers when dividing

$$x^a \div x^b \text{ or } \frac{x^a}{x^b} = x^{a-b}$$

The bases must be the same to use this rule and notice how they do not change (x stays x)

Why is this rule true?

$$\frac{x^7}{x^4} = \frac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x}$$

 $= \frac{x \times x \times x \times x \times x \times x \times x}{x \times x \times x \times x}$
 $= x^3$

Hence, we subtract the powers

$$\text{Simplify } 16x^2 y^5 \div 4x^6 y^3$$

$$= \frac{16x^2 y^5}{4x^6 y^3}$$

$$= (16 \div 4)x^{2-6} y^{5-3}$$

$$= 4x^{-4} y^2$$

Common Mistakes**Mistake 1:** The base DOES NOT change $2^9 \div 2^6$ doesn't equal 1^3
Instead, $2^9 \div 2^6 = 2^3$ **Mistake 2:** Don't ignore the power when it isn't written (it means power 1) $6x^2 \div 3x$ doesn't equal $2x^2$
Instead, $6x^2 \div 3x^1 = 2x$ **Mistake 3:** Don't let the fraction division notation confuse you

$$\frac{24x^6 y^2}{32x^4 y^3}$$

Deal with each part separately

$$\frac{24x^6 y^2}{32x^4 y^3}$$

$$= \frac{3x^2}{4y}$$

How did we get this?
Think of it as simplifying $\frac{24}{32}$ which is $\frac{3}{4}$ and there are 6 x 's and 2 y 's in the numerator and 4 x 's and 3 y 's in the denominator

$$\frac{3xxxxxyy}{4xxxxyy}$$

We cross off the corresponding matching pairs

$$\frac{3xxxxxyy}{4xxxxyy}$$

We have 2 x 's left in the numerator and 1 y left in the denominator

$$= \frac{3x^2}{4y}$$

OR:

Just think when we move the powers between numerator and denominators we subtract them

$$\frac{24x^6 y^2}{32x^4 y^3} = \frac{24x^{6-4}}{32x^4 y^{3-2}} = \frac{3x^2}{4y}$$

Raising Numbers to Powers**Rule 1:** Raising to a power of zero:

Anything to the power of 0 is always 1

$$\begin{aligned} 2^0 &= 1 \\ x^0 &= 1 \\ (2x)^0 &= 1 \\ \left(\frac{2}{3}\right)^0 &= 1 \end{aligned}$$

Rule 2: Raising a fraction to a power:

$$\left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

Apply the power to both the numerator and denominator

$$\text{Simplify } \left(\frac{2}{3}\right)^3$$

$$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3}$$

$$= \frac{8}{27}$$

Note: If more than 1 "element" inside the bracket we then use multiplication rule 3

Simplify $\left(\frac{2x}{3y^2}\right)^3$

$$\begin{aligned} \left(\frac{2x}{3y^2}\right)^3 &= \frac{(2x)^3}{(3y^2)^3} \\ &= \frac{(2)^3 (x)^3}{(3)^3 (y^2)^3} \\ &= \frac{2^3 x^3}{3^3 y^6} \\ &= \frac{8x^3}{27y^6} \end{aligned}$$

Rule 3: Raising negative numbers to a power:(positive number)^{even power} = +(positive number)^{odd power} = +

but

(negative number)^{even power} = +(negative number)^{odd power} = -**Example 1:**
Simplify $(-2)^4$ versus -2^4

$$(-2)^4 = -2 \times -2 \times -2 \times -2 = 16$$

$$-2^4 = -(2 \times 2 \times 2 \times 2) = -16$$

They are not the same thing!

$$(-2)^4 = 16 \text{ and } -(2)^4 = -16$$

Example 2:
Simplify $(-2)^3$ versus $-(2)^3$

$$(-2)^3 = -2 \times -2 \times -2 = -8$$

$$-2^3 = -(2 \times 2 \times 2) = -8$$

Here they are the same thing!

$$(-2)^3 = -8 \text{ and } -(2)^3 = -8$$

Common Mistakes ab^x versus $(ab)^x$ **Simplify** $2(3)^2$

$$2(3)^2 \text{ does not equal } 6^2$$

We must do the power 3² first (because of BIDMAS/BODMAS)

$$\begin{aligned} 2(3)^2 &= 2(3 \times 3) \\ &= 2(9) \\ &= 18 \end{aligned}$$

Negative Powers**Rule 1:** $x^{-n} = \frac{1}{x^n}$ and $(ab)^{-n} = \frac{1}{(ab)^n}$

The easiest way to think of this rule is that if we move terms between the numerator and denominator, the POWER of what is being moved changes(swaps/reverses) its sign (a positive becomes a negative and vice versa)

Simplify 2^{-3}

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$$

We moved the power -3 from the numerator down to the denominator and reversed the sign (in other words $-$ became $+$).Note: 2^{-3} means $\frac{1}{2^3}$ hence the power was in the numerator originally and negative. We then moved it to the denominator and it became positive. There is a 1 in the numerator since theRational Powers (Fractional Powers)

$$\frac{n}{m} = (\sqrt[m]{a})^n$$

"ROOT AND THEN POWER"

$$\text{Note: } x^{\frac{1}{m}} = \sqrt[m]{x}$$

A fractional power works like a flower
the bottom is the root
and the top is the power
Start: $8^{\frac{1}{3}}$
Step 1: Root
 $\sqrt[3]{8} = 2$
Step 2: Power
 $(\sqrt[3]{8})^2 = 4$
The root comes before the power

Simplify $27^{\frac{2}{3}}$

$$27^{\frac{2}{3}}$$

Root

$$(\sqrt[3]{27})^2$$

(3)²

Power

$$= 3^2$$

= 9

Simplify $\left(\frac{64x^6 z^{12}}{27y^3}\right)^{\frac{1}{3}}$

$$\left(\frac{64x^6 z^{12}}{27y^3}\right)^{\frac{1}{3}}$$

 $=$

$$\frac{(64x^6 z^{12})^{\frac{1}{3}}}{(27y^3)^{\frac{1}{3}}}$$

 $=$

$$\frac{1}{27^{\frac{1}{3}}} (x^6)^{\frac{1}{3}} (z^{12})^{\frac{1}{3}}$$

 $=$

$$= \frac{1}{27^{\frac{1}{3}}} x^2 z^4$$

 $= \frac{4x^2 z^4}{3y}$

Common Mistakes

$$\sqrt{x} = x^{\frac{1}{2}}$$

We drop the 2 for square root. When nothing is written to the left of the root it means square root

Example 1: $\frac{1}{x^n} = \left(\frac{y}{x}\right)^n$ or $\left(\frac{1}{x}\right)^n = \left(\frac{y}{x}\right)^n$ Now raise both to the power n giving $\frac{y^n}{x^n}$

Notice how writing a fraction over 1 just flips the fraction and hence just leads to way 1

Example 2: $\frac{1}{(125)^{\frac{2}{3}}} \cdot \text{Flip the fraction } \left(\frac{125}{64}\right)^{\frac{2}{3}}$

$$\left(\frac{125}{64}\right)^{\frac{2}{3}} = \frac{125^{\frac{2}{3}}}{64^{\frac{2}{3}}} = \frac{25}{16}$$

Example 3: $\left(\frac{1}{4}\right)^{-1} = \frac{4}{1} = 4$

The miners go underground (to the denominator)...

... and send anything from down there up to the surface (numerator)

Example 4: $\left(\frac{3}{2}\right)^{-1} = \frac{2}{3} = \frac{2}{3}$ **Example 5:** $\left(\frac{2}{5}\right)^{-3} = \left(\frac{5}{2}\right)^3 = \frac{125}{8}$

Example 6: Get rid of the negative powers

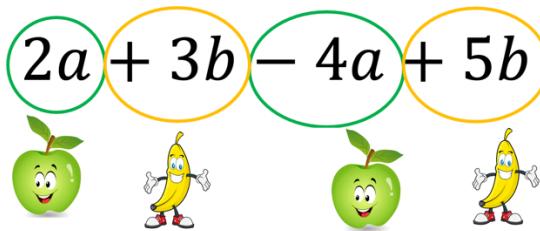
$$\frac{2x^2 z^3}{y^{-3}} = \frac{2x^2 z^3}{y^3} = \frac{2x^2 z^3}{y^3}$$

$$\left(\frac{4a^3}{6b^{-2}}\right)^{-2} = \left(\frac{6b^{-2}}{4a^3}\right)^2 = \frac{36b^{-4}}{16a^6} = \frac{9}{4a^6 b^4}$$

© mymathscloud

Getting Like Bases In Order to Simplify	$\frac{1}{2\sqrt{2}}$ <p>Write as a power of 2</p> $= \frac{1}{2 \times 2^{\frac{1}{2}}}$ $= \frac{1}{2^{\frac{3}{2}}}$ $= 2^{-\frac{3}{2}}$	$(5\sqrt{5})^3$ <p>Write as a power of 5</p> $= \left(5 \times 5^{\frac{1}{2}}\right)^3$ $= \left(5^{\frac{3}{2}}\right)^3$ $= 5^{\frac{9}{2}}$	$\frac{y^4 \times y^n}{y^2} = y^{-3}$ <p>Find the value of n</p> $\frac{y^{4+n}}{y^2} = y^{-3}$ $y^{4+n-2} = y^{-3}$ $2+n = -3$ $n = -5$	$3^a = \frac{1}{9}, 3^b = 9\sqrt{3}$ $3^c = \frac{1}{\sqrt{3}}$ <p>Find the value of a+b+c</p> $3^a = 3^{-2}$ $3^b = 3^2 \times 3^{\frac{1}{2}}$ $3^b = 3^{\frac{5}{2}}$ $b = 2.5$ $3^c = 3^{-\frac{1}{2}}$ $c = -\frac{1}{2}$	<p>Find the value of $\sqrt[3]{8 \times 10^6}$ without a calculator</p> <p>Let's make all the same base</p> $\sqrt[3]{2^3 \times (2 \times 5)^6}$ $\sqrt[3]{2^3 \times 2^6 \times 5^6}$ $\sqrt[3]{2^9 \times 5^6}$ $(2^9 \times 5^6)^{\frac{1}{3}}$ $2^{9 \times \frac{1}{3}} \times 5^{6 \times \frac{1}{3}}$ $2^3 \times 5^2$ 8×25 200	<p>Express 8^{2x+3} in the form 2^y</p> $(2^3)^{2x+3} = 2^{3x+9}$	$32^{\frac{3}{2}} \times 8^3 \times 2^{-\frac{5}{2}}$ <p>Leave answer in the form 2^a</p> <p>We need to make all a base of 2</p> $(2^5)^{\frac{3}{2}} \times (2^3)^3 \times 2^{-\frac{5}{2}}$ $2^{\frac{15}{2}} \times 2^9 \times 2^{-\frac{5}{2}}$ 2^{14} $2^{\frac{1}{2}}x^3 \div \frac{2^{\frac{5}{2}}}{x} = 2^{\frac{1}{2}}x^3 \times \frac{x}{2^{\frac{5}{2}}}$ $2^{-2}x^4 = \frac{1}{4}x^4$	simplify $\sqrt{2}(x^3) \div \sqrt{\frac{32}{x^2}}$ $2^{\frac{1}{2}}x^3 \div \frac{(32)^{\frac{1}{2}}}{(x^2)^{\frac{1}{2}}}$ $2^{\frac{1}{2}}x^3 \div \frac{5}{x} = 2^{\frac{1}{2}}x^3 \times \frac{x}{5}$ $2^{-2}x^4 = \frac{1}{4}x^4$
	<p>Write $\frac{1}{4\sqrt{2}}$ as a power of 2</p> <p>Write $8^{\frac{1}{2}}$ as a power of 2</p> <p>Write $\sqrt{3}$ as a power of 9</p> <p>Write 5^{20} as a power of 5</p> <p>Write $\frac{1}{16}$ as a power of 2</p>	$y = \frac{1}{27}x^3$ <p>Find the following in the form kx^n</p> <ol style="list-style-type: none"> $3y^{\frac{1}{3}}$ $\sqrt{27y}$ $3y^{-\frac{1}{3}} = 3$ $\left(\frac{1}{27}x^3\right)^{-\frac{1}{3}}$ $\sqrt{27y} = \sqrt{27} \left(\frac{1}{27}x^3\right)$ 			$2^{3x} \times 8^{4x}$ $2^{3x} \times (2^3)^{4x}$ $2^{3x} \times 2^{12x}$ 2^{3x+12x} 2^{15x}		$10^{-\frac{1}{3}} \times 25^{\frac{2}{3}} \div 2^{\frac{5}{3}}$ <p>Leave answer in the form $2^a \times 5^b$</p> $(2 \times 5)^{-\frac{1}{3}} \times (5^2)^{\frac{2}{3}} \div 2^{\frac{5}{3}}$ $2^{-\frac{1}{3}} \times 5^{-\frac{1}{3}} \times 5^{\frac{4}{3}} \div 2^{\frac{5}{3}}$ $2^{-\frac{1}{3}} \times 5^{-\frac{1}{3}} \times 5^{\frac{1}{3}} \times 5^{\frac{4}{3}} \div 2^{\frac{5}{3}}$ $2^{-2} \times 5$	

Solving with unknown powers	<p>We need to make the bases the same and then equate the powers</p> <p>We might need to simplify before equation the powers using multiplication and division indices rules</p>	<p>Solve $16^{2x-4} = 32^{x-5}$</p> <p>We need to make the bases the same</p> $(2^4)^{2x-4} = (2^5)^{x-5}$ <p>Use indices rule $(x^a)^b = x^{ab}$</p> $2^{8x-16} = 2^{5x-25}$ $8x - 16 = 5x - 25$ $x = -3$	<p>Solve $27^x \times 3^{2-x} = \frac{1}{9^{2x}}$</p> <p>$(3^3)^x \times 3^{2-x} = \frac{1}{(3^2)^{2x}}$</p> $3^{3x} \times 3^{2-x} = \frac{1}{34x}$ $3^{3x+2-x} = 3^{-4x}$ $3^{2+2x} = 3^{-4x}$ $2+2x = -4x$ $6x = -2$ $x = -\frac{1}{3}$


Type 1: 2 terms only. Write the bases the same and equate powers	<p>If you can solve all the following you have understood this well</p> <p>Type 1:</p> <ul style="list-style-type: none"> $16^{2x-4} = 32^{x-5}$ $(2^4)^{2x-4} = (2^5)^{x-5} \Leftrightarrow 2^{8x-16} = 2^{5x-25} \Leftrightarrow 8x - 16 = 5x - 25 \Leftrightarrow x = -3$ <p>Type 2:</p> <ul style="list-style-type: none"> $5^{2x} + 4(5^x) - 5 = 0$ $y^2 + 4y - 5 = 0 \Rightarrow y = -5, 1 \therefore 5^x = -1, 5^x = 1 \Rightarrow x = 0$ $3^{2x+1} - 26(3^x) - 9 = 0$ $3(3^{2x}) - 26(3^x) - 9 = 0$ etc $2^{2x-5} - 3(2^{x-3}) + 1 = 0$ $\frac{1}{32}2^{2x} - \frac{3}{8}(2^x) + 1 = 0 \Leftrightarrow 2^{2x} - 12(2^x) + 32 = 0$ etc $4^x - 2^{3+x} + 16 = 0$ $(2^2)^x - 2^3 2^x + 16 = 0 \Leftrightarrow 2^{2x} - 8(2^x) + 16 = 0$ etc $2^{2x+3} - 3(2^{x+1}) + 1 = 0$

Solving with known powers	<p><u>Integer</u></p> <ul style="list-style-type: none"> $x^a = c \Rightarrow x = \begin{cases} \pm c^{\frac{1}{a}} & \text{if } a \text{ even} \\ c^{\frac{1}{a}} & \text{if } a \text{ odd} \end{cases}$ <p>Note: There is no sol when c is neg and a is even</p> <p><u>Rational:</u></p> $x^{\frac{a}{b}} = c \Rightarrow x = \begin{cases} \pm c^{\frac{1}{b}} & \text{if } a \text{ even} \\ c^{\frac{1}{b}} & \text{if } a \text{ odd} \end{cases}$ <p>Note: This is not defined when c is negative</p> <p>You can remember this by: "Raise other side to reciprocal power"</p>	$x^{\frac{3}{5}} = a \Rightarrow x = a^{\frac{5}{3}}$ <p>Why is this true? Write as $(\sqrt[5]{x})^3 = a$. Then undo 1 layer at a time: $\sqrt[5]{x} = a^{\frac{1}{3}} \Rightarrow x = (a^{\frac{1}{3}})^5 \Rightarrow x = a^{\frac{5}{3}}$</p> <p>If you can solve all the following you have understood this well:</p> <table border="1"> <tbody> <tr> <td>$x^2 = 16$ $x = \pm 4$</td><td>$x^{\frac{2}{3}} = -16$ <small>no sol</small></td><td>$x^3 = 8$ $x = 2$</td><td>$x^{\frac{3}{2}} = -8$ $x = -2$</td><td>$x^{\frac{1}{2}} = 3$ $x = 9$</td><td>$x^{\frac{1}{2}} = -3$ <small>no sol</small></td></tr> <tr> <td>$x^{\frac{1}{3}} = 3$ $x = 27$</td><td>$x^{\frac{1}{3}} = -3$ $x = -27$</td><td>$x^{\frac{1}{2}} = 3$ $x = \frac{1}{9}$</td><td>$x^{\frac{1}{2}} = -3$ <small>no sol</small></td><td>$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 9$</td><td>$x^{\frac{3}{2}} = -27$ <small>no sol</small></td></tr> <tr> <td>$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 1/9$</td><td>$x^{\frac{2}{3}} = -27$ <small>no sol</small></td><td>$x^{\frac{3}{2}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$</td><td>$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small></td><td>$x^{\frac{2}{3}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$</td><td>$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small></td></tr> </tbody> </table>	$x^2 = 16$ $x = \pm 4$	$x^{\frac{2}{3}} = -16$ <small>no sol</small>	$x^3 = 8$ $x = 2$	$x^{\frac{3}{2}} = -8$ $x = -2$	$x^{\frac{1}{2}} = 3$ $x = 9$	$x^{\frac{1}{2}} = -3$ <small>no sol</small>	$x^{\frac{1}{3}} = 3$ $x = 27$	$x^{\frac{1}{3}} = -3$ $x = -27$	$x^{\frac{1}{2}} = 3$ $x = \frac{1}{9}$	$x^{\frac{1}{2}} = -3$ <small>no sol</small>	$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 9$	$x^{\frac{3}{2}} = -27$ <small>no sol</small>	$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 1/9$	$x^{\frac{2}{3}} = -27$ <small>no sol</small>	$x^{\frac{3}{2}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$	$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small>	$x^{\frac{2}{3}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$	$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small>
$x^2 = 16$ $x = \pm 4$	$x^{\frac{2}{3}} = -16$ <small>no sol</small>	$x^3 = 8$ $x = 2$	$x^{\frac{3}{2}} = -8$ $x = -2$	$x^{\frac{1}{2}} = 3$ $x = 9$	$x^{\frac{1}{2}} = -3$ <small>no sol</small>															
$x^{\frac{1}{3}} = 3$ $x = 27$	$x^{\frac{1}{3}} = -3$ $x = -27$	$x^{\frac{1}{2}} = 3$ $x = \frac{1}{9}$	$x^{\frac{1}{2}} = -3$ <small>no sol</small>	$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 9$	$x^{\frac{3}{2}} = -27$ <small>no sol</small>															
$x^{\frac{3}{2}} = 27$ $x = 27^{\frac{2}{3}}$ $x = 1/9$	$x^{\frac{2}{3}} = -27$ <small>no sol</small>	$x^{\frac{3}{2}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$	$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small>	$x^{\frac{2}{3}} = 16$ $x = 16^{\frac{3}{2}}$ $x = \pm 64$	$x^{\frac{2}{3}} = -16$ $x = (-16)^{\frac{3}{2}}$ <small>no sol</small>															

Adding/Subtracting Algebra

Simplify $2a + 3b - 4a + 5b$

Circle the like terms and deal with each separately. Remember the letters just stand for an object

If I had 2 apples and took away 4 apples then I would have negative two apples

If I had 3 bananas and got 5 more bananas then I would have 8 bananas

$$-2a + 8b$$

Multiplying/Dividing Algebra (Indices)

This does not include negative and fractional powers

Multiply/divide the numbers together

Stick the algebra terms together (like glue)

Note: when we **multiply** we add the powers of the like letters if there are like/common
when we **divide** we subtract the powers of the like letters if there are like/common

Multiplication

Simplify $3x \times 2y$

$$3x \times 2y$$

Simplify $5x^4 \times 2x^3$

$$5x^4 \times 2x^3 = (5 \times 2)x^{4+3} = 10x^7$$

Simplify $3x^3 \times 4x^2y$

$$3x^3 \times 4x^2y = (3 \times 4)x^{3+2}y = 12x^5y$$

Division

Simplify $8x^8 \div 4x^4$

$$8x^8 \div 4x^4 = (8 \div 4)x^{8-4} = 2x^4$$

With brackets

Simplify $(3x^4y^2)^3$

$$3x^4y^2 \times 3x^4y^2 \times 3x^4y^2 = (3 \times 3 \times 3)x^{4+4+4}y^{2+2+2} = 27x^{12}y^6$$

Multiplication and division together

Simplify $\frac{5x^7 \times 4x^8}{2x^6}$

$$\frac{5x^7 \times 4x^8}{2x^6} = \frac{(5 \times 4)x^{7+8}}{2x^6} = \frac{20x^{15}}{2x^6} = (20 \div 2)x^{15-6} = 10x^9$$

Important:

Don't confuse **addition/ subtraction** with **multiplication/division**. We can only add/subtract "like" terms and when we add/subtract the algebra part doesn't change.

- $2x + 3x$ is not the same as $2x \times 3x$

$$\begin{aligned} 2x + 3x &= 5x \\ 2x \times 3x &= 6x^2 \end{aligned}$$

- $2x^2 + 3x^2$ is not the same as $2x^2 \times 3x^2$

$$\begin{aligned} 2x^2 + 3x^2 &= 5x^2 \\ 2x^2 \times 3x^2 &= 6x^4 \end{aligned}$$

- $2x^2 + 3x^3$ cannot be done/simplified but $2x^2 \times 3x^3 = 6x^5$

Exercises (9 types of questions):

There is not that much difficulty between bronze, silver, gold or diamond until type 6 as the questions only get hard once several types are combined

Type 1: Multiplying

Level 1: Bronze

- 1) $x \times x^3$
- 2) $x + x$
- 3) $2x \times 3x^3$
- 4) $2x + 3x$
- 5) $2x^2 + 3x^2$
- 6) $5x^4 \times x^3$
- 7) $4y^5 \times 3y^4$

Level 2: Silver

- 1) $3x^2y \times 6x^5y^4$
- 2) $2x^3y \times 3x^4$
- 3) $2^4 \times 2^2$. Leave your answer as a power of 2

Level 3: Gold

- 1) $5x^{\frac{1}{3}} \times 4x^{\frac{2}{3}}$
- 2) $3^4 \times 3^2 \times 3^3$. Leave your answer as a power of 3

Type 2: Multiplying With Brackets

Level 1: Bronze

- 1) $(2x)^2$
- 2) $(2 + x)^2$
- 3) $(2x^3y)^4$
- 4) $(3x^5y^2)^3$

Level 2: Silver

- 1) $4x^{-3}(2x^2 + 5x^3)$
- 2) $x(2x^{-\frac{1}{4}})^4$

Level 3: Gold

- 1) $3x^2(x + 5)^2$
- 2) $2(x^2 - 4)(x + 2)$

Level 4: Diamond

- 1) $(3x^4 - 2x^{\frac{5}{2}})(5x - 2x^{\frac{3}{2}})$

Type 3: Dividing

Level 1: Bronze

- 1) $x^5 \div x^{-2}$
- 2) $8x^8 \div 4x^4$
- 3) $2^9 \div 2^6$. Leave your answer as a power of 2
- 4) $3^4 \div 3^2 \div 3^{-3}$. Leave your answer as a power of 3

Level 2: Silver

- 1) $\frac{16x^5y^2}{24x^2y^4}$
- 2) $\frac{18x^7y^4z^3}{9x^5yz^2}$
- 3) $\frac{x^2+3x}{x}$
- 4) $\frac{3x^2+6x^3}{3x}$
- 5) $\frac{12x^3+16x^5}{4x^2}$

Level 3: Gold

- 1) $\frac{2x^3\sqrt{yz^2}}{4x^4y^5z}$
- 2) $\frac{\left(\frac{1}{2x^2}\right)^3}{4x^2}$
- 3) $\frac{2x^3 \times 5x^5}{2x^4}$
- 4) $\frac{y^4 \times y^n}{y^2} = y^{-3}$. Find the value of n

Level 4: Diamond

- 1) $\frac{(x-2)^2}{x}$
- 2) $\frac{(2x^4y^3)^3}{2x^4y^6}$
- 3) $\frac{(2x^2)^5}{(4x^3)^6}$
- 4) $\frac{(3x^4y^2)^3}{(4x^3y^5)^3}$
- 5) $\left(\frac{2a^3b^5}{3a^5b^2}\right)^2$

Type 4: Raising To PowersLevel 1: Bronze

- 1) 2^5
- 2) 3^3

Level 2: Silver

- 1) $(-2)^3$
- 2) $(-2)^4$
- 3) $\left(\frac{2}{3}\right)^3$
- 4) -6^2
- 5) -2^3
- 6) 5^0

Level 3: Gold

- 1) x^0
- 2) $(2x^2)^0$
- 7) $\left(-\frac{2}{3}\right)^3$

Type 5: Negative PowersLevel 1: Bronze

- 1) 8^{-3}
- 2) $\left(\frac{2}{3}\right)^{-2}$

Level 2: Silver

- 1) $(-4)^{-2}$

2) $(-3)^{-3}$

3) $\left(\frac{2}{3}\right)^{-2}$

Level 3: Gold

1) $144^{\frac{1}{2}} \times 64^{\frac{1}{3}}$

2) $\left(\frac{27}{8}\right)^{-\frac{2}{3}}$

Level 4: Diamond

1) $\left(\frac{25x^4}{4}\right)^{-\frac{1}{2}}$

Type 6: Fractional Powers

Level 1: Bronze

1) $8^{\frac{1}{3}}$

2) $27^{\frac{2}{3}}$

Level 2: Silver

1) $\left(\frac{81}{16}\right)^{\frac{3}{4}}$

2) $\left(\frac{64}{27}\right)^{\frac{2}{3}}$

Level 3: Gold

1) $-\left(\frac{64}{125}\right)^{-\frac{2}{3}}$

2) $\left(\frac{64x^6z^{12}}{27y^3}\right)^{\frac{1}{3}}$

3) $\left(\frac{16w^8}{y^{20}}\right)^{-\frac{3}{4}}$

Type 7: Writing As the Same Base - Simplifying

Level 1: Bronze

1) Express 8^2 as a power of 2

2) Express 25^4 as a power of 5

3) Express $8^{\frac{1}{3}}$ as a power of 2

Level 2: Silver

1) Write $\frac{1}{16}$ as a power of 2

2) Write $8\sqrt{8}$ as a power of 8

3) Write $\frac{1}{4\sqrt{2}}$ as a power of 2

4) Write $(5\sqrt{5})^3$ as a power of 5

4) Express the following in the form 5^k

i. 25^4

ii. $\frac{1}{\sqrt[4]{5}}$

iii. $(5\sqrt{5})^3$

Level 3: Gold

1) Express 9^{2x+1} as a power of 3

2) Express $\left(\frac{1}{3}\right)^x$ as a power of 3

3) Express $\left(\frac{1}{27}\right)^{x+2}$ as a power of 3

4) Given that $y = \frac{1}{27}x^3$. Express each of the following in the form kx^n , where k and n are constants

i. $y^{\frac{1}{3}}$
 ii. $3y^{-1}$
 iii. $\sqrt{27y}$

5) Given that $y = \frac{1}{8}x^5$, express each of the following in the form ax^b where a and b are constants to be found
 i. y^5
 ii. $24y^{-2}$
 iii. $\sqrt{8y}$

6) Simplify $2^{3x} \times 8^{4x}$. Leave answer in the form 2^a
 7) Express 8^{2x+3} in the form 2^y , stating y in terms of x

Level 4: Diamond

1) Simplify $\sqrt{2}(x^3) \div \sqrt{\frac{32}{x^2}}$ as much as possible
 2) $32^{\frac{3}{2}} \times 8^3 \times 2^{-\frac{5}{2}}$. Leave answer in the form 2^a

Type 8: Writing As the Same Base – Solving with Unknown Papers (equating powers)

Level 1: Bronze

1) $9^{x-2} = 27$
 2) $8^{2x+1} = 16$
 3) $3^{x+4} - 27 = 0$
 4) $16^{2x-4} = 32^{x-5}$

Level 2: Silver

1) $16^{\frac{1}{5}} \times 2^x = 8^{\frac{3}{4}}$
 2) $2^x \times 4^{x+1} = 8$
 3) $16^{\frac{1}{5}} \times 2^x = 8^{\frac{3}{4}}$
 4) $25 \times 5^{-x} = 125^x$
 5) $2^{x^2} = 8^x \times 16$
 6) $3 \times 4^{2x+8} = 24$
 7) $27 \times 81^{2-x} = 9^{-3x}$
 8) $2^n = 2^{x^2} \times 16^x \times 8$

Level 3: Gold

1) $7^{x^2} - 49^{6-2x} = 0$
 2) $3^{2x} = \frac{1}{81}$
 3) $4^{3x-2} = \frac{1}{2\sqrt{2}}$
 4) $16^{4x-1} = \frac{1}{4\sqrt{2}}$
 5) $\frac{9^{x-1}}{3^{y+2}} = 81$ Express y in terms of x
 6) $2^x \times 4^y = \frac{1}{2\sqrt{2}}$. Express y as a function of x.
 7) $27^x \times 3^{2-x} = \frac{1}{9^{2x}}$
 8) $3^a = \frac{1}{9}$, $3^b = 9\sqrt{3}$, $3^c = \frac{1}{\sqrt{3}}$. Find the value of a + b + c

Level 4: Diamond

1) $x + 2y = 5$ and $4^x = 8^y$
 2) Express $\frac{\sqrt{27x}}{3^{2x-1}}$ in the form 3^y , where y is an expression in term of x
 3) Hence solve $\frac{\sqrt{27x}}{3^{2x-1}} = \sqrt[3]{81}$

Type 9: Writing As the Same Base – Solving With Unknown Powers (Substitutions)

Level 1: Bronze

- 1) $5^{2x} + 4(5^x) - 5 = 0$
- 2) $2^{2x} - 12(2^x) + 32 = 0$
- 3) $3(3^{2x}) - 26(3^x) - 9 = 0$

Level 2: Silver

- 1) $2^{2x+2} - 10 \times (2^x) + 4 = 0$
- 2) $3^{2x+1} - 26(3^x) - 9 = 0$

Level 3: Gold

- 1) Show that $2^{2x} + 3(2^{x+1}) + 8 = 0$ has no solutions
- 2) $2^{2x+3} - 3(2^{x+1}) + 1$
- 3) $2^{2x-5} - 3(2^{x-3}) + 1 = 0$
- 4) $3(3^{3y}) + 9(3^{2y}) - 9(3^y) - 81 = 0$
- 5) $(8^{x-1})^2 - 18(8^{x-1}) + 32 = 0$

Level 4: Diamond

- 1) $4^{x-1} = 2^x + 8$
- 2) $4^x - 12(2^x) + 32 = 0$
- 3) $4^x - 2^{3+x} + 16 = 0$
- 4) $2^{2x+3} - 3(2^{x+1}) + 1 = 0$

Challenge –

CHALLENGE