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Fourier Transform Summary

Definitions

Useful Results
fqx) =ik f(K

x1(4) =i F(K

Shift Results
f (x+c) =g ke ?(k)

1 f(k+c) =€ '™ f(X)

Convolution Theorem
{{fal(x} = V2o f(¥ = o¥

where [f*g](X)= g f(x y)oy d

Parseval’'s Theorem

¥

() ol y) d = Hhdh d o

-¥
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FINDING FOURIER
TRANSFORMS

and
INVERSES
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Question 1

wherea is a positive constant.

Find the Fourier transform of (x).
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Question 2

1 |x|<%a

f(x)=

0 x> % a
wherea is a positive constant.

Find the Fourier transform of ().

Created by T. Madas



Created by T. Madas

Question 3
f(X): 1 O0f X£‘2.
0 otherwise
Find the Fourier transform of (x).
f (k) :\/ze'“‘ sinck
o,
Question 4
1
(x)= IX £ w
0 |X>w

where w is a positive constant.

Find the Fourier transform of (x).

A /2 4
f(k)=,/—sincw
( ) 0
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Question 5

The function f (x) is defined in terms of the positive constantby
X
a

0 |[{>a

1- IXE a

f(x)=

Find the Fourier transform of ().
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Question 6
mx | )*Erin
f(x)= 1
0  |[{>=
m
wherem is a positive constant.
Find the Fourier transform of (x).
f(k)=
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Question 7
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f(x):xe'zx, x>0.

Find, by direct integration, the Fourier transfosfnf (x).
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Question 8

The triangle functiorL ,(X) is defined as

(n+x) - x<0

:N| =

Ln(X)=

(n-x) 0< x< n

o :5N|,_\

otherwise

wheren is a positive constant.

a) Sketch the graph df , (X).
b) Show that the Fourier transform bf,(x) is

%Zpsincz(% kn) ;

proof
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Question 9
The function f is defined by

wherea is a positive constant.

Find the Fourier transform of (x).
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Question 10
The function f is defined by

a) Determine the Fourier transform df(x), assuming without proof any

standard results about sinax dx

0 X

b) By introducing the converging factcnf'dx‘ and lettinge® 0, invert the
answer of para) to obtain f .

[T % =f (k)= -i\/%sign(k)
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Question 11
The impulse functiond(x) is defined by

¥ x=0
L SN

a) Determine
i d(Xx) .
i. .. d(x-a) ,wherea is a positive constant.
iii. . Tt d(k) .

b) Use the above results to deducgl] and “*[1].

d(x) :%p | d(x- a) = L gikal | d(k) :%p ,

20
[[=v2od(K)],| "[]=Vapa(x)

.
‘‘‘‘‘
T
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Question 12

The signum functiorsign(x) is defined by

. 1 x>0
sign(x) = B %<0

By introducing the converging facter e and lettinge® 0, determine the Fourier
transform ofsign(x) .
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Question 13
The Unit functionU(x) is defined by

U(x) =1.

By introducing the converging facter i and lettinge® 0, determine the Fourier
transform ofU (x) .

Lim =8
p e®0 g +t2

You may assume that(t) =
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Question 14
The Unit functionU (x) is defined by

U(x)=1.
By introducing the converging facter K and lettinge® 0, find ¥ U(k) :

. e
lim

1
You may assume that(t) =— .
Y (t) D e®0 g2 +t?

L Uu(k) =V2p d(x)
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Question 15
The functiong(x) has Fourier transform given by

g (k) = -isign(K).

By introducing the converging facter K and lettinge® 0, find ¥ @(k)

X |

A
[(@})
=

1]

ST

8 80 gk s v sy vt e voroce 4, =30) = [F b [‘[%(5% ramds) | ““’]
£ k=0

-4 - ,\[? Eﬁu [&%ﬁ QS‘V’\"‘*“”hﬂi‘;]

oovierhe Feme e, A KT 6oo dr we map

0~ o [ [Tt )4
n ] |

® ) () K ,
g == 7 [ dglen- ]
580 = L [V\?X sk <M Gark) & ] BN
P T sa = L |
<l [T 1
T [ﬁ? S I e | S a2

=3 = 16\1':0 [\H—Z' \C ":&SMLX QL] = 40 < \J? XL /

B THe NHRNTD) PR Rougees (R e Ty o)

- gb) = LLw [J? LLC;* ;LK&H
- g0 = F b [T
to o
[€ 'xmm‘!

S8 = J2 \():,;[‘SM [-;ﬁ Gerd 7]

g~ F b [ 52 P ]

Created by T. Madas



Created by T. Madas

Question 16
The Heaviside functiomd(x) is defined by

1 x30
H(x) =
0 x<0

By introducing the converging facte © and lettinge® 0, determine the Fourier
transform ofH (x)-

. e
lim

1
You may assume that(t) =— )
y (1) D e®0 g2 +t?

[HO9] == pal(K)-
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Question 17
The impulse functiond(x) is defined by

¥ x=0
AX)="0 x1 0

a) Determine the inverse Fourier transform of the ilepdunction 'y a’(k) :

and use it to deduce the Fourier transfornf ¢k) =1.

b) Find directly the Fourier transform df(x) =1, by introducing the converging

factor & ! and lettinge ® 0.
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Question 18
The function f is defined by

. 1 x>0
f (x) =sign(x)= 1 x<o

a) By introducing the converging facter el and lettinge® 0, find the Fourier
transform of f .

b) By introducing the converging facter e and lettinge® 0, find the Fourier
transform ofg(x) =1.

; e
lim

You may assume thaf(t):1 5 -
P e®0 e~ +t

c) Hence determine the Fourier transform of the Hdadw/imnctionH(x),

1 x30

H(x) =
() 0 x<0

)

sonic] = 2| [ =0200). | [He0] = i) ¢
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Question 19

The Fourier transforms of the functiori{x) and g(x) are
° X 1
f(k)=d(k) - and g(k)=TE,

where d(x) denotes the impulse function.

Find simplified expressions fof (x) and g(x), and use them to show that

[mmzﬁﬁpﬂ@ﬁ%’

where H(x) denotes the Heaviside function.
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Question 20
The function f is defined by
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2 ea
) 2
sinax  _
X P kK =a
8
0 K| > al
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Question 21
Given thatl is a non zero constant, show that

proof
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Question 22

The Gaussian functiorfi (x) is defined by

where A anda are positive constants.

Find the Fourier transform of (x).
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Question 23
The function f is defined by

wherea is a positive constant.

Use contour integration to find the Fourier tramsfaf f (x).

THE ISKRAS OV Twe AU Y, 4 T, Vi A 2w AT
SATISEY JoDATS. LA
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Question 24
The function f is defined by

("o
2 € Cosgx SX
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Question 25
The function f is defined by

wherea is a positive constant.

Use contour integration to find the Fourier tramsfaf f (x).
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Question 26
Find the inverse Fourier transform of

Q(k) —e k’s 2t

wheres andt are positive constants.

-1 k%5 _

1
ex
J2ts P

4ts ?

proof
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Question 27

The Fourier transfornf (k), of function f (x) is

A /2 a
f(k)=,— ———,
() ,Da_2+k2

where a is a positive constant.

Use contour integration to find an expression fc(rx) :
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Question 28
The function f is defined by

wherea is a positive constant.

Use contour integration to find the Fourier tramsfaf f (x).
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VARIOUS PROBLEMS
on

FOURIER
TRANSFORMS
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Question 1

Find the Fourier transform of an arbitrary functiofx) if
i. f(x) iseven.
i. f(x) is odd.

Give the answers as a simplified integral form.

f(k)=\/% ¥f(x)coskx o f(k)=-i\/% ¥f(x)sinkx o

Question 2

Use the definition of the Fourier transform, ofabsolutely integrable functior (x)
to show that

proof
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Question 3

The Fourier transform of an absolutely integrablecfion f (), is denoted byf (k).

Show that
.d -
xf(x) =i— f(k
(9 =ig 19
proof
Question 4
Given thatc is a constant show that
f (x+c) = gke f(x) .
proof
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Question 5
Given thatc is a constant show that

Lof(k+c) =€ f(X),
where f(k) o f(x)

proof
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Question 6
Given thatc is a constant prove the validity of the two sthtorems

a) f(x+c) =€&*  f(X .
b) ' f(k+c) =€™f(x).
Note thatf(k)O f(x) .

proof
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Question 7

The convolution] f * g](x), of two functionsf (x) and g(x) is defined as

()= (e Yoy b

-¥

Show that

{[fxal(} = V20 (¥ o} = Vo H(KRYH.

proof
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Question 8

It is given thatc is a constant and (k)o  f(x) .
a) Prove the validity of the inversion shift theorem
1f(k+c) =€ f(X).
b) Hence determine an expression for

-1 e—(k— a)2 '

wherea is a positive constant.

Al
x

e

=

[ cosx+ isiray
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Question 9

The convolution theorem for two functiorfs(x) and g(x) asserts that

{[fral(} = V2o (¥ o}

where
[rd()= (e Yoy o

-¥

a) Starting from the convolution theorem prove ParbgVdneorem
¥ ) ¥ o,
h(y)" dy = [H(R" ok
¥ ¥

b) Use Parseval’s Theorem to evaluate

¥

dx.
0 X2+a2
You may assume that if () =e ¥, then f(k) :\/z %.
p a“+k
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Question 10

The convolution] f * g](x), of two functionsf (x) and g(x) is defined as

¥

[Fral(¥)= fx ydy o

-¥

a) Show that
{{f=al(¥} = V2o f(x o9 =V H(KRYH.
b) Hence prove Parseval’'s Theorem
¥ ¥ o_
h(v)o(y) dy = HR¢k d
¥ ¥
c) Use Parseval's Theorem to evaluate

¥
1

NS G

Y that if (x) =& 3, th fk:\EL.

ou may assume that if (x) =€ en f (k) b 2K
_h
2ab(a+ b)
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APPLICATIONS
of

FOURIER
TRANSFORMS
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Question 1
The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cootema
2.
ﬂ_jz +ﬂ;_2 ey O .
> Ty

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation fof (k, y), where/"(k, y) is the Fourier transform of

J/ (% y) with respect tox.
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Question 2

The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cooteia

2.
ﬂ_/+ﬂ;_ :O’
™" 1y

in the part of thex-y plane for whichy3 0.

It is further given that

J (% Y)® 0 as\x*+y? ®¥

1 |¥<1
j(x0)= 2
0 |¥>1

Use Fourier transforms to show that

¥

J (xy)= %e‘ K sink coskx dk,

1
P o

and hence deduce the valug/dft1,0).
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Question 3

The Airy function Ai (x) satisfies the differential equation

2
M- xy= 0.

dx?

Use Fourier transforms to show that

¥

Ai (x) cos(lte’ + xt) dt,

_1

P o 3
for suitable boundary conditions.
d

You may assume that x f(x) :i&{ f(x)} .

proof
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Question 4

The functiony =y (x,y) satisfies Laplace’s equation in Cartesian cooteima

1% 1

in the part of thex-y plane for whichy3 0.

It is further given that
y (x0)=d ()

Y (%Y)® 0 asyx*+y* ®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

_1 y
y(x,y)—; 5

X2+ y?
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Question 5
3
Ju 1% _

The functionu = u( X t) satisfies the partial differential equation
3 ‘ﬂx3

it

It is further given that
u(x0)=d(x

u(xt)® 0 as|x®¥
Use Fourier transforms to convert the above paditierential equation into an

ordinary differential equation and hence show that
Al

~—+
OJ\H| =
~—+
w\H| X

u(xt)=

¥
cos %ks +kx  dk.
proof

where theAi (x) is the Airy function, defined as
Ai(x) =+
P o
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Question 6

The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cootesa

2.
ﬂ_/+ﬂ;_ :O’
™" 1y

in the part of thex-y plane for whichx?3 0 andy3 0.

It is further given that

. 1
,0)=
/(X ) 1+ X2
J (% Y)® 0 asyx*+y* ®¥
T .
— ,0) =0
o/ (x0)

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

y+1

/'(M’FW-

proof
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Question 7

The functionF = F (X, y) satisfies Laplace’s equation in Cartesian cootésa

2
1°F L 1F _

0,
™y

in the part of thex-y plane for whichy3 0.

It is further given that
F (x,0)= d(x)

F(xy)® 0 asyx*+y* ®¥

Use Fourier transforms to find the solution of Hi®ve partial differential equation
and hence show that

2-1

T T A
d(x)—gl(réno o 1+a2

proof
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Question 8

The functiony = y( X) satisfies the differential equation

dy
—+/y=f
dx+ y="1(x),

where f (x) is a given function and is a real constant.

Use Fourier transforms to show that
¥

y(x) = ) et f(x- 1) dt.

proof
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Question 9

The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cootesa

2.
ﬂ_/+ﬂ;_ :O’
™" 1y

in the semi-infinite region of th&-y plane for whichy?3 0.

It is further given that
/ (x0)=1(x)

J (% Y)® 0 asyx*+y* ®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

¥ f (x- u)

y
= du.
Dy U2 + yz

J(xy)=
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Question 10

The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cootéia

2.
ﬂ_/+ﬂ;_ :O’
™" 1y

in the semi-infinite region of th&-y plane for whichy?3 0.

It is further given that for a given functiof = f (x)

ﬂly/ (x.0) =ﬂlx £(x)

J (% Y)® 0 asyx*+y* ®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

proof

[ solution overleaf]
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Question 11

The function/ 5 (X, ) satisfies Laplace’s equation in Cartesian cootesa

2.
'"—/2+£2:0, ¥< ¥ ,y30.
™ Ty

It is further given that

J (% Y)® 0 asyx*+y* ®¥
J/ (%,0)=H(x), the Heaviside function.

Use Fourier transforms to show that

. 11 X
J (%, y)—§+;arctan§ :

You may assume that

proof
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Question 12

The functionu = u( X, y) satisfies Laplace’s equation in Cartesian cootdsa

2 2
ﬂ_;‘.;.ﬂ_;‘:o, ¥< ¥, O<y<l.
ix* Ty

It is further given that
u(x0)=0
u(x1) = f(x

where f (-x)= f(x) and f(x)® 0 asx®¥

a) Use Fourier transforms to show that

¥ .
2 f (k) coskx sinhky ~
= |— dk, f(k)= f :
=gz M ()= 1(
b) Given thatf (x)=d(x) show further that

sinpy
2[coshpx+ copy]

u(x y)=

You may assume without proof

¥ cosAusinhBu , _ p sin(Bp /C)

T du=£ , 0EB<C.
0 sinhCu S costf Ao O+ cosB O )

proof
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Question 13

The functiony =y (x,y) satisfies Laplace’s equation in Cartesian cooteisa

1% 1

in the part of thex-y plane for whichy3 0.

It is further given that
y(x0)=1(x)

Y (% Y)® 0 asyx*+y* ®¥

c) Use Fourier transforms to convert the above padiférential equation into
an ordinary differential equation and hence shaat th

d) Evaluate the above integral for ...
i f(x)=1.
ii. ... f(x)=sgnx
iii. ... f(x)=H(x)

commenting further whether these answers are densis

2 X 1 1 X
Vv (xy)=1, |y (X Yy)=—arctan— |, |V (X y)==+—arctan —

[ solution overleaf ]
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Question 14

The functiong = g(x,t) satisfies the heat equation in one spatial dinvensi

where s is a positive constant.

Given further thatg(x,0) = f(X), use Fourier transforms to convert the above garti
differential equation into an ordinary differentegjuation and hence show that

¥ U2
f(x- u)exp — du.
¥ ( ) P 4t52

[ —

g(xt)=

N
g

proof
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Question 15

The functionu = u( X, y) satisfies Laplace’s equation in Cartesian cootdsa

in the part of thex-y plane for whichx® 0 andy3 0.

It is further given that

u(0,y)=0

u(x y)® 0 asyx*+y* ®¥
u(x0)= f(x), f(0)=0, f(x)® 0 asx®¥

Use Fourier transforms to show that

SRS
o
<
N
+
x
<
N
<
+
%
<
N

proof

[ solution overleaf ]
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Question 16

The functionT =T( x t) satisfies the heat equation in one spatial dinoensi

T2q

0 2 :Siﬂq, x30,t30,
X

it
where s is a positive constant.

It is further given that
T(x0)= (X
T(0,t)=0
T(xt)® 0 asx®¥

Use Fourier transforms to convert the above paditierential equation into an
ordinary differential equation and hence show that

¥
2
T(xt)= 1 f(u)exp( - u) du.
4pst 4ts
¥
2
You may assume that e -1 ga

proof
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Question 17

The function f = f (x) satisfies the integral equation

¥
f(t) |

o (oL e

where f(x)® 0 asx®¥

Use Fourier transforms to find the solution of #ive integral equation.

You may assume that 21 5 =1\/Ee'a“<.
X“+a ay?2
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Question 18

The function f = f (x) satisfies the integral equation

¥ 1
f(x- u) f(u) du=
¥ 1+x

2 H

where f(x)® 0 asx®¥

Use Fourier transforms to find the solution of #ive integral equation.

You may assume that

¥
coskx
0 X2 +1

dx:%pék‘ :
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Question 19

The function f = f (x) satisfies the integral equation

where f(x)® 0 asx®¥

Use Fourier transforms to find the solution of #ive integral equation.

You may assume that

f(x)=(2- 2)e

Nl
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