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Question 1

The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cooteima
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Use Fourier transforms to convert the above paditierential equation into an

ordinary differential equation fof (k, y), where/" (k, y) is the Fourier transform of

J/ (% 'y) with respect tox.
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Question 2
The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cooteia

ﬂ_/+ﬂ;_ :O’
™ Ty?

in the part of thex-y plane for whichy3 0.

Itis further given that
J (% Y)® 0 as\x2+y? ®¥

% X <1

Lo

Use Fourier transforms to show that

1 ¥ 1
j(xy)== =€ "sink cokx dk,
p o Kk

and hence deduce the valug/dft1,0).
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Question 3
The functiony =y (X, y) satisfies Laplace’s equation in Cartesian cooteia

2
.
2
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fly

in the part of thex-y plane for whichy3 0.

Itis further given that
y (x0)=d ()

Y (%Y)® 0 asyx*+y> @¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that
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Question 4
3
fu N 1 9°u -0

The functionu = u( X t) satisfies the partial differential equation
Tt 30

It is further given that
u(x0)=d(x

u(xt)® 0 as|x®¥
Use Fourier transforms to convert the above paditierential equation into an

~—+
(.»J\I—‘| X

ordinary differential equation and hence show that
Ai

~—
OJ\H| =

u(xt)=

where theAi (x) is the Airy function, defined as

¥
cos %ks +kx  dk.
proof

Ai(x)—% O
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Question 5
The functionF = F (X, y) satisfies Laplace’s equation in Cartesian cootésa
°F 1%

in the part of thex-y plane for whichy3 0.

Itis further given that
F (x,0)= d(x)

F(xY)® 0 asyx?+y2®¥

Use Fourier transforms to find the solution of Hi®ve partial differential equation
and hence show that

2-1

—lim L o1+Y
=l o 1

proof
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Question 6
The function u = u(t, y) satisfies the partial differential equation

qu fu
_+ — = !tgoa >Ol
w Yy Y

subject to the following conditions
i. u(0,y)=1+y*, y>0
i. u(t,0)=1, t30
Use Laplace transforms into show that

u(t,y)=1+y- ye'+ y e,

, |proof

NERT WE APy Bl tooun wupinad ufter=1|

ST B THONG. THE IACE TRANSERM of Te PDE wet £

= Sy > ulte =1
- A0 Jleg]- LI = 6=k e ,
(&3 5 - L. L5+ A®x o
= (3069 - vew]] + 3 (aw) = 3401 > EE S g b K;%m

y

= AT~ Ceg) *:x%“‘: ¥

—gg%+;§: O

o8, 2r oo |
= & ’\)uL*ﬂ*?
INUIQTNG. R Papra @ACTENL 4 iuseeenion)

TREAT THe AR 4s A 0D R0 T= W) A &6 4 ourmy
AND 0ok Re_ AN INTEGOATING. AR G@l\ﬂ)lt‘g_ R ?‘Lgﬂl’«é—’f:“
St iy ot n
ST T MYy R e N
THIS We_ NOW AP € -t
A0 ) = - <
. uhy) = ey e ey Y 7
7 A oo

"y
ol O R s vl

Created by T. Madas



Created by T. Madas

Question 7

The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cootea

2.
ﬂ_/+ﬂ;_ :O’
™ Ty

in the part of thex-y plane for whichx3 0 andy3 0.

Itis further given that

. 1
,0)=
/(X ) 1+ x2
J (X% y)® 0 as\x*+y* ®¥
T .
— ,0) =0
o/ (%0

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

y+1

/'(M’FW-

proof
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Question 8

The function z= z( X 1) satisfies the partial differential equation

Tu_,%

—+z, x30, t30,

ix 1t
subject to the following conditions
i. z(x0)=6e%, x>0.

i. z(x1), is bounded foralk® 0 andt2 0.

Find the solution of partial differential equatiby using Laplace transforms.
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Question 9
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g(x)=8sin( 0x), 0Ex£1

The above equation represents the temperaturebditstm g °C, maintained along
the 1 m length of a thin rod.

At time t =0, the temperatureg is suddenly dropped tg =0 °C at both the ends of
the rod atx=0, and atx=1, and the source which was previously maintaining t

temperature distribution is removed.

The new temperature distribution along the gdc,t), satisfies the heat equation

2

2
MJ—?, 0EXEL t20.

Use Laplace transforms to determine an expressiog(fx, t) .

[ 1 lg(xt)=8e*" si( 2x)
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Question 10

The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cootéia

2.
1% T “0,

—J 4V =

™ Ty
in the semi-infinite region of th&-y plane for whichy 3 0.

Itis further given that

J (x0)=1(x)

J (% Y)® 0 as\x*+y* ®¥

Use Fourier transforms to convert the above. paditierential equation into an
ordinary differential equation and hence show that
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Question 11
The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cootéia
% W

in the semi-infinite region of th&-y plane for whichy 3 0.

It is further given that for a given functiofi= f ()

ﬂly/ (x.0) =ﬂlx £(x)

J(%Y)® 0 as\x*+y* ®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

proof

[ solution overleaf]
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Question 12

The function/ 5 (X, y) satisfies Laplace’s equation in Cartesian cootéia

2.
ﬂ—/2+£2:0, ¥< x<¥ ,y30.
> Ty

It is further given that

J (% y)® 0 as\x*+y* ®¥
J/ (%,0) = H(x), the Heaviside function.

Use Fourier transforms to show that

) 1 1 X
J (%, y)—§+;arctan§ :

You may assume that

proof
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Question 13

The temperature\](x, t) in a semi-infinite thin rod satisfies the heat &iipn

2
M:ﬂ_’ X3 O, t3 O
™ It

The initial temperature of the rod &°C, and fort >0 the endpoint atx=0 is
maintained afl °C.

Assuming the rod is insulated along its length, baplace transforms to find an
expression fog(x,t).

You may assume that

{5
-1 & byoric =
s 2/t
1 T 1 t .
f(ks) :Ef P . wherek is a constant.

CI(X,'[)=2TI7 e’ du = Terfc ot
X
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Question 14

The functionu = u( X, y) satisfies Laplace’s equation in Cartesian cootdsa

2 g2
ﬂ_L2‘+'”_L2‘:o, ¥< x<¥ |, O<y<l.
ix= Ty

It is further given that
u(x0)=0
u(x1)=f(x)

where f(-x)= f(x) and f(x)® 0 asx®¥

a) Use Fourier transforms to show that

¥ o
4 f (k) coskx sinhky PO
u(x,y)—\/; ( ik dk, f(k)= f(x) .

b) Given that f (x) = d(x) show further that

sinpy
2[coshpx+ copy]

u(x )=

You may assume without proof

¥ cosAusinhBu . p sin(Bp /C)
G u__
A sinhCu 2C coslf Ao [0+ cosB O

, 0EB<C.

proof
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Question 15

The functiony =y (x, y) satisfies Laplace’s equation in Cartesian cooteia

1% 1

in the part of thex-y plane for whichy3 0.

Itis further given that
y (x0)=1(x)

Y (% Y)® 0 asyx*+y* ®¥

c) Use Fourier transforms to convert the above padifé¢rential equation into
an ordinary differential equation and hence shaat th

d) Evaluate the above integral for ...
iof (X)) =1,
ii. ... f(x)=sgnx
iii. ... f(x)=H(x)

commenting further whether these answers are densis

2 X 1 1 X
vixy)=1, |y (X y)=—arctan — |, |V (X y)==+—arctan —

[ solution overleaf ]
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Question 16

The functionu = u( X, y) satisfies Laplace’s equation in Cartesian cootdsa

in the part of thex-y plane for whichx® 0 andy3 0.

Itis further given that
u(0,y)=0
u(x y)® 0 asyx’+y” ®¥
u(x0)=f(x), f(0)=0, f(x)® 0 asx®¥

Use Fourier transforms to show that

T <
o
<
N
+
x
=
N
<
+
%
=
N

proof

[ solution overleaf ]
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Question 17

The functiong = g(x,t) satisfies the heat equation in one spatial dinoensi

where s is a positive constant.

Given further thatg(x,0) = f(X), use Fourier transforms to convert the above garti
differential equation into an ordinary differentegjuation and hence show that

¥ uz
f(x- u)exp — du.
¥ ( ) P 4t5‘2

[ —

q(x1)=

N
g

proof
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Question 18

The functionT =T( x t) satisfies the heat equation in one spatial dinoensi
2
ﬂ_gziﬂ_q’ X3 O’ t3 O’
X s It
where s is a positive constant.

It is further given that
T(x0)= (X
T(0,t)=0
T(xt)® 0 asx®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

¥
2
T(xt)= 1 f(u)exp( - u) du.
4pst 4ts
¥
2
You may assume that e -1 ga

proof
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Question 19

The one dimensional heat equation for the tempmraTL(x, t) , satisfies

2
PT_LI
> s 1t

wheret is the timex is a spatial dimension argl is a positive constant.
The temperaturé’(x, t) is subject to the following conditions.

. lim T(xt) =0

i. T(0t)=1

ii. T(x0)=0

a) Use Laplace transforms to show that

T(xt) = T(x9 = Texp \/SE X

S

b) Use contour integration on the Laplace transforredperature gradient

'ﬂl T(x s toshow further that
X
X
T(xt)=1- erf Tact
You may assume without proof that
¥ 2
e coskx dx=, |2 exp-k—
0 4a 4a
2 X 2
erf(x)=— € dx
N

[ solution overleaf ]
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