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PREFACE

Functional analysis is the study of certain topological-algebraic structures

and of the methods by which knowledge of these structures can be applied
to analytic problems.

A good introductory text on this subject should include a presentation
of its axiomatics (i.e., of the general theory of topological vector spaces), it

should treat at least a few topics in some depth, and it should contain some

interesting applications to other branches of mathematics. I hope that the

present book meets these criteria.

The subject is huge and is growing rapidly. (The bibliography in

volume I of [4] contains 96 pages and goes only to 1957.) In order to write

a book of moderate size, it was therefore necessary to select certain areas

and to ignore others. I fully realize that almost any expert who looks at the

table of contents will find that some of his or her (and my) favorite topics
are missing, but this seems unavoidable. It was not my intention to write an

encyclopedic treatise. I wanted to write a book that would open the way to

further exploration.
This is the reason for omitting many of the more esoteric topics that

might have been included in the presentation of the general theory of

topological vector spaces. For instance, there is no discussion of uniform spaces,

of Moore-Smith convergence, of nets, or of filters. The notion of

completeness occurs only in the context of metric spaces. Bornological spaces are

not mentioned, nor are barreled ones. Duality is of course presented, but

not in its utmost generality. Integration of vector-valued functions is treated

strictly as a tool; attention is confined to continuous integrands, with values

in a Frechet space.

Nevertheless, the material of Part I is fully adequate for almost all

applications to concrete problems. And this is what ought to be stressed in

such a course: The close interplay between the abstract and the concrete is

xiii



XiV PREFACE

not only the most useful aspect of the whole subject but also the most

fascinating one.

Here are some further features of the selected material. A fairly large

part of the general theory is presented without the assumption of local

convexity. The basic properties of compact operators are derived from the

duality theory in Banach spaces. The Krein-Milman theorem on the

existence of extreme points is used in several ways in Chapter 5. The theory of

distributions and Fourier transforms is worked out in fair detail and is

applied (in two very brief chapters) to two problems in partial differential

equations, as well as to Wiener's tauberian theorem and two of its

applications. The spectral theorem is derived from the theory of Banach algebras

(specifically, from the Gelfand-Naimark characterization of commutative

£*-algebras); this is perhaps not the shortest way, but it is an easy one. The

symbolic calculus in Banach algebras is discussed in considerable detail; so

are involutions and positive functionals.

I assume familiarity with the theory of measure and Lebesgue
integration (including such facts as the completeness of the Z?-spaces), with some

basic properties of holomorphic functions (such as the general form of

Cauchy's theorem, and Runge's theorem), and with the elementary

topological background that goes with these two analytic topics. Some other

topological facts are briefly presented in Appendix A. Almost no algebraic

background is needed, beyond the knowledge of what a homomorphism is.

Historical references are gathered in Appendix B. Some of these refer

to the original sources, and some to more recent books, papers, or

expository articles in which further references can be found. There are, of course,

many items that are not documented at all. In no case does the absence of a

specific reference imply any claim to originality on my part.

Most of the applications are in Chapters 5, 8, and 9. Some are in

Chapter 11 and in the more than 250 exercises; many of these are supplied
with hints. The interdependence of the chapters is indicated in the diagram
on the following page.

Most of the applications contained in Chapter 5 can be taken up well

before the first four chapters are completed. It has therefore been suggested
that it might be good pedagogy to insert them into the text earlier, as soon

as the required theoretical background is established. However, in order

not to interrupt the presentation of the theory in this way, I have instead

started Chapter 5 with a short indication of the background that is needed

for each item. This should make it easy to study the applications as early as

possible, if so desired.

In the first edition, a fairly large part of Chapter 10 dealt with

differentiation in Banach algebras. Twenty years ago this (then recent) material

looked interesting and promising, but it does not seem to have led

anywhere, and I have deleted it. On the other hand, I have added a few items

which were easy to fit into the existing text: the mean ergodic theorem of
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10

I
11

I
12

I
13

von Neumann, the Hille-Yosida theorem on semigroups of operators, a

couple of fixed point theorems, Bonsall's surprising application of the

closed range theorem, and Lomonosov's spectacular invariant subspace
theorem. I have also rewritten a few sections in order to clarify certain

details, and I have shortened and simplified some proofs.
Most of these changes have been made in response to much-

appreciated suggestions by numerous friends and colleagues. I especially
want to mention Justin Peters and Ralph Raimi, who wrote detailed

critiques of the first edition, and the Russian translator of the first edition

who added quite a few relevant footnotes to the text. My thanks to all of

them!

Walter Rudin
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CHAPTER

1

TOPOLOGICAL

VECTOR

SPACES

Introduction

1.1 Many problems that analysts study are not primarily concerned with

a single object such as a function, a measure, or an operator, but they deal

instead with large classes of such objects. Most of the interesting classes

that occur in this way turn out to be vector spaces, either with real scalars

or with complex ones. Since limit processes play a role in every analytic

problem (explicitly or implicitly), it should be no surprise that these vector

spaces are supplied with metrics, or at least with topologies, that bear some

natural relation to the objects of which the spaces are made up. The

simplest and most important way of doing this is to introduce a norm. The

resulting structure (defined below) is called a normed vector space, or a

normed linear space, or simply a normed space.

Throughout this book, the term vector space will refer to a vector

space over the complex field <p or over the real field R. For the sake of

completeness, detailed definitions are given in Section 1.4.

1.2 Normed spaces A vector space X is said to be a normed space if to

every x e X there is associated a nonnegative real number ||x||, called the

norm of x, in such a way that

3



4 PART I: GENERAL THEORY

(a) ||x 4- y\\ < \\x\\ + ||y|| for all x and y in AT,

(b) ||ax|| = |a| ||x|| if x e X and a is a scalar,

(c) ||x|| >0ifx#0.

The word "norm" is also used to denote the function that maps x

to ||x||.

Every normed space may be regarded as a metric space, in which the

distance d(x, y) between x and y is ||x — y\\. The relevant properties of d are

(0 0 < d(x, y) < oo for all x and y,

(ii) d(x, y) = 0 if and only if x =

y,

(Hi) d(x, y) = d(y, x) for all x and y,

(iv) d(x, z) < d(x, y) + d(y, z) for all x, y, z.

In any metric space, the open ball with center at x and radius r is

the set

Br(x) = {y: d(x, y) < r}.

In particular, if X is a normed space, the sets

Bt(0) = {x: ||x|| < 1} and 5^0) = {x: \\x\\ < 1}

are the open unit ball and the closed unit ball of X, respectively.

By declaring a subset of a metric space to be open if and only if it is a

(possibly empty) union of open balls, a topology is obtained. (See Section

1.5.) It is quite easy to verify that the vector space operations (addition and

scalar multiplication) are continuous in this topology, if the metric is

derived from a norm, as above.

A Banach space is a normed space which is complete in the metric

defined by its norm; this means that every Cauchy sequence is required to

converge.

1.3 Many of the best-known function spaces are Banach spaces. Let us

mention just a few types: spaces of continuous functions on compact

spaces; the familiar Z?-spaces that occur in integration theory; Hilbert

spaces
— the closest relatives of euclidean spaces; certain spaces of differen-

tiable functions; spaces of continuous linear mappings from one Banach

space into another; Banach algebras. All of these will occur later on in the

text.

But there are also many important spaces that do not fit into this

framework. Here are some examples:

(a) C(Q), the space of all continuous complex functions on some open set

Q in a euclidean space Rn.
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(b) H(Q), the space of all holomorphic functions in some open set Q in the

complex plane.

(c) C%, the space of all infinitely differentiable complex functions on Rn

that vanish outside some fixed compact set K with nonempty interior.

(d) The test function spaces used in the theory of distributions, and the

distributions themselves.

These spaces carry natural topologies that cannot be induced by

norms, as we shall see later. They, as well as the normed spaces, are

examples of topological vector spaces, a concept that pervades all of functional

analysis.
After this brief attempt at motivation, here are the detailed definitions,

followed (in Section 1.9) by a preview of some of the results of Chapter 1.

1.4 Vector spaces The letters R and (p will always denote the field of

real numbers and the field of complex numbers, respectively. For the

moment, let O stand for either R or (p. A scalar is a member of the scalar

field O. A vector space over O is a set X, whose elements are called vectors,

and in which two operations, addition and scalar multiplication, are defined,

with the following familiar algebraic properties:

(a) To every pair of vectors x and y corresponds a vector x 4- y, in such a

way that

x + y
=

y + x and x + (y + z) = (x + y) + z;

X contains a unique vector 0 (the zero vector or origin of X) such that

x 4- 0 = x for every x e X; and to each x e X corresponds a unique
vector —x such that x 4- (

—

x) = 0.

(b) To every pair (a, x) with aeO and x e X corresponds a vector ax, in

such a way that

\x =

x, a(/foc) = (a/?)x,

and such that the two distributive laws

a(x 4- y) = ocx 4- ay, (a 4- fi)x = ax 4- fix

hold.

The symbol 0 will of course also be used for the zero element of the

scalar field.

A real vector space is one for which O = R; a complex vector space is

one for which O = (p. Any statement about vector spaces in which the

scalar field is not explicitly mentioned is to be understood to apply to both

of these cases.
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If X is a vector space, A cz X, B cz X, x e X, and 2eO, the following
notations will be used:

x + A = {x + a: a e A},

x
— A = {x — a: a e A},

A + B = {a + b: a e A, b e B},

XA = {/la: a e A}.

In particular (taking k = —

1), — A denotes the set of all additive inverses of

members of A.

A word of warning: With these conventions, it may happen that 2A #

A + A (Exercise 1).
A set Y cz X is called a subspace of X if Y is itself a vector space (with

respect to the same operations, of course). One checks easily that this

happens if and only if 0 e Y and

olY + pY cz Y

for all scalars a and /?.
A set C cz X is said to be convex if

tC + (1
-

t)C cz C (0 < t < 1).

In other words, it is required that C should contain tx 4- (1 — t)y if x e C,

y e C, and 0 < * < 1.

A set B cz X is said to be balanced if ocB cz B for every aeO with

M<l.
A vector space X has dimension n (dim X = n) if X has a basis

{ul9..., w„}. This means that every x e X has a unique representation of the

form

x =

a1 ux +
• • •

+ a„ un (a, e <D).

If dim X = n for some n, X is said to have finite dimension. If X = {0}, then

dim X = 0.

Example. If X = <p (a one-dimensional vector space over the scalar

field <£), the balanced sets are <p, the empty set 0, and every circular

disc (open or closed) centered at 0. If X = R2 (a two-dimensional

vector space over the scalar field R), there are many more balanced

sets; any line segment with midpoint at (0, 0) will do. The point is

that, in spite of the well-known and obvious identification of <p with

R2, these two are entirely different as far as their vector space

structure is concerned.

1.5 Topological spaces A topological space is a set S in which a

collection t of subsets (called open sets) has been specified, with the following
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properties: S is open, 0 is open, the intersection of any two open sets is

open, and the union of every collection of open sets is open. Such a

collection t is called a topology on S. When clarity seems to demand it, the

topological space corresponding to the topology z will be written (S, t) rather

than S.

Here is some of the standard vocabulary that will be used, if S and t

are as above.

A set E a S is closed if and only if its complement is open. The closure

E of E is the intersection of all closed sets that contain E. The interior E° of

E is the union of all open sets that are subsets of E. A neighborhood of a

point p e S is any open set that contains p. (S, t) is a Hausdorff space, and t

is a Hausdorff topology, if distinct points of S have disjoint neighborhoods.
A set K cz S is compact if every open cover of K has a finite subcover. A

collection t' cz t is a base for t if every member of t (that is, every open set)
is a union of members of t'. A collection y of neighborhoods of a point

p e S is a /oca/ base a£ p if every neighborhood of p contains a member of y.

If E cz S and if a is the collection of all intersections E n V, with

K e t, then a is a topology on E, as is easily verified; we call this the

topology that E inherits from S.

If a topology t is induced by a metric d (see Section 1.2) we say that d

and t are compatible with each other.

A sequence {x„} in a Hausdorff space X converges to a point xel

(or lim,,^ xn
= x) if every neighborhood of x contains all but finitely many

of the points xn.

1.6 Topological vector spaces Suppose t is a topology on a vector

space X such that

(a) every point ofX is a closed set, and

(b) the vector space operations are continuous with respect to t.

Under these conditions, t is said to be a vector topology on X, and X

is a topological vector space.

Here is a more precise way of stating (a): For every x e X, the set [x]
which has x as its only member is a closed set.

In many texts, (a) is omitted from the definition of a topological
vector space. Since (a) is satisfied in almost every application, and since

most theorems of interest require (a) in their hypotheses, it seems best to

include it in the axioms. [Theorem 1.12 will show that (a) and (b) together

imply that t is a Hausdorff topology.]
To say that addition is continuous means, by definition, that the

mapping

(x, y) -> x + y
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of the cartesian product X x X into X is continuous: If x( e X for i = 1,2,

and if V is a neighborhood of xx + x2, there should exist neighborhoods V{

of x, such that

Vx + V2 c K.

Similarly, the assumption that scalar multiplication is continuous means

that the mapping

(a, x) -> ax

ofOx! into X is continuous: If x e X, a is a scalar, and V is a

neighborhood of ax, then for some r > 0 and some neighborhood W of x we have

PW a V whenever | /? —

a | < r.

A subset £ of a topological vector space is said to be bounded if to

every neighborhood V of 0 in X corresponds a number s > 0 such that

E a tV for every t > s.

1.7 Invariance Let X be a topological vector space. Associate to each

a e X and to each scalar k # 0 the translation operator Ta and the

multiplication operator Mx, by the formulas

Ta(x) = a + x, MA(x) = he (x e X).

The following simple proposition is very important:

Proposition. Ta and Mx are homeomorphisms ofX onto X.

proof. The vector space axioms alone imply that Ta and Mx are

one-to-one, that they map X onto X, and that their inverses are T_a
and M1/x, respectively. The assumed continuity of the vector space

operations implies that these four mappings are continuous. Hence

each of them is a homeomorphism (a continuous mapping whose

inverse is also continuous). ////

One consequence of this proposition is that every vector topology t is

translation-invariant (or simply invariant, for brevity): A set E a X is open if

and only if each of its translates a + E is open. Thus z is completely
determined by any local base.

In the vector space context, the term local base will always mean a

local base at 0. A local base of a topological vector space X is thus a

collection & of neighborhoods of 0 such that every neighborhood of 0

contains a member of ^. The open sets of X are then precisely those that are

unions of translates of members of 0$.
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A metric d on a vector space X will be called invariant if

d(x + z, y + z) = d(x, y)

for all x, y, z in X.

1.8 Types of topological vector spaces In the following definitions, X

always denotes a topological vector space, with topology t.

(a) X is locally convex if there is a local base 0$ whose members are

convex.

(b) X is locally bounded if 0 has a bounded neighborhood.

(c) X is locally compact if 0 has a neighborhood whose closure is compact.

(d) X is metrizable if t is compatible with some metric d.

(e) X is an F-space if its topology t is induced by a complete invariant

metric d. (Compare Section 1.25.)

(/) X is a Frechet space if X is a locally convex F-space.

(#) X is normable if a norm exists on X such that the metric induced by
the norm is compatible with t.

(ft) Normed spaces and Banach spaces have already been defined (Section

1.2).

(0 X has the Heine-Borel property if every closed and bounded subset of

X is compact.

The terminology of (e) and (/) is not universally agreed upon: In

some texts, local convexity is omitted from the definition of a Frechet space,

whereas others use F-space to describe what we have called Frechet space.

1.9 Here is a list of some relations between these properties of a

topological vector space X.

(a) If X is locally bounded, then X has a countable local base [part (c) of

Theorem 1.15].

(b) X is metrizable if and only if X has a countable local base (Theorem

1.24).

(c) X is normable if and only if X is locally convex and locally bounded

(Theorem 1.39).

{d) X has finite dimension if and only if X is locally compact (Theorems

1.21, 1.22).

(e) If a locally bounded space X has the Heine-Borel property, then X has

finite dimension (Theorem 1.23).
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The spaces H(Q) and C£ mentioned in Section 1.3 are infinite-

dimensional Frechet spaces with the Heine-Borel property (Sections 1.45,

1.46). They are therefore not locally bounded, hence not normable; they

also show that the converse of (a) is false.

On the other hand, there exist locally bounded F-spaces that are not

locally convex (Section 1.47).

Separation Properties

1.10 Theorem Suppose K and C are subsets of a topological vector space

X, K is compact, C is closed, and K n C = 0. Then 0 has a neighborhood V

such that

{K + V)n{C+V) = 0.

Note that K + V is a union of translates x + V of V {x e K). Thus

K + V is an open set that contains K. The theorem thus implies the

existence of disjoint open sets that contain K and C, respectively.

proof. We begin with the following proposition, which will be useful

in other contexts as well:

If W is a neighborhood of 0 in X, then there is a neighborhood U

ofO which is symmetric (in the sense that U = —U) and which satisfies
u + u <=w.

To see this, note that 0-1-0 = 0, that addition is continuous, and

that 0 therefore has neighborhoods Vx, V2 such that Vx + V2 <= W. If

U=V1n V2n(-V1)n(-V2),

then U has the required properties.
The proposition can now be applied to U in place of W and

yields a new symmetric neighborhood U of 0 such that

u + u + u + u <=w.

It is clear how this can be continued.

If K = 0, then K + V = 0, and the conclusion of the theorem

is obvious. We therefore assume that K # 0, and consider a point
x e K. Since C is closed, since x is not in C, and since the topology of

X is invariant under translations, the preceding proposition shows

that 0 has a symmetric neighborhood Vx such that x -I- Vx + Vx + Vx
does not intersect C; the symmetry of Vx shows then that

(i) (x + Vx + Vx) n(C + Vx) = 0.
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Since K is compact, there are finitely many points xl9..., xn in K such

that

K<=(x1 + Kxl)u---u(xll+KJ.

Put V = Vxl n
•••

n VXn.ThQn

K + V^(j(Xi+ VXi + V) c 0 (*i + ^ + Kx/),
i =1 i=l

and no term in this last union intersects C + K, by (1). This completes
the proof. ////

Since C 4- V is open, it is even true that the closure of K + V does not

intersect C 4- V; in particular, the closure of K 4- K does not intersect C.

The following special case of this, obtained by taking K = {0}, is of

considerable interest.

1.11 Theorem If & is a local base for a topological vector space X, then

every member of $ contains the closure of some member of £%.

So far we have not used the assumption that every point of X is a

closed set. We now use it and apply Theorem 1.10 to a pair of distinct

points in place of K and C. The conclusion is that these points have disjoint

neighborhoods. In other words, the Hausdorff separation axiom holds:

1.12 Theorem Every topological vector space is a Hausdorff space.

We now derive some simple properties of closures and interiors in a

topological vector space. See Section 1.5 for the notations E and E°.

Observe that a point p belongs to E if and only if every neighborhood of p

intersects E.

1.13 Theorem Let X be a topological vector space.

(a) If A a X then A = f] (A 4- V), where V runs through all neighborhoods

ofO.

(b) If A clanJBcI, then A + B cz A + B.

(c) If Y is a subspace ofX, so is Y.

(d) IfC is a convex subset ofX, so are C and C°.

(e) IfB is a balanced subset ofX, so is B; if also 0 e B° then B° is balanced.

(f) IfE is a bounded subset ofX, so is E.



PART I: GENERAL THEORY

proof, (a) x e A if and only if (x 4- V) n A # 0 for every

neighborhood V of 0, and this happens if and only if x e A — V for every such

V. Since — V is a neighborhood of 0 if and only if V is one, the proof
is complete.

(b) Take a e A, b e B; let W be a neighborhood of a + 6. There

are neighborhoods W1 and W2 of a and 6 such that W1 + W2 cz W.

There exist x e A n W1 and y e B n W2, since a e A and b e B. Then

jc 4- y lies in (A 4- l^r^', so that this intersection is not empty.

Consequently, a + b e A + B.

(c) Suppose a and ft are scalars. By the proposition in Section

1.7, af= ocY if a # 0; if a = 0, these two sets are obviously equal.
Hence it follows from (b) that

aY+ p?= ^Y 4- Jy cz <xY + PY cz ?;

the assumption that Y is a subspace was used in the last inclusion.

The proofs that convex sets have convex closures and that

balanced sets have balanced closures are so similar to this proof of (c)
that we shall omit them from (d) and (e).

(d) Since C° cz C and C is convex, we have

tC° 4- (1
- t)C° cz C

if 0 < t < 1. The two sets on the left are open; hence so is their sum.

Since every open subset of C is a subset of C°, it follows that C° is

convex.

(e) If 0 < |a| < 1, then olB° = (ocB)°, since x -> ax is a homeo-

morphism. Hence olB° cz olB cz B, since B is balanced. But olB° is open.

So olB° cz fl°. If B° contains the origin, then olB° cz B° even for a = 0.

(/) Let V be a neighborhood of 0. By Theorem 1.11, J^cz K for

some neighborhood W of 0. Since E is bounded, £ cz tW for all

sufficiently large t. For these £, we have E <= tW<= tV. ////

Theorem In a topological vector space X,

every neighborhood ofO contains a balanced neighborhood ofO, and

every convex neighborhood of 0 contains a balanced convex

neighborhood ofO.

proof, (a) Suppose U is a neighborhood of 0 in X. Since scalar

multiplication is continuous, there is a <5 > 0 and there is a neighborhood
V of 0 in X such that ocV cz U whenever | a | < <5. Let W be the union

of all these sets olV. Then W is a neighborhood of 0, W is balanced,

and W cz U.
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(b) Suppose U is a convex neighborhood of 0 in X. Let

A = f] aU, where a ranges over the scalars of absolute value 1.

Choose W as in part (a). Since W is balanced, oc~1W = W when

|a| = 1; hence W cz all. Thus W cz A, which implies that the interior

A° of A is a neighborhood of 0. Clearly A° cz U. Being an intersection

of convex sets, A is convex; hence so is A°. To prove that A° is a

neighborhood with the desired properties, we have to show that A° is

balanced; for this it suffices to prove that A is balanced. Choose r and

0sothatO<r < 1, |j8| = 1. Then

rfiA= H rpocU= f) mU.

Since olU is a convex set that contains 0, we have raU cz aU. Thus

rfiA cz A, which completes the proof. ////

Theorem 1.14 can be restated in terms of local bases. Let us say that a

local base & is balanced if its members are balanced sets, and let us call &

convex if its members are convex sets.

Corollary

(a) Every topological vector space has a balanced local base.

(b) Every locally convex space has a balanced convex local base.

Recall also that Theorem 1.11 holds for each of these local bases.

1.15 Theorem Suppose V is a neighborhood ofO in a topological vector

space X.

(a) I/O < rx < r2 <
• • • and rn -> oo as n -> oo, then

*= U r„V.
n=l

(b) Every compact subset KofX is bounded.

(c) If Sx> S2>
'" and Sn->0 as n -> oo, and if V is bounded, then the

collection

{5nV:n=\,X\...}

is a local base for X.

proof, (a) Fix x e X. Since a -> ax is a continuous mapping of the

scalar field into X, the set of all a with ax e V is open, contains 0,

hence contains \/rn for all large n. Thus (l/rjx e V, or x e rn V, for

large n.
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(b) Let W be a balanced neighborhood of 0 such that W cz V.

By (a),

00

K^ \j nW.

Since K is compact, there are integers n1 <
• • •

< ns such that

K^niW u
•••

u nsW = nsW.

The equality holds because W is balanced. If t > ns, it follows that

K cz tW cz rK.

(c) Let U be a neighborhood of 0 in X. If V is bounded, there

exists s > 0 such that K cz f£/ for all t > s. If n is so large that sSn < 1,

it follows that V cz (l/<5„)t/. Hence 1/ actually contains all but finitely

many of the sets <5„ V. ////

Linear Mappings

1.16 Definitions When X and Y are sets, the symbol

f:X^Y

will mean that/is a mapping of X into Y. If A cz X and Be 7, the image

f(A) of ,4 and the inverse image or preimagef~1(B) of £ are defined by

f(A) = {/(*): x e /!}, /^(fl) = {*:/(*) e B}.

Suppose now that X and 7 are vector spaces over the same scalar

field. A mapping A: X -> Y is said to be /m^ar if

A(ax + Py) = ocAx + /?Ay

for all x and y in X and all scalars a and /?. Note that one often writes Ax,

rather than A(x), when A is linear.

Linear mappings of X into its scalar field are called linear functionals.
For example, the multiplication operators Ma of Section 1.7 are linear,

but the translation operators Ta are not, except when a = 0.

Here are some properties of linear mappings A: X -> Y whose proofs
are so easy that we omit them; it is assumed that A cz X and Be 7:

(a) A0 = 0.

(b) If A is a subspace (or a convex set, or a balanced set) the same is true

ofA(,4).

(c) If B is a subspace (or a convex set, or a balanced set) the same is true

ofA"1^).
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(d) In particular, the set

A_1({0}) = {xe X: Ax = 0} = JT(\)

is a subspace of X, called the null space of A.

We now turn to continuity properties of linear mappings.

1.17 Theorem Let X and Y be topological vector spaces. If A: X -> Y is

linear and continuous at 0, then A is continuous. In fact, A is uniformly

continuous, in the following sense: To each neighborhood W ofO in Y corresponds a

neighborhood VofO in X such that

y
—

x e V implies Ay — Ax e W.

proof. Once W is chosen, the continuity of A at 0 shows that

AV cz W for some neighborhood V of 0. If now y
—

x e V, the

linearity of A shows that Ay — Ax = A(y — x) e W. Thus A maps the

neighborhood x + V of x into the preassigned neighborhood Ax + W

of Ax, which says that A is continuous at x. //H

1.18 Theorem Let Abe a linear functional on a topological vector space

X. Assume Ax # Ofor some x e X. Then each of the following four properties

implies the other three:

(a) A is continuous.

(b) The null space j^(A) is closed.

(c) ^T(A) is not dense in X.

(d) A is bounded in some neighborhood V ofO.

proof. Since ^V{A) = A_1({0}) and {0} is a closed subset of the scalar

field O, (a) implies (b). By hypothesis, ^T(A) # X. Hence (b) implies (c).
Assume (c) holds; i.e., assume that the complement of J^(A) has

nonempty interior. By Theorem 1.14,

(1) (x + V) n jV(A) = 0

for some x e X and some balanced neighborhood V of 0. Then AV is

a balanced subset of the field O. Thus either AV is bounded, in which

case (d) holds, or AV = O. In the latter case, there exists y e V such

that Ay = —Ax, and so x + y e ^T(A), in contradiction to (1). Thus

(c) implies (d).

Finally, if (d) holds then | Ax | < M for all x in V and for some

M < oo. If r > 0 and if W = (r/M)V, then | Ax | < r for every x in W.

Hence A is continuous at the origin. By Theorem 1.17, this implies (a).
mi
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Finite-Dimensional Spaces

1.19 Among the simplest Banach spaces are Rn and (pn, the standard

n-dimensional vector spaces over R and (£, respectively, normed by means

of the usual euclidean metric: If, for example,

z = (z1,...,zj (z,.e£)

is a vector in (pn, then

\\z\\=(\z1\2 +
---

+ \zn\2)112.

Other norms can be defined on (pn. For example,

IN =|z1| +
---

+ |zj or ||z|| =max(|zI.|: 1 < i < n).

These norms correspond, of course, to different metrics on (pn (when n > 1)
but one can see very easily that they all induce the same topology on (pn.

Actually, more is true.

If X is a topological vector space over (p, and dim X =

n, then every

basis of X induces an isomorphism of X onto (pn. Theorem 1.21 will prove

that this isomorphism must be a homeomorphism. In other words, this says

that the topology of (pn is the only vector topology that an n-dimensional

complex topological vector space can have.

We shall also see that finite-dimensional subspaces are always closed

and that no infinite-dimensional topological vector space is locally

compact.

Everything in the preceding discussion remains true with real scalars

in place of complex ones.

1.20 Lemma If X is a complex topological vector space andf. (pn -> X is

linear, then f is continuous.

proof. Let {el9 ..., en} be the standard basis of (pn\ The feth

coordinate of ek is 1, the others are 0. Put uk =f{ek), for k = 1, ...,
n. Then

f(z) =

z1u1 +
• • •

+ znun for every z = (z1? ..., z„) in (pn. Every zfc is a

continuous function of z. The continuity of/is therefore an immediate

consequence of the fact that addition and scalar multiplication are

continuous in X. HI I

1.21 Theorem // n is a positive integer and Y is an n-dimensional sub-

space of a complex topological vector space X, then

(a) every isomorphism of(pn onto Y is a homeomorphism, and

(b) Y is closed.
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proof. Let S be the sphere which bounds the open unit ball B of

<pn. Thus z e S if and only if £|z,|2 = 1, and z e B if and only if

Z|z,.|2<l.
Suppose f:<p"->Y is an isomorphism. This means that / is

linear, one-to-one, and/(^n) = 7. Put K =f(S). Since/is continuous

(Lemma 1.20), K is compact. Since/(0) = 0 and/is one-to-one, 0 £ K,

and therefore there is a balanced neighborhood V of 0 in X which

does not intersect K. The set

E=f-'{V)=f-\V n Y)

is therefore disjoint from S. Since/is linear, E is balanced, and hence

connected. Thus £cB, because 0 e E, and this implies that the linear

map/"* takes V n Y into B. Since f~x is an n-tuple of linear

functional on 7, the implication (d) -> (a) in Theorem 1.18 shows that/-1
is continuous. Thus/is a homeomorphism.

To prove (b), choose p e Y, and let / and V be as above. For

some t > 0, p e tV, so that p lies in the closure of

y n(tK)<=/(tB)c/(tS).

Being compact, /(^5) is closed in X. Hence p ef(tB) a Y, and this

proves that 7=7. ////

1.22 Theorem Every locally compact topological vector space X has

finite dimension.

proof. The origin of X has a neighborhood V whose closure is

compact. By Theorem 1.15, V is bounded, and the sets 2~nV (n = 1, 2,

3,...) form a local base for X.

The compactness of V shows that there exist xl9 ..., xm in X

such that

fc(x1 + iF)u-u(xm + in

Let 7 be the vector space spanned by xl9 ..., xm. Then dim Y < m.

By Theorem 1.21, 7 is a closed subspace of X.

Since V a 7 + \V and since XY = 7 for every scalar X # 0, it

follows that

\V cz 7 + iK

so that

Kcz7 + iKcz7+7 + iK=7 + iK.
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If we continue in this way, we see that

Kcz f) (Y + 2~nV).

Since {2~nV} is a local base, it now follows from (a) of Theorem 1.13

that V cz 7. But 7 = Y. Thus Kc7, which implies that kV cz Y for

fe = 1, 2, 3, Hence 7 = X, by (a) of Theorem 1.15, and

consequently dim X < m. ////

1.23 Theorem IfX is a locally bounded topological vector space with the

Heine-Borel property, then X has finite dimension.

proof. By assumption, the origin of X has a bounded neighborhood
V. Statement (/) of Theorem 1.13 shows that Pis also bounded. Thus

Pis compact, by the Heine-Borel property. This says that X is locally

compact, hence finite-dimensional, by Theorem 1.22.

Metrization

We recall that a topology t on a set X is said to be metrizable if there is a

metric d on X which is compatible with t. In that case, the balls with radius

\/n centered at x form a local base at x. This gives a necessary condition

for metrizability which, for topological vector spaces, turns out to be also

sufficient.

1.24 Theorem IfX is a topological vector space with a countable local

base, then there is a metric d on X such that

(a) d is compatible with the topology ofX,

(b) the open balls centered at 0 are balanced, and

(c) d is invariant: d(x + z, y + z) = d(x, y)for x, y, z e X.

If, in addition, X is locally convex, then d can be chosen so as to satisfy

(a), (b), (c), and also

(d) all open balls are convex.

proof. By Theorem 1.14, X has a balanced local base {Vn} such that

(1) K + 1 + Vn + l + Vn + l + Vn + 1
cz Vn (n + 1, 2, 3, ...);

when X is locally convex, this local base can be chosen so that each Vn
is also convex.
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Let D be the set of all rational numbers r of the form

(2) r= £c„(r)2-",

where each of the "digits" c{(r) is 0 or 1 and only finitely many are 1.

Thus each r e D satisfies the inequalities 0 < r < 1.

Put A(r) = Xifr> 1; for any r e D, define

(3) A(r) = c^V, + c2(r)V2 + c3(r)V3 +
• •

•.

Note that each of these sums is actually finite. Define

(4) f(x) = mf{r:xeA(r)} (x e X)

and

(5) d(x,y)=f(x-y) (x e X, y e X).

The proof that this d has the desired properties depends on the

inclusions

(6) A(r) + A(s) c A(r + s) (r e D, s e D).

Before proving (6), let us see how the theorem follows from it.

Since every A(s) contains 0, (6) imples

(7) A(r) cz A(r) + A(t - r) cz A(t) if r < t.

Thus {A(r)} is totally ordered by set inclusion. We claim that

(8) f{x + y) <f(x) +/(y) (x e X, y e X).

In the proof of (8) we may, of course, assume that the right side is < 1.

Fix e > 0. There exist r and s in D such that

f(x) < r, f(y) <s, r + s <f(x) +/(y) + e.

Thus x e A(r), y e A(s), and (6) implies x + y e A(r + s). Now (8)

follows, because

f(x + y) < r + s <f(x) +/(y) + e,

and e was arbitrary.
Since each A(r) is balanced, f(x) =f{ — x). It is obvious that

/(0) = 0. If x^O, then x$Vn = A{2~n) for some n, and so

f(x) > 2"" > 0.

These properties off show that (5) defines a translation-invariant

metric d on X. The open balls centered at 0 are the open sets

(9) Bs(0) = {x:f(x)<8}= \jA(r).

If <5 < 2"", then ^(0) cz K„. Hence {Bd(0)} is a local base for the

topology of X. This proves (a). Since each A(r) is balanced, so is each 2^(0).
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If each Vn is convex, so is each A(r), and (9) implies that the same is

true of each Bd(0), hence also of each translate of Bd(0).
We turn to the proof of (6). If r + s > 1, then A(r + s) = X and

(6) is obvious. We may therefore assume that r + s < 1, and we will

use the following simple proposition about addition in the binary

system of notation:

// r, s, and r + s are in D and cn(r) + cn(s) # cn(r + s) for some n,

then at the smallest n where this happens we have cn(r) = cn(s) = 0,

cn(r + s) = 1.

Put a„
= cn{r\ pn = cn{s), yn

= cn{r + s). If a„ + pn =

yn for all n

then (3) shows that A(r) + A(s) = A(r + s). In the other case, let N be

the smallest integer for which ocN + fiN # yN. Then, as mentioned

above, ocN
= fiN = 0, yN

= 1. Hence

cza^i +
•••

+ aN_1K/v_1 + VN+1 + VN+1.

Likewise

A(s) <= ^Ki +
•• •

+ &v-i^-i + KN+1 + KN + 1.

Since otn + fin =

yn for all n < N, (1) now leads to

A(r) + >l(s) c yiKi +
• • •

+ 7*-iK,-i + KN c >l(r + s)

because yN
= 1. ////

1.25 Cauchy sequences (a) Suppose d is a metric on a set X. A

sequence {xn} in X is a Cauchy sequence if to every e > 0 there corresponds
an integer N such that d(xm, xn) < e whenever m> N and n > N. If every

Cauchy sequence in X converges to a point of X, then d is said to be a

complete metric on X.

(b) Let t be the topology of a topological vector space X. The notion

of Cauchy sequence can be defined in this setting without reference to any

metric: Fix a local base ^ for t. A sequence {xn} in X is then said to be a

Cauchy sequence if to every FeJ corresponds an N such that xn
—

xm e V

ifn>N and m> N.

It is clear that different local bases for the same t give rise to the same

class of Cauchy sequences.

(c) Suppose now that X is a topological vector space whose topology
t is compatible with an invariant metric d. Let us temporarily use the terms

d-Cauchy sequence and r-Cauchy sequence for the concepts defined in (a)
and (b), respectively. Since

d(xn,xm) = d(xn-xm,0),
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and since the d-balls centered at the origin form a local base for t, we

conclude:

A sequence {xn} in X is a d-Cauchy sequence if and only if it is a

z-Cauchy sequence.

Consequently, any two invariant metrics on X that are compatible
with t have the same Cauchy sequences. They clearly also have the same

convergent sequences (namely, the r-convergent ones). These remarks prove

the following fact:

If dx and d2 are invariant metrics on a vector space X which induce the

same topology on X, then

(a) dx and d2 have the same Cauchy sequences, and

(b) dx is complete if and only if d2 is complete.

In variance is needed in the hypothesis (Exercise 12).
The following

"

dilation principle
"

will be used several times.

1.26 Theorem Suppose that (X, dx) and (Y, d2) are metric spaces, and

(X, dx) is complete. IfE is a closed set in X, f: E -> Y is continuous, and

d2(f(x'),f(x"))>d1(x',x")

for all x', x" e E, thenf(E) is closed.

proof. Pick y e f(E). There exist points xn e E so that y
= lim f{xn).

Thus {/(*„)} is Cauchy in Y. Our hypothesis implies therefore that

{xn} is Cauchy in X. Being a closed subset of a complete metric space,

E is complete; hence there exists x = lim xn in E. Since f is

continuous,

f{x) = lim f(xn) =

y.

Thus yef(E). ////

1.27 Theorem Suppose Y is a subspace of a topological vector space X,

and Y is an F-space (in the topology inherited from X). Then Y is a closed

subspace ofX.

proof. Choose an invariant metric d on Y, compatible with its

topology. Let

B1/n
= iyeY:d(y,0)<^,
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let Un be a neighborhood of 0 in X such that 7 n Un =

B1/n, and

choose symmetric neighborhoods Vn of 0 in X such that Vn + Vn a Un

andF„ + 1cF„.

Suppose x e Y, and define

En=Y n(x+Kn) (W= 1,2,3,...).

If yx e £„ and y2 G £*> then yx
—

y2 nes *n ^ and also in Vn+ Vncz

Un, hence in B1/n. The diameters of the sets En therefore tend to 0.

Since each En is nonempty and since Y is complete, it follows that the

7-closures of the sets En have exactly one point y0 in common.

Let W be a neighborhood of 0 in X, and define

Fn=Yn(x+Wn Vn).

The preceding argument shows that the 7-closures of the sets Fn have

one common point yw. But Fncz En. Hence yw
=

y0. Since Fn a

x + W, it follows that y0 lies in the Z-closure of x + W, for every py.

This implies y0
= x. Thus x e 7. This proves that 7=7. ////

The following simple facts are sometimes useful.

1.28 Theorem

(a) If d is a translation-invariant metric on a vector space X then

d(nx, 0) < nd(x, 0)

for every x e X and for n = 1, 2, 3,

(b) If {xn} is a sequence in a metrizable topological vector space X and if

xn -> 0 as n -> oo, then there are positive scalars yn such that yn -> oo and

proof. Statement (a) follows from

n

d(nx, 0) < X d(kx, (fe -

\)x) = nd(x, 0).
fc = i

To prove (b), let d be a metric as in (a), compatible with the

topology of X. Since d(xn, 0) -> 0, there is an increasing sequence of

positive integers nk such that d(xn, 0) < fe~2 if n > nk. Put yn
= 1 if

n < nx; put yn
= fe if nk < n < nk+ v

For such n,

d(ynxH,0) = d(kxn, 0) < kd(xn, 0) < fe"K

Hence yn xn -> 0 as n -> oo. ////
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Boundedness and Continuity

1.29 Bounded sets The notion of a bounded subset of a topological
vector space X was defined in Section 1.6 and has been encountered several

times since then. When X is metrizable, there is a possibility of

misunderstanding, since another very familiar notion of boundedness exists in metric

spaces.

If d is a metric on a set X, a set E a X is said to be ^-bounded if there

is a number M < oo such that d(z, y) < M for all x and y in E.

If X is a topological vector space with a compatible metric d, the

bounded sets and the ^-bounded ones need not be the same, even if d is

invariant. For instance, if d is a metric such as the one constructed in

Theorem 1.24, then X itself is ^-bounded (with M = 1) but, as we shall see

presently, X cannot be bounded, unless X = {0}. If X is a normed space

and d is the metric induced by the norm, then the two notions of

boundedness coincide; but if d is replaced by dx = d/(\ + d) (an invariant

metric which induces the same topology) they do not.

Whenever bounded subsets of a topological vector space are

discussed, it will be understood that the definition is as in Section 1.6: A set E is

bounded if, for every neighborhood V of 0, we have E a tV for all

sufficiently large t.

We already saw (Theorem 1.15) that compact sets are bounded. To see

another type of example, let us prove that Cauchy sequences are bounded

(hence convergent sequences are bounded): If {xn} is a Cauchy sequence in X,

and V and W are balanced neighborhoods of 0 with V + V a W9 then

[part (b) of Section 1.25] there exists N such that xn e xN + V for all n> N.

Take s > 1 so that xN e sV. Then

xn e sV + V c sV + sV cz sW (n> N).

Hence xn e tW for all n > 1, if t is sufficiently large.

Also, closures of bounded sets are bounded (Theorem 1.13).
On the other hand, if x # 0 and E = {nx: n = 1, 2, 3, ...}, then E is

not bounded, because there is a neighborhood V of 0 that does not contain

x; hence nx is not in nV; it follows that no nV contains E.

Consequently, no subspace ofX [other than {0}) can be bounded.

The next theorem characterizes boundedness in terms of sequences.

1.30 Theorem The following two properties of a set E in a topological
vector space are equivalent:

(a) E is bounded.

(b) If {xn} is a sequence in E and {ocn} is a sequence of scalars such that

an -? 0 as n -> oo, then ocn xn -> 0 as n -> oo.
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proof. Suppose E is bounded. Let V be a balanced neighborhood
of 0 in X. Then E a tV for some t. If xn e E and a„ -? 0, there exists

N such that \a„\t < 1 if n > N. Since t~xE a V and K is balanced,

ocnxne V for all n> N. Thus a„ xn -? 0.

Conversely, if E is not bounded, there is a neighborhood V of 0

and a sequence r„ -> oo such that no rn V contains E. Choose xn e E

such that xn $ rn V. Then no r~xxn is in V, so that {r"1^} does not

converge to 0. ////

1.31 Bounded linear transformations Suppose X and Y are

topological vector spaces and A: X -? Y is linear. A is said to be bounded if A maps

bounded sets into bounded sets, i.e., if A(£) is a bounded subset of Y for

every bounded set £cl.

This definition conflicts with the usual notion of a bounded function

as being one whose range is a bounded set. In that sense, no linear function

(other than 0) could ever be bounded. Thus when bounded linear mappings

(or transformations) are discussed, it is to be understood that the definition

is in terms of bounded sets, as above.

1.32 Theorem Suppose X and Y are topological vector spaces and

A: X -? Y is linear. Among the following four properties of A, the implications

(fl)-(fc)-,(c)

hold. IfX is metrizable, then also

(C)_>(d) _>(fl),

so that all four properties are equivalent.

(a) A is continuous.

(b) A is bounded.

(c) Ifxn -> 0 then {Axn: n = 1, 2, 3,...} is bounded.

(d) Ifxn->0 then Axn -> 0.

Exercise 13 contains an example in which (b) holds but (a) does not.

proof. Assume (a), let £ be a bounded set in X, and let W be a

neighborhood of 0 in Y. Since A is continuous (and A0 = 0) there is a

neighborhood V of 0 in X such that A(V) a W. Since E is bounded,
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E cz tV for all large t, so that

A(£) cz A(tV) = tA(V) cz tW.

This shows that A(E) is a bounded set in Y.

Thus (a) -? (b). Since convergent sequences are bounded,

Assume now that X is metrizable, that A satisfies (c), and that

x„ -? 0. By Theorem 1.28, there are positive scalars yn -? oo such that

ynxn->0. Hence {A(ynxn)} is a bounded set in Y, and now Theorem

1.30 implies that

A*„ = y~* A(y„ xn) -? 0 as n -? oo.

Finally, assume that (a) fails. Then there is a neighborhood W of

0 in Y such that A~1(W) contains no neighborhood of 0 in X. If X

has a countable local base, there is therefore a sequence {xn} in X so

that xn -> 0 but Ax„ <£ H^. Thus (<i) fails. ////

Seminorms and Local Convexity

1.33 Definitions A seminorm on a vector space X is a real-valued

function p on X such that

(a) p(x + y) < p(x) + p{y) and

(6) p(ax) = | a | p(x)

for all x and y in X and all scalars a.

Property (a) is called subadditivity. Theorem 1.34 will show that a semi-

norm p is a norm if it satisfies

(c) p(x)#0ifx#0.

A family 0* of seminorms on X is said to be separating if to each x # 0

corresponds at least one pe^ with p(x) # 0.

Next, consider a convex set ,4 cz X which is absorbing, in the sense

that every x e X lies in £,4 for some t = t(x) > 0. [For example, (a) of

Theorem 1.15 implies that every neighborhood of 0 in a topological vector

space is absorbing. Every absorbing set obviously contains 0.] The

Minkowski functional \iA of A is defined by

HA(x) = inf {t > 0: t~ *x e A} (x e X).

Note that fiA(x) < oo for all x e X, since A is absorbing. The seminorms on

X will turn out to be precisely the Minkowski functionals of balanced

convex absorbing sets.
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Seminorms are closely related to local convexity, in two ways: In

every locally convex space there exists a separating family of continuous

seminorms. Conversely, if 0* is a separating family of seminorms on a vector

space X, then & can be used to define a locally convex topology on X with

the property that every p e 0* is continuous. This is a frequently used

method of introducing a topology. The details are contained in Theorems

1.36 and 1.37.

1.34 Theorem Suppose p is a seminorm on a vector space X. Then

(a) p(0) = 0.

(b) \p(x)-p(y)\<p(x-y).

(c) p(x)>0.

(d) {x: p(x) = 0} is a subspace ofX.

(e) The set B = {x: p(x) < 1} is convex, balanced, absorbing, and p
=

fiB.

proof. Statement (a) follows from p(ocx) = | a | p(x), with a = 0. The

subadditivity of p shows that

p(x) = p{x-y + y)<p(x-y) + p(y)

so that p(x) —

p(y) < p(x — y). This also holds with x and y

interchanged. Since p(x — y) = p(y
— x\ (b) follows. With y

= 0, (b) implies

(c). If p(x) = p(y) = 0 and a, ft are scalars, (c) implies

0 < p{olx + fiy) < \a\p(x) + \P\p(y) = 0.

This proves (d).
As to (e), it is clear that B is balanced. If x e B, y e B, and

0 < t < 1, then

p(tx + (1
-

t)y) < tp(x) + (1
-

t)p(y) < 1.

Thus B is convex. If x e X and s > p(x) then p(s~1x) = s~1p(x) < 1.

This shows that B is absorbing and also that n^x) < s. Hence \iE < p.

But if 0 < t < p(x) then p(t~1x) > 1, and so t~xx is not in B. This

implies p(x) < n^x) and completes the proof. ////

1.35 Theorem Suppose A is a convex absorbing set in a vector space X.

Then

(a) fiA(x + y) < nA{x) + nA(y).

(b) nA(tx) = tfiA(x) ift > 0.
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(c) \iA is a seminorm if A is balanced.

(d) If B = {x: fiA(x) < 1} and C = {x: fiA{x) < 1}, then B a A a C and

proof, lit = fiA(x) + e and s = fiA{y) + e, for some e > 0, then x/t and

y/s are in A; hence so is their convex combination

x + y t x s y

s + t s + t t s + t s

This shows that fiA(x + y) < s + t = fiA(x) + fiA(y) + 2e, and (a) is

proved.

Property (b) is clear, and (c) follows from (a) and (b).
When we turn to (d), the inclusions B a A a C show that juc <

juA < jub. To prove equality, fix x e X, and choose s, t so that ju^x) <

s < t. Then x/s e C, juA(x/s) < 1, juA(x/t) < s/t < 1; hence x/t e B, so

that juB(x) < t. This holds for every t > ju^x). Hence jub(x) < juc(x). ////

1.36 Theorem Suppose & is a convex balanced local base in a

topological vector space X. Associate to every V e & its Minkowski functional [iv.

Then

(a) V = {x e X: fiv(x) < l},for every FeJ, and

(b) {fiv: V e &} is a separating family of continuous seminorms on X.

proof. If x e K, then x/t e V for some t < 1, because V is open;

hence fiv{x) < 1. If x <£ K, then x/t e V implies t > 1, because V is

balanced; hence /vM ^ 1- This proves (a).
Theorem 1.35 shows that each [iv is a seminorm. If r > 0, it

follows from (a) and Theorem 1.34 that

I /vM - /v(y) I < /v(* -y)<r

if x
—

y e rV. Hence juv is continuous. If x e X and x # 0, then x $ V

for some Fei For this V, juv(x) > 1. Thus {juv} is separating. ////

1.37 Theorem Suppose 0* is a separating family of seminorms on a vector

space X. Associate to each p e 0> and to each positive integer n the set

V(p,n) = \x:p(x)<-

Let & be the collection of all finite intersections of the sets V(p, n). Then $ is

a convex balanced local base for a topology x on X, which turns X into a

locally convex space such that
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(a) every p e & is continuous, and

(b) a set E cz X is bounded if and only if every p e 0* is bounded on E.

proof. Declare a set A cz X to be open if and only if A is a (possibly

empty) union of translates of members of &. This clearly defines a

translation-invariant topology ronl; each member of & is convex

and balanced, and & is a local base for t.

Suppose x£l,x^0. Then p(x) > 0 for some pe^. Since x is

not in V(p, n) if np(x) > 1, we see that 0 is not in the neighborhood
x

— V(p, rc) of x, so that x is not in the closure of {0}. Thus {0} is a

closed set, and since t is translation-invariant, every point of X is a

closed set.

Next we show that addition and scalar multiplication are

continuous. Let U be a neighborhood of 0 in X. Then

(1) U^VipunJn-'n V(pm9nm)

for some pl5..., pm e & and some positive integers nl9...9nm. Put

(2) V=V(p1,2n1)n---nV(pm,2nm).

Since every p e 0> is subadditive, V + V cz U. This proves that

addition is continuous.

Suppose now that x e X, a is a scalar, and U and V are as

above. Then x e sV for some s > 0. Put t = s/(l +\a\s).lf y e x + tV

and \p — ol\ < 1/s, then

Py —

ocx = P(y — x) + (/? — a)x

which lies in

|j8|tK + |j8-a|sKc: K + V cz U

since \P\t < 1 and K is balanced. This proves that scalar

multiplication is continuous.

Thus X is a locally convex space. The definition of K(p, n) shows

that every p e 0* is continuous at 0. Hence p is continuous on X9 by

(b) of Theorem 1.34.

Finally, suppose E cz X is bounded. Fix pe^. Since V(p9 1) is a

neighborhood of 0, £ cz kV(p9 1) for some k < oo. Hence p(x) < fe for

every x e E. It follows that every p e 0> is bounded on E.

Conversely, suppose E satisfies this condition, U is a

neighborhood of 0, and (1) holds. There are numbers Mt < oo such that pt <

M{ on E (1 < i < m). If n > M,n,. for 1 < i < m, it follows that

E cz nU9 so that £ is bounded. ////

1.38 Remarks (a) It was necessary to take finite intersections of the sets

V(p, n) in Theorem 1.37; the sets V(p9 n) themselves need not form a local



CHAPTER 1: TOPOLOGICAL VECTOR SPACES 29

base. (They do form what is usually called a subbase for the constructed

topology.) To see an example of this, take X = R2, and let 0> consist of the

seminorms px and p2 defined by p^x) = \xt\; here x = (xl9 x2). Exercise 8

develops this comment further.

(b) Theorems 1.36 and 1.37 raise a natural problem: If $ is a convex

balanced local base for the topology t of a locally convex space X9 then $

generates a separating family 0> of continuous seminorms on X, as in

Theorem 1.36. This 0> in turn induces a topology xx on X, by the process

described in Theorem 1.37. Is t = t^
The answer is affirmative. To see this, note that every p e 0* is t-

continuous, so that the sets V(p, n) of Theorem 1.37 are in t. Hence ix cz %.

Conversely, if W e 3$ and p
=

/%, then

W = {x: fiw(x) < 1} = V(p, 1).

Thus W e xx for every W e 38\ this implies that tct^

(c) If & = {p{: i = 1, 2, 3,...} is a countable separating family of semi-

norms on X9 Theorem 1.37 shows that 0> induces a topology t with a

countable local base. By Theorem 1.24, t is metrizable. In the present

situation, a compatible translation-invariant metric can be defined directly in

terms of {/?,} by setting

(1) d(x,y) = mzxCfX-y)v
where {cj is some fixed sequence of positive numbers which converges to 0

as i -> oo.

It is easy to verify that d is a metric on X.

We claim that the balls

(2) Br = {x: d(0, x) < r} (0 < r < oo)

form a convex balanced local base for t.

Fix r. If ct < r (which holds for all but finitely many i, since c{ -> 0),
then CiPi/(l + p^ < r. Hence Br is the intersection of finitely many sets of

the form

(3) <x:p((x)< —

namely those for which c, > r. These sets are open, since each p{ is

continuous (Theorem 1.37). Thus Br is open, and, by Theorem 1.34, is also convex

and balanced.

Next, let W be a neighborhood of 0 in X. The definition of t shows

that W contains the intersection of appropriately chosen sets

(4) V(Pi, 6d = {x: p,.(x) <6,<l} (l<i<k).
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If 2r < min {c^,..., ck Sk} and x e £r, then

(5) ^<r<^ (1^*),
1 + Pi(x) 2

which implies pf(x) < St. Thus Br a W.

This proves our claim and also shows that d is compatible with t.

1.39 Theorem A topological vector space X is normable if and only if its

origin has a convex bounded neighborhood.

proof. If X is normable, and if ||
•

|| is a norm that is compatible with

the topology of X, then the open unit ball {x: \\x\\ < 1} is convex and

bounded.

For the converse, assume V is a convex bounded neighborhood
of 0. By Theorem 1.14, V contains a convex balanced neighborhood
U of 0; of course, U is also bounded. Define

(1) \\x\\=itx) (xeX)

where \i is the Minkowski functional of U.

By (c) of Theorem 1.15, the sets rU (r > 0) form a local base for

the topology of X. If x # 0, then x $ rU for some r > 0; hence

||x|| > r. It now follows from Theorem 1,35 that (1) defines a norm.

The definition of the Minkowski functional, together with the fact that

U is open, implies that

(2) {x:\\x\\<r} = rU

for every r > 0. The norm topology coincides therefore with the given
one. ////

Quotient Spaces

1.40 Definitions Let N be a subspace of a vector space X. For every

x e X, let 7r(x) be the coset of N that contains x; thus

7r(x) = x + N.

These cosets are the elements of a vector space X/N9 called the quotient

space of X modulo N, in which addition and scalar multiplication are

defined by

(1) 7r(x) + n(y) = 7r(x + y), octi(x) = n(ocx).

[Note that now a7r(x) = N when a = 0. This differs from the usual notation,

as introduced in Section 1.4.] Since N is a vector space, the operations (1)
are well defined. This means that if 7c(x) = n(x') (that is, x' —

x e N) and
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7i(y) = n(y') then

(2) n(x) + n(y) = n(x') + n(y'), oc7i(xf) = octi(x).

The origin of X/N is 7r(0) = N. By (1), n is a linear mapping of X onto

X/N with N as its null space; n is often called the quotient map of X onto

X/N.

Suppose now that t is a vector topology on X and that N is a closed

subspace of X. Let xN be the collection of all sets E cz X/N for which

n~1(E) e x. Then xN turns out to be a topology on X/N, called the quotient

topology. Some of its properties are listed in the next theorem. Recall that

an open mapping is one that maps open sets to open sets.

1.41 Theorem Let N be a closed subspace of a topological vector space

X. Let x be the topology ofX and define xN as above.

(a) xN is a vector topology on X/N; the quotient map n\ X -> X/N is linear,

continuous, and open.

(b) If 38 is a local base for x, then the collection of all sets n(V) with Fel

is a local base for xN .

(c) Each of the following properties of X is inherited by X/N: local

convexity, local boundedness, metrizability, normability.

(d) IfX is an F-space, or a Frechet space, or a Banach space, so is X/N.

proof. Since tz~1(A n B) = n~1(A) n n~1{B) and

n-1([JEx)=[J7i-1(Ex),

zN is a topology. A set F cz X/N is rN-closed if and only if n~1(F) is

r-closed. In particular, every point of X/N is closed, since

7r_1(7r(x)) = N + x

and N was assumed to be closed.

The continuity of n follows directly from the definition of tn .

Next, suppose Vex. Since

n-1(n{V)) = N + V

and N + V e x, it follows that n(V) e xN. Thus n is an open mapping.
If now W is a neighborhood of 0 in X/N, there is a

neighborhood V of 0 in X such that

K+ V an-\W).

Hence n(V) + n(V) cz W. Since n is open, n{V) is a neighborhood of 0

in X/N. Addition is therefore continuous in X/N.
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The continuity of scalar multiplication in X/N is proved in the

same manner. This establishes (a).
It is clear that (a) implies (b). With the aid of Theorems 1.32,

1.24, and 1.39, it is just as easy to see that (b) implies (c).

Suppose next that d is an invariant metric on X9 compatible
with t. Define p by

p{n(x\ n(y)) = inf {d(x —

y, z): z e N}.

This may be interpreted as the distance from x
—

y to N. We omit the

verifications that are now needed to show that p is well defined and

that it is an invariant metric on X/N. Since

n({x: d(x, 0) < r}) = {u: p(w, 0) < r},

it follows from (b) that p is compatible with tn .

If X is normed, this definition of p specializes to yield what is

usually called the quotient norm of X/N:

\\n(x)\\=mf{\\x-z\\:zeN}.

To prove (d) we have to show that p is a complete metric

whenever d is complete.

Suppose {un} is a Cauchy sequence in X/N, relative to p. There

is a subsequence {un.} with p{un., un.+1) < 2~\ One can then

inductively choose xt e X such that n(xt) =

un. and d(xi9 xi+1) < 2~\ If d is

complete, the Cauchy sequence {x{} converges to some x e X. The

continuity of n implies that un. -> 7c(x) as i->oo. But if a Cauchy

sequence has a convergent subsequence then the full sequence must

converge. Hence p is complete, and so is the proof of Theorem 1.41.

////

Here is an easy application of these concepts:

1.42 Theorem Suppose N and F are subspaces of a topological vector

space X, N is closed, and F has finite dimension. Then N -f F is closed.

proof. Let n be the quotient map of X onto X/N, and give X/N its

quotient topology. Then n(F) is a finite-dimensional subspace of X/N;
since X/N is a topological vector space, Theorem 1.21 implies that

7i(F) is closed in X/N. Since N + F = 7z~1(ti(F)) and n is continuous,

we conclude that N + F is closed. (Compare Exercise 20.) ////

1.43 Seminorms and quotient spaces Suppose p is a seminorm on a

vector space X and

N = {x:p{x) = 0}.
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Then N is a subspace of X (Theorem 1.34). Let n be the quotient map of X

onto X/N9 and define

p{7i{x)) = p{x).

If 7c(x) = 7i(y\ then p(x — y) = 0, and since

IpM-pOOI <p{*-y)

it follows that p{n{x)) = p(n(y)). Thus p is well defined on X/N, and it is now

easy to verify that p is a norm on X/N.
Here is a familiar example of this. Fix r, 1 < r < oo; let E be the space

of all Lebesgue measurable functions on [0, 1] for which

p(/) =

1 "jl/r

l/WI'dt} <0°-

0 J

This defines a seminorm on IT, not a norm, since ||/||r = 0 whenever /= 0

almost everywhere. Let N be the set of these
"

null functions." Then E/N is

the Banach space that is usually called E. The norm of E is obtained by the

above passage from p to p.

Examples

1.44 The spaces C(il) If Q is a nonempty open set in some euclidean

space, then Q is the union of countably many compact sets Kn =£ 0 which

can be chosen so that Kn lies in the interior of Kn+1 (n = 1, 2, 3, ...). C(Q) is

the vector space of all complex-valued continuous functions on Q, topol-

ogized by the separating family of seminorms

(1) pn(f) =

sup {\f(x)\:xeKn},

in accordance with Theorem 1.37. Since px < p2 < -

-, the sets

(2) K = j/e C(£l): pjj) < ^ (n = 1, 2, 3,...)

form a convex local base for C(Q). According to remark (c) of Section 1.38,

the topology of C(Q) is compatible with the metric

(3) dart-max.2"'^"^
n

1 + Pn(f~ 9)

If {fi} is a Cauchy sequence relative to this metric, then pn(f( —/)•)-> 0 for

every n, as Uj-> oo, so that {f{} converges uniformly on K„, to a function

fe C(Q). An easy computation then shows d(f,fi) -> 0. Thus d is a complete
metric. We have now proved that C(Q) is a Frechet space.

By (b) of Theorem 1.37, a set £ cz C(Q) is bounded if and only if there

are numbers Mn < oo such that pn(f) < Mn for all/e E; explicitly,

(4) I /(x)| < M„ if/e E and x e Kn.
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Since every Vn contains an f for which p„+i(f) is as large as we please, it

follows that no Vn is bounded. Thus C(Q) is not locally bounded, hence is not

normable.

1.45 The spaces H(Sl) Let Q now be a nonempty open subset of the

complex plane, define C(Q) as in Section 1.44, and let H(Q) be the subspace
of C(Q) that consists of the holomorphic functions in Q. Since sequences of

holomorphic functions that converge uniformly on compact sets have

holomorphic limits, H(Q) is a closed subspace of C(Q). Hence H(Q) is a Frechet

space.

We shall now prove that H(Q) has the Heine-Borel property. It will

then follow from Theorem 1.23 that H(Q) is not locally bounded, hence is not

normable.

Let £ be a closed and bounded subset of H(Q). Then E satisfies

inequalities such as (4) of Section 1.44. Montel's classical theorem about

normal families (Th. 14.6 of [23]*) implies therefore that every sequence

{fi} cz E has a subsequence that converges uniformly on compact subsets of

Q [hence in the topology of H(Q)] to some/e H(Q). Since E is closed,/ e E.

This proves that E is compact.

1.46 The spaces C°°(!2) and @K We begin this section by introducing
some terminology that will be used in our later work with distributions.

In any discussion of functions of n variables, the term multi-index

denotes an ordered w-tuple

(1) a = (a!, ...,a„)

of nonnegative integers a,. With each multi-index a is associated the

differential operator

\dxj \dxj
whose order is

(3) |a| =

cc1 +••• +a„.

lf\a\ = 0,D"f = f.
A complex function / defined in some nonempty open set Q cz Rn is

said to belong to C°°(Q) if Dafe C(Q) for every multi-index a.

1
Numbers in brackets refer to sources listed in the bibliography.
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The support of a complex function / (on any topological space) is the

closure of {x: f(x) # 0}.
If K is a compact set in Rn, then Q)K denotes the space of all

fe C^iR") whose support lies in K. (The letter Q) has been used for these

spaces ever since Schwartz published his work on distributions.) If K a Q,

then Q)K may be identified with a subspace of C°°(Q).
We now define a topology on C°°(Q) which makes C°°(Q) into a Frechet

space with the Heine-Borel property, such that <2>K is a closed subspace of

C°°(Q) whenever XcQ.

To do this, choose compact sets Kt (i = 1, 2, 3,...) such that K{ lies in

the interior of Ki+1 and Q = (J Kt. Define seminorms pN on C°°(Q), N = 1,

2, 3,..., by setting

(4) pN(f) = max {\D*f(x)\: x e KN, \oc\ < N}.

They define a metrizable locally convex topology on C°°(Q); see Theorem

1.37 and remark (c) of Section 1.38. For each x e Q, the functional /->/(x)
is continuous in this topology. Since <3)K is the intersection of the null spaces

of these functional, as x ranges over the complement of K, it follows that

®K is closed in C°°(Q).
A local base is given by the sets

(5) VN = j/e C»(£l): pJJ) < ^J (N = 1, 2, 3,.. .)•

If {fi} is a Cauchy sequence in C°°(Q) (see Section 1.25) and if N is fixed,

then j; -fj e VN if i and; are sufficiently large. Thus \Daf -

Dafj\ < \/N on

KN, if | a | < N. It follows that each D71 converges (uniformly on compact

subsets of Q) to a function ga. In particular, f(x) -> ^0(x). It is now evident

that 0o e C°°(Q), that 0a
= Z)a0o, and that/. -> g in the topology of C°°(Q).

Thus C°°(Q) is a Frechet space. The same is true of each of its closed

subspaces Q)K.

Suppose next that E a C°°(Q) is closed and bounded. By Theorem

1.37, the boundedness of E is equivalent to the existence of numbers

MN < oo such that pN{f) < MN for N = 1, 2, 3, ... and for all/e E. The

inequalities | Daf \ < MN, valid on KN when | a | < N9 imply the equicon-

tinuity of {Dpf:feE} on KN_U if \p\<N-l. It now follows from

Ascoli's theorem (proved in Appendix A) and Cantor's diagonal process

that every sequence in E contains a subsequence {f} for which {Dpf}
converges, uniformly on compact subsets of Q, for each multi-index p. Hence

{ft} converges in the topology of C°°(Q). This proves that E is compact.

Hence C°°(Q) has the Heine-Borel property. It follows from Theorem

1.23 that C°°(Q) is not locally bounded, hence not normable. The same

conclusion holds for Q)K whenever K has nonempty interior (otherwise Q)K =

{0}), because dim Q)K = oo in that case. This last statement is a consequence

of the following proposition:
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IfBx and B2 are concentric closed balls in Rn, with Bx in the interior of

£2, then there exists </> e C00^") such that </>(*) = 1 for every x e Bu

(f)(x) = Ofor every x outside B2, and 0 < </> < 1 on Rn.

To find such a </>, we construct g e C00^1) such that g(x) = 0 for

x < a, g(x) = 1 for x > b (where 0 < a < b < oo are preassigned) and put

(6) </>(*!, ...,xn)=l-0(x? + ---+xn2).

The following construction of g has the advantage that suitable choices of

{Si} can lead to functions with other desired properties.

Suppose 0 < a < b < oo. Choose positive numbers <50, 5l9 <52, ...,

with £<5, = b —

a; put

(7) m„
= 2\ (n=l,2,3,...);

t>l
•••

t>n

let f0 be a continuous monotonic function such that f0(x) = 0 when x < a,

/0(x) = 1 when x > a + S0; and define

(8) /nM =

lT r /--iW* (n= 1,2,3,...).

Differentiation of this integral shows, by induction, that/n has n continuous

derivatives and that | Dnfn \ < mn. If n > r, then

(9) VfJLx) =

Y fV/»-iXx-0*,
<>n JO

so that

(10) \Drfn\<mr (n>rl

again by induction on n. The mean value theorem, applied to (9), shows

that

(11) \D% - ryfn_x\ < mr+1Sn (n > r + 2).

Since £<5„ < oo, each {Drfn} converges, uniformly on (— oo, oo), as n-> oo.

Hence {/„} converges to a function g, with \Drg\ < mr for r = 1, 2, 3, ...,

such that #(x) = 0 for x < a and g(x) = 1 for x > b.

\A1 The spaces Lp with 0 < p < 1 Consider a fixed p in this range.

The elements of B are those Lebesgue measurable functions/on [0, 1] for

which

(1) A(f)=!1\f(t)\"dt<oo,
Jo
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with the usual identification of functions that coincide almost everywhere.
Since 0 < p < 1, the inequality

(2) (a + b)p <ap + bp

holds when a > 0 and b > 0. This gives

(3) A(f+g)<A(f) + A(g),

so that

(4) d(f, g) = A(f- g)

defines an invariant metric on If. That this d is complete is proved in the

same way as in the familiar case p > 1. The balls

(5) Br = {feIF:A(f)<r}

form a local base for the topology of IF. Since B1 = r~1/pBr, for all r > 0,

By is bounded.

Thus IF is a locally bounded ¥-space.
We claim that If contains no convex open sets, other than 0 and IF.

To prove this, suppose V # 0 is open and convex in IF. Assume

OeF, without loss of generality. Then V =3 Br, for some r > 0. Pick/e If.

Since p'< 1, there is a positive integer n such that np~l A(f) < r. By the

continuity of the indefinite integral of | / \p, there are points

0 =

x0 < Xt <
- - -

< xn
= 1

such that

(6)

'

\f(t)\"dt = n-1A(f) (l<i<n).
Jxi-i

Define gt(t) = nf(t) if *,_! < t < xi9 g^t) = 0 otherwise. Then gt e V, since

(6) shows

(7) A(3i) = np-1A(/)<r (1 < i < n)

and V =^ Br. Since V is convex and

(8) /=Jtoi + -"+flfJ,

it follows that/e K. Hence V = IF.

This lack of convex open sets has a curious consequence.

Suppose A: IF-> Y is a continuous linear mapping of If into some

locally convex space Y. Let & be a convex local base for 7. If W e &, then

A_1(W) is convex, open, not empty. Hence A~1(W) = IF. Consequently,

A(If) cz W for every W e @. We conclude that A/= 0 for every/e If.

77ms 0 is f/ie on/y continuous linear mapping of IF into any locally
convex space 7, if 0 < p < 1. In particular, 0 is the only continuous linear

functional on these IF-spaces.

This is, of course, in violent contrast to the familiar case p > 1.
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Exercises

1. Suppose X is a vector space. All sets mentioned below are understood to be

subsets of X. Prove the following statements from the axioms as given in

Section 1.4. (Some of these are tacitly used in the text.)

(a) If x e X and y e X there is a unique z e X such that x + z =

y.

(b) Ox = 0 = aO if x e X and a is a scalar.

(c) 2 A c A + A; it may happen that 2A # A + 4.

(d) /I is convex if and only if (s + r)/l = s/1 + l4 for all positive scalars s and t.

(e) Every union (and intersection) of balanced sets is balanced.

(/) Every intersection of convex sets is convex.

(g) If T is a collection of convex sets that is totally ordered by set inclusion,

then the union of all members of T is convex.

(h) If A and B are convex, so is A + B.

(i) If A and B are balanced, so is A + B.

(j) Show that parts (/), (g), and (h) hold with subspaces in place of convex sets.

2. The convex hull of a set A in a vector space X is the set of all convex

combinations of members of A, that is, the set of all sums

ttxt +
•••

+ tnxn

in which x, e A, t{ > 0, £ r,
= 1; rc is arbitrary. Prove that the convex hull of A

is convex and that it is the intersection of all convex sets that contain A.

3. Let X be a topological vector space. All sets mentioned below are understood to

be the subsets of X. Prove the following statements.

(a) The convex hull of every open set is open.

(b) If X is locally convex then the convex hull of every bounded set is bounded.

(This is false without local convexity; see Section 1.47.)

(c) If A and B are bounded, so is A + B.

(d) If A and B are compact, so is A + B.

(e) If A is compact and B is closed, then A + B is closed.

(/) The sum of two closed sets may fail to be closed. [The inclusion in (b) of

Theorem 1.13 may therefore be strict.]

4. Let B = {(zl5 z2) e (p2: \zx \ < \z2 \}. Show that B is balanced but that its

interior is not. [Compare with (e) of Theorem 1.13.]

5. Consider the definition of "bounded set" given in Section 1.6. Would the

content of this definition be altered if it were required merely that to every

neighborhood V of 0 corresponds some t > 0 such that £crF?

6. Prove that a set £ in a topological vector space is bounded if and only if every

countable subset of E is bounded.

7. Let X be the vector space of all complex functions on the unit interval [0, 1],

topologized by the family of seminorms

PjLf) = \f(x)\ (0<x<l).

This topology is called the topology of pointwise convergence. Justify this

terminology.
Show that there is a sequence {/„} in X such that (a) {/„} converges to 0

as n -> oo, but (b) if {yn} is any sequence of scalars such that y„ -> oo then {yn /„}
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does not converge to 0. (Use the fact that the collection of all complex sequences

converging to 0 has the same cardinality as [0, 1].)
This shows that metrizability cannot be omitted in (b) of Theorem 1.28.

8. (a) Suppose & is a separating family of seminorms on a vector space X. Let £

be the smallest family of seminorms on X that contains 0> and is closed

under max. [This means: If px e «£, p2 e «£, and p
= max (pv p2), then

p e «£.] If the construction of Theorem 1.37 is applied to & and to «£, show

that the two resulting topologies coincide. The main difference is that £

leads directly to a base, rather than to a subbase. [See Remark (a) of Section

1.38.]

(b) Suppose £ is as in part (a) and A is a linear functional on X. Show that A is

continuous if and only if there exists apei such that | Ax | < Mp(x) for all

x e X and some constant M < oo.

9. Suppose

(a) X and Y are topological vector spaces,

(b) A: X -? 7 is linear,

(c) N is a closed subspace of X,

(d) n: X -*? X/N is the quotient map, and

(e) Ax = 0 for every x e N.

Prove that there is a unique /: X/N -> Y which satisfies A =/ o tc, that is,

Ax = /(tc(x)) for all x e X. Prove that this / is linear and that A is continuous if

and only if/is continuous. Also, A is open if and only if/is open.

10. Suppose X and Y are topological vector spaces, dim Y < oo, A: X-> Y is

linear, and A(X) = Y.

(a) Prove that A is an open mapping.

(b) Assume, in addition, that the null space of A is closed, and prove that A is

then continuous.

11. If N is a subspace of a vector space X, the codimension of N in X is, by

definition, the dimension of the quotient space X/N.

Suppose 0 < p < 1 and prove that every subspace of finite codimension is

dense in If. (See Section 1.47.)

12. Suppose Jj(x, y) = \ x
—

y |, d2(x, y) = \ <j>(x) — (j>(y) \, where (j>(x) = x/(l + | x |).
Prove that dl and d2 are metrics on R which induce the same topology,

although dx is complete and d2 is not.

13. Let C be the vector space of all complex continuous functions on [0, 1]. Define

d(f, g) =

\f(x)-g(x)\

1 + I/M-0MI
X'

Let (C, o) be C with the topology induced by this metric. Let (C, t) be the

topological vector space defined by the seminorms

PjLf) = \f(x)\ (0<x<l),

in accordance with Theorem 1.37.

{a) Prove that every r-bounded set in C is also a-bounded and that the identity

map id: (C, t) -? (C, o) therefore carries bounded sets into bounded sets.

(b) Prove that id: (C, t) -? (C, a) is nevertheless not continuous, although it is

sequentially continuous (by Lebesgue's dominated convergence theorem).
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Hence (C, t) is not metrizable. (See Appendix A6, or Theorem 1.32.) Show

also directly that (C, t) has no countable local base.

(c) Prove that every continuous linear functional on (C, t) is of the form

f^ictfixd

for some choice of xl5..., x„ in [0, 1] and some ct e (p.

(d) Prove that (C, a) contains no convex open sets other than 0 and C.

(e) Prove that id: (C, o) -*? (C, r) is not continuous.

14. Put K = [0, 1] and define <2>K as in Section 1.46. Show that the following three

families of seminorms (where n = 0, 1, 2, ...) define the same topology on @K, if

D = d/dx:

(a) ||D"/IL =

sup {\Dnf(x)\: -oo < x < oo}.

(b) Pn/lli= [\Dnf{x)\dx.
1 -)l/2

\Dnf(x)\2dx\ .

) J

15. Prove that the spaces C(Q) (Section 1.44) do not have the Heine-Borel property.

16. Prove that the topology of C(Q) does not depend on the particular choice of

{Kn}, as long as this sequence satisfies the conditions specified in Section 1.44.

Do the same for C°°(Q) (Section 1.46).

17. In the setting of Section 1.46, prove that /-? Daf is a continuous mapping of

C°°(Q) into C°°(Q) and also of @K into $)K, for every multi-index a.

18. Prove the proposition concerning addition in the binary system which was used

at the end of the proof of Theorem 1.24.

19. Suppose M is a dense subspace of a topological vector space X, Y is an F-space,

and A: M -? Y is continuous (relative to the topology that M inherits from X)
and linear. Prove that A has a continuous linear extension A: X -*? Y.

Suggestion: Let Vn be balanced neighborhoods of 0 in X such that

K + K c K,-i and such that d(0, Ax) < 2~n if x e M n Vn. If x e X and xn e

(x + VJ n M, show that {Ax„} is a Cauchy sequence in 7, and define Ax to be

its limit. Show that A is well defined, that Ax = Ax if x e M, and that A is linear

and continuous.

20. For each real number t and each integer n, define en(t) = ein\ and define

fn =

e_H + neH (n = 1,2, 3,...).

Regard these functions as members of L2( —

tc, tc). Let Xl be the smallest closed

subspace of L2 that contains e0, el9 e2, ...,
and let X2 be the smallest closed

subspace of L2 that contains/l5/2 ,/3, Show that Xx + X2 is dense in L2 but

not closed. For instance, the vector

00

X= Y.n~le~n

(c) 11071 -

is in L2 but not in Xx +I2. (Compare with Theorem 1.42.)
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21. Let V be a neighborhood of 0 in a topological vector space X. Prove that there

is a real continuous function / on X such that /(0) = 0 and f(x) = 1 outside V.

(Thus X is a completely regular topological space.) Suggestion: Let V„ be

balanced neighborhoods of 0 such that Vl + Vx c K and K„+1 + J^, + 1
c K„.

Construct/as in the proof of Theorem 1.24. Show that/is continuous at 0 and that

\f(x)-f(y)\<f(x-y).

22. If/is a complex function defined on the compact interval / = [0, 1] c U, define

cod(f) =

sup {|/(x) -f(y)\ :\x-y\<5,xel,yel}.

If 0 < a < 1, the corresponding Lipschitz space Lip a consists of all/for which

H/ll = |/(0)| + sup {d-*cod(f): 3 >0}

is finite. Define

lip a = {/e Lip a: lim d-acod(f) = 0}.
<5->0

Prove that Lip a is a Banach space and that lip a is a closed subspace of Lip a.

23. Let X be the vector space of all continuous functions on the open segment (0, 1).

For/e X and r > 0, let V(f, r) consist of all g e X such that | g(x)
— f(x)\ < r

for all x e (0, 1). Let t be the topology on X that these sets K(/, r) generate.

Show that addition is i-continuous but scalar multiplication is not.

24. Show that the set W that occurs in the proof of Theorem 1.14 need not be

convex, and that A need not be balanced unless U is convex.
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2

COMPLETENESS

The validity of many important theorems of analysis depends on the

completeness of the systems with which they deal. This accounts for the

inadequacy of the rational number system and of the Riemann integral (to
mention just the two best-known examples) and for the success encountered

by their replacements, the real numbers and the Lebesgue integral. Baire's

theorem about complete metric spaces (often called the category theorem) is

the basic tool in this area. In order to emphasize the role played by the

concept of category, some theorems of this chapter (for instance, Theorems

2.7 and 2.11) are stated in a little more generality than is usually needed.

When this is done, simpler versions (more easily remembered but sufficient

for most applications) are also given.

Baire Category

2.1 Definition Let S be a topological space. A set E cz S is said to be

nowhere dense if its closure E has an empty interior. The sets of the first

category in S are those that are countable unions of nowhere dense sets. Any
subset of S that is not of the first category is said to be of the second

category in S.

This terminology (due to Baire) is admittedly rather bland and unsug-

gestive. Meager and nonmeager have been used instead in some texts. But
"

category arguments
"

are so entrenched in the mathematical literature and

are so well known that it seems pointless to insist on a change.
Here are some obvious properties of category that will be freely used

in the sequel:

42
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(a) If A cz B and B is of the first category in S, so is A.

(b) Any countable union of sets of the first category is of the first category.

(c) Any closed set E cz S whose interior is empty is of the first category

inS.

(d) If h is a homeomorphism of S onto S and if E cz S, then E and h(E)
have the same category in S.

2.2 Baire's theorem If Sis either

(a) a complete metric space, or

(b) a locally compact Hausdorff space,

then the intersection of every countable collection of dense open subsets of S is

dense in S.

This is often called the category theorem, for the following reason.

If {£,} is a countable collection of nowhere dense subsets of S, and if

Vt is the complement of Ei9 then each Vt is dense, and the conclusion of

Baire's theorem is that f] V{ # 0. Hence S ^[j Et.

Therefore, complete metric spaces, as well as locally compact Haus-

dorff spaces, are of the second category in themselves.

proof. Suppose Vl9 V2, K3,... are dense open subsets of S. Let B0 be

an arbitrary nonempty open set in S. If n > 1 and an open Bn_x # 0
has been chosen, then (because Vn is dense) there exists an open

Bn ± 0 with

BnczVnnBn_v

In case (a), Bn may be taken to be a ball of radius < 1/n; in case (b) the

choice can be made so that Bn is compact. Put

In case (a), the centers of the nested balls Bn form a Cauchy sequence

which converges to some point of K, and so K # 0. In case (b),
K ¥> 0 by compactness. Our construction shows that K cz B0 and

K cz Vn for each n. Hence B0 intersects f] Vn. ////

The Banach-Steinhaus Theorem

2.3 Equicontinuity Suppose X and Y are topological vector spaces and

T is a collection of linear mappings from X into Y. We say that V is

equicontinuous if to every neighborhood W of 0 in Y there corresponds a

neighborhood V of 0 in X such that A(V) cz W for all A e T.
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If T contains only one A, equicontinuity is, of course, the same as

continuity (Theorem 1.17). We already saw (Theorem 1.32) that continuous

linear mappings are bounded. Equicontinuous collections have this

boundedness property in a uniform manner (Theorem 2.4). It is for this

reason that the Banach-Steinhaus theorem (2.5) is often referred to as the

uniform boundedness principle.

2.4 Theorem Suppose X and Y are topological vector spaces, V is an

equicontinuous collection of linear mappings from X into Y, and E is a

bounded subset of X. Then Y has a bounded subset F such that A(E) cz F for

every A e V.

proof. Let F be the union of the sets A(£), for A e T. Let W be a

neighborhood of 0 in Y. Since T is equicontinuous, there is a

neighborhood V of 0 in X such that A(V) cz W for all A e T. Since E is

bounded, E cz tV for all sufficiently large t. For these t,

A(E) cz A(tV) = tA(V) cz t\V9

so that F cz tW. Hence F is bounded. ////

2.5 Theorem (Banach-Steinhaus) Suppose X and Y are topological
vector spaces, V is a collection of continuous linear mappings from X into Y,

and B is the set of all x e X whose orbits

V(x) = {Ax: A e V}

are bounded in Y.

If B is of the second category in X, then B = X and V is

equicontinuous.

proof. Pick balanced neighborhoods W and U of 0 in Y such that

U + U cz W. Put

E= f] A~\U).
AeT

If x e B, then V(x) cz nU for some n, so that x e nE. Consequently,

00

Bcz [j nE.

At least one nE is of the second category in X9 since this is true of B.

Since x -? nx is a homeomorphism of X onto X, E is itself of the

second category in X. But E is closed because each A is continuous.

Therefore E has an interior point x. Then x
— E contains a neighbor-
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hood V of 0 in X, and

A(V) czAx- A(E) czU -U czW

for every A e V.

This proves that V is equicontinuous. By Theorem 2.4, T is

uniformly bounded; in particular, each V(x) is bounded in Y. Hence

B = X. /HI

In many applications, the hypothesis that B is of the second category

is a consequence of Baire's theorem. For example, F-spaces are of the

second category. This gives the following corollary of the Banach-Steinhaus

theorem:

2.6 Theorem // T is a collection of continuous linear mappings from an

F-space X into a topological vector space 7, and if the sets

r(x)= {Ax: A eT}

are bounded in Y9for every x e X, then T is equicontinuous.

Briefly, pointwise boundedness implies uniform boundedness

(Theorem 2.4).
As a special case of Theorem 2.6, let X and Y be Banach spaces, and

suppose that

(1) sup ||Ax|| < oo for every x e X.

AeT

The conclusion is that there exists M < oo such that

(2) || Ax || <M if ||x|| < 1 and AeT.

Hence

(3) ||Ax|| < M||x|| if x e X and A e T.

The following theorem establishes the continuity of limits of sequences

of continuous linear mappings:

2.7 Theorem Suppose X and Y are topological vector spaces, and {A„} is

a sequence of continuous linear mappings of X into Y.

(a) If C is the set of all x e X for which {An x} is a Cauchy sequence in 7,

and ifC is of the second category in X, then C = X.

(b) IfL is the set of all x e X at which

Ax = lim A„ x
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exists, if L is of the second category in X, and if Y is an F-space, then

L = X and A: X -? Y is continuous.

proof, (a) Since Cauchy sequences are bounded (Section 1.29), the

Banach-Steinhaus theorem asserts that {A„} is equicontinuous.
One checks easily that C is a subspace of X. Hence C is dense.

(Otherwise, C is a proper subspace of X; proper subspaces have

empty interior; thus C would be of the first category.)
Fix x e X; let W be a neighborhood of 0 in Y. Since {A„} is

equicontinuous, there is a neighborhood V of 0 in X such that

An(V) cz W for n = 1, 2, 3, .... Since C is dense, there exists

xf e C n (x + V). If n and m are so large that

A„ x' —

Am x' e W,

the identity

(A„
-

Am)x = An(x
- x') + (A„

-

Am)x' + Am(x'
-

x)

shows that Anx
—

Amx e W + W + W. Consequently, [Anx] is a

Cauchy sequence in Y, and x e C.

(b) The completeness of Y implies that L = C. Hence L = X, by

(a). If K and W are as above, the inclusion An(V) cz W, valid for all n,

implies now that A(V) cz W. Thus A is continuous. ////

The hypotheses of (b) of Theorem 2.7 can be modified in various ways.

Here is an easily remembered version:

2.8 Theorem If{An} is a sequence of continuous linear mappings from an

¥-space X into a topological vector space Y, and if

Ax = lim A„ x

exists for every x e X, then A is continuous.

proof. Theorem 2.6 implies that {A„} is equicontinuous. Therefore if

W is a neighborhood of 0 in Y, we have An(V) cz W for all n and for

some neighborhood V of 0 in X. It follows that A(V) cz W; hence

(being obviously linear) A is continuous. ////

In the following variant of the Banach-Steinhaus theorem the

category argument is applied to a compact set, rather than to a complete metric

one. Convexity also enters here in an essential way (Exercise 8).

2.9 Theorem Suppose X and Y are topological vector spaces, K is a

compact convex set in X,T is a collection of continuous linear mappings of X
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into 7, and the orbits

V{x) = {Ax: A eT}

are bounded subsets of Y,for every x e K.

Then there is a bounded set B a Y such that A(K) cz Bfor every A e V.

proof. Let B be the union of all sets V(x\ for x e K. Pick balanced

neighborhoods W and U of 0 in Y such that 0 + U cz W. Put

(1) E= C]A-\U).
Aer

If x e K, then T(x) cz wl/ for some w, so that x e nE. Consequently,

00

(2) K = [j (K n nE).

Since E is closed, Baire's theorem shows that K n nE has nonempty

interior (relative to K) for at least one n.

We fix such an n, we fix an interior point x0 of K n nE, we fix a

balanced neighborhood K of 0 in X such that

(3) K n (x0 + V) cz nE,

and we fix a p > 1 such that

(4) Kcx0 + pV.

Such a p exists since K is compact.

If now x is any point of K and

(5) z = (l -p-ijxo + p"1*,

then z e K, since K is convex. Also,

(6) z- x0
= P-1(* -

*o)e ^

by (4). Hence z e nE, by (3). Since A(n£) cz nU for every A e V and

since x =

pz
— (p —

l)x0, we have

Ax e /w£7 - (p - l)n£7 cz pW(£7 + 17) cz pn^.

Thus B czpriW, which proves that £ is bounded. ////

The Open Mapping Theorem

2.10 Open mappings Suppose / maps S into T, where S and T are

topological spaces. We say that/is open at a point p e S if/(K) contains a

neighborhood of f(p) whenever V is a neighborhood of p. We say that/is

open iff(U) is open in T whenever U is open in S.
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It is clear that /is open if and only if/is open at every point of S.

Because of the invariance of vector topologies, it follows that a linear

mapping of one topological vector space into another is open if and only if

it is open at the origin.
Let us also note that a one-to-one continuous mapping/of S onto T

is a homeomorphism precisely when/is open.

2.11 The open mapping theorem Suppose

(a) X is an ¥-space,

(b) Y is a topological vector space,

(c) A: X -? Y is continuous and linear, and

(d) A(X) is of the second category in Y.

Then

(i) A(X)=Y,

(ii) A is an open mapping, and

(Hi) Y is an ¥-space.

proof. Note that (ii) implies (i), since Y is the only open subspace of

7. To prove (ii), let V be a neighborhood of 0 in X. We have to show

that A(V) contains a neighborhood of 0 in Y.

Let d be an invariant metric on X that is compatible with the

topology of X. Define

(1) Vn = {x:d(x,0)<2-»r} (n = 0, 1, 2, ...),

where r > 0 is so small that V0 cz V. We will prove that some

neighborhood W of 0 in Y satisfies

(2) W cz A(Ki) c A(V).

Since Vx zd V2
—

V2, statement (b) of Theorem 1.13 implies

(3) AO^j => A(V2)
-

A(V2) => A(K0
- A^j-

The first part of (2) will therefore be proved if we can show that A(V2)
has nonempty interior. But

(4) A(X) = 0 kA(V2),
fc=l

because V2 is a neighborhood of 0. At least one kA(V2) is therefore of

the second category in Y. Since y -? ky is a homeomorphism of Y

onto Y, A(V2) is of the second category in Y. Its closure therefore has

nonempty interior.
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To prove the second inclusion in (2), fix yx e A(K1). Assume

n > 1 and yn has been chosen in A(Vn). What was just proved for Kx
holds equally well for Vn + l9

so that A(Kn+1) contains a neighborhood
of 0. Hence

(5) (yn
-

A(Vn + 1)) n A(Vn) * 0.

This says that there exists xn e Vn such that

(6) Axn e yn
- A(Vn + 1).

Put yn+1
=

yn
—

Ax„. Then yn+1 e A(Kn + 1), and the construction

proceeds.

Since d(xn, 0) < 2~"r, for n = 1, 2, 3, ...,
the sums xx +

• • •

+ xn

form a Cauchy sequence which converges (by the completeness of X)
to some x e X, with d(x, 0) < r. Hence xeF. Since

m m

(7) Z A*n = Z (y»
-

^n+i) =

yi
-

ym+u
n=l n=l

and since ym+1 -? 0 as m -? oo (by the continuity of A), we conclude

that yx
= Ax e A(V). This gives the second part of (2), and (ii) is

proved.
Theorem 1.41 shows that X/N is an F-space, if N is the null

space of A. Hence (Hi) will follow as soon as we exhibit an

isomorphism /of X/N onto Y which is also a homeomorphism. This can

be done by defining

(8) f{x + N) = Ax {xe X).

It is trivial that this/is an isomorphism and that Ax =f(n(x)\ where

7r is the quotient map described in Section 1.40. If V is open in 7, then

(9) f-1(V) = n(A-1(V))

is open, since A is continuous and n is open. Hence/is continuous. If

E is open in X/N, then

(10) /(£) = A(7C-1(£))

is open, since n is continuous and A is open. Consequently, / is a

homeomorphism. ////

Corollaries

If A is a continuous linear mapping of an F-space X onto an F-space 7,

then A is open.

If A satisfies (a) and is one-to-one, then A'1: Y -> X is continuous.
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(c) // X and Y are Banach spaces, and if A: X -? Y is continuous, linear,

one-to-one, and onto, then there exist positive real numbers a and b such

that

a\\x\\<\\Ax\\<b\\x\\

for every x e X.

(d) Ifz1 cz t2 are vector topologies on a vector space X and if both (X, tJ
and (X, t2) are F-spaces, then xx

=

z2.

proof. Statement (a) follows from Theorem 2.11 and Baire's theorem,

since Y is now of the second category in itself. Statement (b) is an

immediate consequence of (a), and (c) follows from (b). The two

inequalities in (c) simply express the continuity of A-1 and of A.

Statement (d) is obtained by applying (b) to the identity mapping of

(X, t2) onto (X, Tl). ////

The Closed Graph Theorem

2.13 Graphs If X and Y are sets and/maps X into Y, the graph of/is
the set of all points (x,f(x)) in the cartesian product X x Y. If X and Y are

topological spaces, if X x Y is given the usual product topology (the
smallest topology that contains all sets U x V with U and V open in X and Y,

respectively), and if/: X -? Y is continuous, one would expect the graph of/
to be closed in X x Y (Proposition 2.14). For linear mappings between

F-spaces this trivial necessary condition is also sufficient to assure

continuity. This important fact is proved in Theorem 2.15.

2.14 Proposition IfX is a topological space, Y is a Hausdorff space, and

f: X -> Y is continuous, then the graph G off is closed.

proof. Let Q be the complement of G in X x Y; fix (x0, y0) e Q.

Then y0 #/(x0). Thus y0 and f(x0) have disjoint neighborhoods V

and W in Y. Since/is continuous, x0 has a neighborhood U such that

f(U) cz W. The neighborhood U x V of (x0, y0) lies therefore in Q.

This proves that Q is open. ////

Note: One cannot omit the hypothesis that Y is a Hausdorff space.

To see this, consider an arbitrary topological space X, and let/: X -> X be

the identity. Its graph is the diagonal

D = {(x, x): x e X} cz X x X.

The statement "D is closed inlxl" is just a rewording of the Hausdorff

separation axiom.
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2.15 The closed graph theorem Suppose

(a) X and Y are F-spaces,

(b) A: X -? Y is linear,

(c) G = {(x, Ax): x e X} is closed in X x Y.

Then A is continuous.

proof. X x Y is a vector space if addition and scalar multiplication
are defined componentwise:

a(*i, yi) + P(x2, y2) = (a*i + px2, aj/i + py2).

There are complete invariant metrics dx and dy on X and 7,

respectively, which induce their topologies. If

d((xl9 yx)9 {x2, y2)) = dx{xu x2) + d^, y2),

then ^ is an invariant metric on!x7 which is compatible with its

product topology and which makes X x Y into an F-space. (The easy

but tedious verifications that are needed here are left as an exercise.)
Since A is linear, G is a subspace of X x Y. Closed subsets of

complete metric spaces are complete. Therefore G is an F-space.
Define n1: G -? X and n2. X x Y -? Y by

7c1(x, Ax) =

x, 7r2(x, y) =

y.

Now 7T! is a continuous linear one-to-one mapping of the F-space G

onto the F-space X. It follows from the open mapping theorem that

is continuous. But A =

n2
o n^1 and 7r2 is continuous. Hence A is

continuous. ////

Remark. The crucial hypothesis (c), that G is closed, is often verified

in applications by showing that A satisfies property (c') below:

(c') If{xn} is a sequence in X such that the limits

x = lim xn and y
= lim Ax„

exist, then y
= Ax.

Let us prove that (c') implies (c). Pick a limit point (x, y) of G.

Since X x Y is metrizable,

(x, y)= lim(xn, AxJ
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for some sequence {xn}. It follows from the definition of the product

topology that xn -? x and Axn -? y. Hence y
= Ax, by (c'), and so

(x9 y) e G, and G is closed.

It is just as easy to prove that (c) implies (c').

Bilinear Mappings

2.16 Definitions Suppose X9 Y9 Z are vector spaces and B maps

X x Y into Z. Associate to each x e X and to each y e Y the mappings

BX:Y->Z and By:X->Z

by defining

fl^y) = B(x9 y) = B>(x).

B is said to be bilinear if every Bx and every By are linear.

If X, 7, Z are topological vector spaces and if every Bx and every By is

continuous, then B is said to be separately continuous. If B is continuous

(relative to the product topology of X x Y) then £ is obviously separately
continuous. In certain situations, the converse can be proved with the aid of

the Banach-Steinhaus theorem.

2.17 Theorem Suppose B: X x Y -? Z is bilinear and separately

continuous, X is an F-space, and Y and Z are topological vector spaces. Then

(1) B(xH9yH)-+B(x09y0)inZ

whenever xn -> x0 in X and yn -? y0 in Y. If Y is metrizable9 it follows that B

is continuous.

proof. Let U and W be neighborhoods of 0 in Z such that

U + U cz W. Define

bn(x) = B(x9 yn) (x e X9 n = 1, 2, 3,...).

Since B is continuous as a function of y9

lim bJLx) = B{x9 y0) {x e X).
n-* oo

Thus {bn(x)} is a bounded subset of Z, for each x e X. Since each bn is

a continuous linear mapping of the F-space X, the Banach-Steinhaus

theorem 2.6 implies that {bn} is equicontinuous. Hence there is a

neighborhood V of 0 in X such that

bn(V)^U (n= 1,2,3,...).
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Note that

B(*n, yn)
~

B(*o, yo) = h(*n
-

x0) + B{x0, yn
-

y0).

If n is sufficiently large, then (i) xn e x0 + K, so that bn(xn
—

x0) e I/,

and (w) £(x0, yn
—

y0) e I/, since £ is continuous in y and £(x0, 0) =

0. Hence

B(xH9yJ-B(x09y0)eU + UcW

for all large n. This gives (1).
If Y is metrizable, so is X x 7, and the continuity of B then

follows from (1). (See Appendix A6.) ////

Exercises

1. If X is an infinite-dimensional topological vector space which is the union of

countably many finite-dimensional subspaces, prove that X is of the first

category in itself. Prove that therefore no infinite-dimensional F-space has a

countable Hamel basis.

(A set P is a Hamel basis for a vector space X if P is a maximal linearly

independent subset of X. Alternatively, f$ is a Hamel basis if every x e X has a

unique representation as 3. finite linear combination of elements of p.)

2. Sets of first and second category are
"

small" and
"

large
"

in a topological sense.

These notions are different when "small" and "large" are understood in the

sense of measure, even when the measure is intimately related to the topology.
To see this, construct a subset of the unit interval which is of the first category

but whose Lebesgue measure is 1.

3. Put K = [— 1, 1]; define <2>K as in Section 1.46 (with R in place of Rn). Suppose

{/„} is a sequence of Lebesgue integrable functions such that

A(/> = lim

i

fM<Kt) dt

exists for every <p e 2>K. Show that A is a continuous linear functional on Q)K.
Show that there is a positive integer p and a number M < oo such that

-1 I

for all n. For example, if/„(0 = n3t on [— l/w, l/rc] and 0 elsewhere, show that

this can be done with p
= 1. Construct an example where it can be done with

p
= 2 but not with p

= 1.

Let L1 and L2 be the usual Lebesgue spaces on the unit interval. Prove that L2 is

of the first category in L1, in three ways:

(a) Show that {/: J | /12 < n} is closed in L1 but has empty interior.

(b) Put g„
= n on [0, rc-3], and show that

fan'

for every/e L2 but not for every/e L1.

J-
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(c) Note that the inclusion map of L2 into L1 is continuous but not onto.

Do the same for IF and 13 if p < q.

5. Prove results analogous to those of Exercise 4 for the spaces *fp, where {p is the

Banach space of all complex functions x on {0, 1, 2,...} whose norm

l\x(n)\'\
71

= 0 J

is finite.

6. Define the Fourier coefficients f(n) of a function fe li{T) (T is the unit circle) by

/(") = ^j"* Ae«)e-l"«de

for all n e Z (the integers). Put

Kf= i /(*).
k= -n

Prove that {/e I?(T): lim,,^ Anf exists} is a dense subspace of L2(T) of the

first category.

7. Let C(T) be the set of all continuous complex functions on the unit circle T.

Suppose {yn} (n e Z) is a complex sequence that associates to each/e C(T) a

function Afe C(T) whose Fourier coefficients are

(Af)~(n) = yJ(n) (n e Z).

(The notation is as in Exercise 6.) Prove that {yn} has this multiplier property if

and only if there is a complex Borel measure fionT such that

-J e~ine dti(6) (neZ).

Suggestion: With the supremum norm, C(T) is a Banach space. Apply the

closed graph theorem. Then consider the functional

/->(A/"X1)= t 7n f(n)
—

oo

and apply the Riesz representation theorem ([23], Th. 6.19). (The above series

may not converge; use it only for trigonometric polynomials.)

8. Define functional Am on £2 (see Exercise 5) by

Amx= £>2x(n) (m= 1,2,3,...).

Define xn e {2 by xn(n) = 1/w, xn(i) = 0 if i ^ n. Let K <= {2 consist of 0, xl9 x2,

x3, Prove that K is compact. Compute Am xn. Show that {Am x} is bounded

for each x e K but {Am xm} is not. Convexity can therefore not be omitted from

the hypotheses of Theorem 2.9.
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Choose c„ > 0 so that £ cn
= 1, £ nc„

= oo. Take x = £ c„ x„. Show that

x lies in the closed convex hull of K (by definition, this is the closure of the

convex hull) and that {Amx} is not bounded.

Show that the convex hull of K is not closed.

9. Suppose X, Y, Z are Banach spaces and

B: X x Y^Z

is bilinear and continuous. Prove that there exists M < oo such that

\\B(x,y)\\<M\\x\\\\y\\ (xeX,yeY).

Is completeness needed here?

10. Prove that a bilinear mapping is continuous if it is continuous at the origin

(0,0).

11. Define B(xu x2; y) = (xly, x2y). Show that B is a bilinear continuous mapping
of R2 x R onto R2 which is not open at (1, 1; 0). Find all points where this B is

open.

12. Let X be the normed space of all real polynomials in one variable, with

\\f\\=[\f(t)\dt.
Put B(f, g) = JJ f(t)g(t) dt, and show that B is a bilinear functional on X x X

which is separately continuous but is not continuous.

13. Suppose X is a topological vector space which is of the second category in itself.

Let K be a closed, convex, absorbing subset of X. Prove that K contains a

neighborhood of 0.

Suggestion: Show first that H = K n (
—

K) is absorbing. By a category

argument, H has interior. Then use

2H = H + H = H-H.

Show that the result is false without convexity of K, even if X = R2. Show that

the result is false if X is L2 topologized by the ZJ-norm (as in Exercise 4).

14. (a) Suppose X and Y are topological vector spaces, {A„} is an equicontinuous

sequence of linear mappings of X into 7, and C is the set of all x at which

{A„(x)} is a Cauchy sequence in Y. Prove that C is a closed subspace of X.

(b) Assume, in addition to the hypotheses of (a), that Y is an F-space and that

{A„(x)} converges in some dense subset of X. Prove that then

A(x) = lim A„(x)
n-^oo

exists for every x e X and that A is continuous.

15. Suppose X is an F-space and Y is a subspace of X whose complement is of the

first category. Prove that Y = X. Hint: Y must intersect x + Y for every x e X.

16. Suppose that X and K are metric spaces, that K is compact, and that the graph

off: X -> K is a closed subset of X x K. Prove that/is continuous. (This is an

analogue of Theorem 2.15 but is much easier.) Show that compactness of K

cannot be omitted from the hypotheses, even when X is compact.



CHAPTER

3

CONVEXITY

This chapter deals primarily (though not exclusively) with the most

important class of topological vector spaces, namely, the locally convex ones. The

highlights, from the theoretical as well as the applied standpoints, are

(a) the Hahn-Banach theorems (assuring a supply of continuous linear

functional that is adequate for a highly developed duality theory), (b) the

Banach-Alaoglu compactness theorem in dual spaces, and (c) the Krein-

Milman theorem about extreme points. Applications to various problems in

analysis are postponed to Chapter 5.

The Hahn-Banach Theorems

The plural is used here because the term
"

Hahn-Banach theorem
"

is

customarily applied to several closely related results. Among these are the

dominated extension theorems 3.2 and 3.3 (in which no topology is involved),
the separation theorem 3.4, and the continuous extension theorem 3.6.

Another separation theorem (which implies 3.4) is stated as Exercise 3.

3.1 Definitions The dual space of a topological vector space X is the

vector space X* whose elements are the continuous linear functionals on X.

Note that addition and scalar multiplication are defined in X* by

(A1 + A2)x = Axx + A2x, (olA)x = a
• Ax.

It is clear that these operations do indeed make X* into a vector space.

56
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It will be necessary to use the obvious fact that every complex vector

space is also a real vector space, and it will be convenient to use the

following (temporary) terminology: An additive functional A on a complex vector

space X is called real-linear (complex-linear) if A(ooc) = ocAx for every x e X

and for every real (complex) scalar a. Our standing rule that any statement

about vector spaces in which no scalar field is mentioned applies to both

cases is unaffected by this temporary terminology and is still in force.

If u is the real part of a complex-linear functional / on X9 then u is

real-linear and

(1) f(x) = u(x) - iu(ix) (x e X)

because z = Re z
— i Re (iz) for every z e (p.

Conversely, if u: X -> R is real-linear on a complex vector space X

and if /is defined by (1), a straightforward computation shows that / is

complex-linear.

Suppose now that X is a complex topological vector space. The above

facts imply that a complex-linear functional on X is in X* if and only if its

real part is continuous, and that every continuous real-linear u: X -> R is

the real part of a unique/ e X*.

3.2 Theorem Suppose

(a) M is a subspace of a real vector space X,

(b) p: X -> R satisfies

p(x + y) < p(x) + p(y) and p(tx) = p(x)

ifxeX,yeX,t> 0,

(c) f:M->R is linear andf(x) < p(x) on M.

Then there exists a linear A: X -? R such that

Ax = f(x) (x e M)

and

—

p(
—

x) < Ax < p(x) (x e X).

proof. If M # X9 choose xx e X, xx $ M, and define

Mx = {x + tx1: x e M, t e R}.

It is clear that Mx is a vector space. Since

/(*) +/(y) =/(* + y) < P(x + y) < p(x
-

x,) + p(x, + y),
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we have

(1) f(x)
-

p(x
-

x,) < p(y + x,) -f(y) (x, y e M).

Let a be the least upper bound of the left side of (1), as x ranges over

M. Then

(2) f(x) -

a < p{x
-

xj (xeM)

and

(3) f(y) + a < P(y + Xl) (y e M).

Define /t on Mx by

(4) fx(x + tai) = /(x) + to (xeM,^£ K).

Then/i =/on M, and/x is linear on Mv
Take £ > 0, replace x by r" *x in (2), replace y by t~ 1y in (3), and

multiply the resulting inequalities by t. In combination with (4), this

proves that/i < p on Mx.
The second part of the proof can be done by whatever one's

favorite method of transfinite induction is; one can use well-ordering,
or Zorn's lemma, or Hausdorff's maximality theorem.

Let 9 be the collection of all ordered pairs (M',/'), where M' is

a subspace of X that contains M and /' is a linear functional on M'

that extends/and satisfies/' < p on M'. Partially order & by

declaring (M',/') < (M",/") to mean that M' c M" and/" =/' on M'. By

Hausdorff's maximality theorem there exists a maximal totally
ordered subcollection Q of 0*.

Let O be the collection of all M' such that (M',/') e Q. Then O is

totally ordered by set inclusion, and the union M of all members of O

is therefore a subspace of X. If x e M then x e M' for some M'e$;

define Ax =/'(*), where/' is the function which occurs in the pair

(M',/') eQ.

It is now easy to check that A is well defined on M, that A is

linear, and that A < p. If M were a proper subspace of X9 the first

part of the proof would give a further extension of A, and this would

contradict the maximality of Q. Thus M = X.

Finally, the inequality A < p implies that

—

p(
— x) < —

A(
—

x) = Ax

for all x e X. This completes the proof. ////

3.3 Theorem Suppose M is a subspace of a vector space X, p is a semi-

norm on X, and f is a linear functional on M such that

\f(x)\<p(x) (xeM).
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Then/extends to a linear functional A on X that satisfies

I Ax | < p(x) (x e X).

proof. If the scalar field is R, this is contained in Theorem 3.2, since p

now satisfies p{ — x) = p(x).
Assume that the scalar field is (p. Put u = Re/ By Theorem 3.2

there is a real-linear U on X such that U = u on M and U < p on X.

Let A be the complex-linear functional on X whose real part is U. The

discussion in Section 3.1 implies that A =/on M.

Finally, to every x e X corresponds an a e (p, | a | = 1, such that

olAx = I Ax I. Hence

| Ax | = A(ax) = l/(ax) < p(ax) = p(x). ////

Corollary. IfX is a normed space and x0 e X, there exists A e X* such

that

Ax0 = \\x0\\ and \ Ax \ < \\x\\ for all x e X.

proof. If x0
= 0, take A = 0. If x0 # 0, apply Theorem 3.3, with

p(x) = \\x\\, M the one-dimensional space generated by x0, and

/(«o) = a||x0||onAf. ////

3.4 Theorem Suppose A and B are disjoint, nonempty, convex sets in a

topological vector space X.

(a) If A is open there exist A e X* and y e R such that

Re Ax < y < Re Ay

for every x e A and for every y e B.

(b) If A is compact, B is closed, and X is locally convex, then there exist

A e X*, yx e R,y2 e R, such that

Re Ax < yx < y2 < Re Ay

for every x e A and for every y e B.

Note that this is stated without specifying the scalar field; if it is R,

then Re A = A, of course.

proof. It is enough to prove this for real scalars. For if the scalar field

is (p and the real case has been proved, then there is a continuous

real-linear At on I that gives the required separation; if A is the
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unique complex-linear functional on X whose real part is A1? then

A e X*. (See Section 3.1.) Assume real scalars.

(a) Fix A0 e A, b0e B. Put x0
= b0

-

a0; put C = A — B + x0.

Then C is a convex neighborhood of 0 in X. Let p be the Minkowski

functional of C. By Theorem 1.35, p satisfies hypothesis (b) of

Theorem 3.2. Since A n B = 0, x0 £ C, and so p(x0) > 1.

Define f(tx0) = t on the subspace M of X generated by x0. If

t > 0 then

f(tx0) = t < tpix0) = p(tx0);

if t < 0 then/(ta0) < 0 < p(ta0). Thus/< p on M. By Theorem 3.2,/
extends to a linear functional A on X that also satisfies A < p. In

particular, A < 1 on C, hence A > - 1 on
— C, so that | A | < 1 on the

neighborhood C n(-C) of 0. By Theorem 1.18, A e X*.

If now ae A and b e B, we have

Aa - A6 + 1 = A(a
- 6 + x0) < p(a - b + x0) < 1

since Ax0 = 1, a — b + x0 e C, and C is open. Thus Aa < A6.

It follows that A(A) and A(B) are disjoint convex subsets of R,

with A(A) to the left of A(B). Also, A(,4) is an open set since A is open

and since every nonconstant linear functional on X is an open

mapping. Let y be the right end point of A(A) to get the conclusion of

part (a).

(b) By Theorem 1.10 there is a convex neighborhood V of 0 in

X such that (A + V) n B = 0. Part (a), with A + K in place of 4,

shows that there exists A e X* such that A(A + K) and A(B) are

disjoint convex subsets of R, with A(,4 + K) open and to the left of A(B).
Since A(A) is a compact subset of A(A + K), we obtain the conclusion

of (ft). ////

Corollary. // X is a locally convex space then X* separates points on

X.

proof. If x1 e X, x2 e X, and xx # x2, apply (b) of Theorem 3.4 with

^ = {x1},B={x2}. ////

3.5 Theorem Suppose M is a subspace of a locally convex space X, and

x0 e X. If x0 is not in the closure of M, then there exists A e X* such that

Ax0 = 1 but Ax = Ofor every x e M.

proof. By (b) of Theorem 3.4, with A = {x0} and B = M, there exists

A e X* such that Ax0 and A(M) are disjoint. Thus A(M) is a proper
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subspace of the scalar field. This forces A(M) = {0} and Ax0 # 0. The

desired functional is obtained by dividing A by Ax0. ////

Remark. This theorem is the basis of a standard method of treating
certain approximation problems: In order to prove that an x0 e X lies

in the closure of some subspace M of X it suffices (if X is locally

convex) to show that Ax0 = 0 for every continuous linear functional

A on X that vanishes on M.

3.6 Theorem /// is a continuous linear functional on a subspace M of a

locally convex space X, then there exists A e X* such that A =fon M.

Remark. For normed spaces this is an immediate corollary of

Theorem 3.3. The general case could also be obtained from 3.3, by

relating the continuity of linear functionals to seminorms (see Exercise

8, Chapter 1). The proof given below shows that Theorem 3.6 depends

only on the separation property of Theorem 3.5.

proof. Assume, without loss of generality, that / is not identically 0

on M. Put

Mo = {xeM:f(x) = 0}

and pick x0 e M such that/(x0) = 1. Since/is continuous, x0 is not in

the M-closure of M0, and since M inherits its topology from X, it

follows that x0 is not in the X-closure of M0.
Theorem 3.5 therefore assures the existence of a A e X* such

that Ax0 = 1 and A = 0 on M0.
If x e M, then x —f(x)x0 e M0, since/(x0) = 1. Hence

Ax —f(x) = Ax —f(x)Ax0 = A(x —f{x)x0) = 0.

Thus A = /on M. ////

We conclude this discussion with another useful corollary of the

separation theorem.

3.7 Theorem Suppose B is a convex, balanced, closed set in a locally
convex space X, x0 e X, but x0 $ B. Then there exists A e X* such that

I Ax | < 1 for all x e B, but Ax0 > 1.

proof. Since B is closed and convex, we can apply (b) of Theorem 3.4,

with A = {x0}, to obtain Ax e X* such that A^q = rel9 lies outside
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the closure K of A^B). Since B is balanced, so is K. Hence there

exists s, 0 < s < r, so that | z | < s for all z e K. The functional

A = s~1e~i9A1 has the desired properties. ////

Weak Topologies

3.8 Topological preliminaries The purpose of this section is to explain
and illustrate some of the phenomena that occur when a set is topologized
in several ways.

Let xx and x2 be two topologies on a set X, and assume xx ct2; that

is, every reopen set is also r2-open. Then we say that xx is weaker than x2,

or that x2 is stronger than xv [Note that (in accordance with the meaning of

the inclusion symbol cz) the terms "weaker" and "stronger" do not

exclude equality.] In this situation, the identity mapping on X is continuous

from (X, x2) to (X, xj and is an open mapping from (X, tJ to (X, x2).
As a first illustration, let us prove that the topology of a compact

Hausdorff space has a certain rigidity, in the sense that it cannot be

weakened without losing the Hausdorff separation axiom and cannot be

strengthened without losing compactness:

(a) Ifxxczx2 are topologies on a set X,if xx is a Hausdorff topology, and if

x2 is compact, then xx
=

x2.

To see this, let F cz X be r2-closed. Since X is r2-compact, so is F.

Since xx cz x2, it follows that F is ^-compact. (Every reopen cover of F is

also a r2-open cover.) Since xx is a Hausdorff topology, it follows that F is

xx -closed.

As another illustration, consider the quotient topology xN of X/N, as

defined in Section 1.40, and the quotient map n: X ->X/N. By its very

definition, xN is the strongest topology on X/N that makes n continuous,

and it is the weakest one that makes n an open mapping. Explicitly, if x'

and x" are topologies on X/N, and if n is continuous relative to x' and open

relative to t", then x' cz xN cz x".

Suppose next that X is a set and !F is a nonempty family of mappings

f: X -> Yf, where each Yf is a topological space. (In many important cases,

Yf is the same for all / e !F) Let x be the collection of all unions of finite

intersections of sets/_1(K), with fe 3F and V open in Yf. Then t is a

topology on X, and it is in fact the weakest topology on X that makes every

fe^ continuous: If x' is any other topology with that property, then

x cz x'. This x is called the weak topology on X induced by 3F, or, more

succinctly, the 2F-topology ofX.
The best-known example of this situation is undoubtedly the usual

way in which one topologizes the cartesian product I of a collection of

topological spaces Xa. If na(x) denotes the ath coordinate of a point x e X,
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then na maps X onto Xa, and the product topology x of X is, by definition,

its {raj-topology, the weakest one that makes every na continuous. Assume

now that every Xa is a compact Hausdorff space. Then t is a compact

topology on X (by Tychonoff's theorem), and proposition (a) implies that x

cannot be strengthened without spoiling Tychonoff's theorem.

In the last sentence a special case of the following proposition was

tacitly used:

(b) If 3F is a family of mappings f: X -? Yf, where X is a set and each Yf is

a Hausdorff space, and if' &* separates points on X, then the ^-topology

ofX is a Hausdorff topology.

For if p # q are points of X, then f(p) ^f(q) for some fe^\ the

points f(p) and f(q) have disjoint neighborhoods in Yf whose inverse images

under/are open (by definition) and disjoint.
Here is an application of these ideas to a metrization theorem.

(c) If X is a compact topological space and if some sequence {/„} of
continuous real-valued functions separates points on X, then X is metrizable.

Let t be the given topology of X. Suppose, without loss of generality,
that | /„ | < 1 for all w, and let xd be the topology induced on X by the

metric

d(p,q)= £ 2"" |/,(p)-/,(«) |.
n = l

This is indeed a metric, since {/„} separates points. Since each /„ is

r-continuous and the series converges uniformly on X x X, d is a

r-continuous function onlxl The balls

Br(p) = {qeX:d(p,q)<r}

are therefore r-open. Thus xd c x. Since xd is induced by a metric, xd is a

Hausdorff topology, and now (a) implies that x =

xd.

The following lemma has applications in the study of vector

topologies. In fact, the case n = 1 was needed (and proved) at the end of

Theorem 3.6.

3.9 Lemma Suppose Al9 ..., A„ and A are linearfunctionals on a vector

space X. Let

N = {x: Axx =
• • •

= Anx = 0}.

The following three properties are then equivalent:

(a) There are scalar s 0Lu...,an such that

A = a1A1 +
•••

+ anAn.
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(b) There exists y < oo such that

I Ax | < y max | Afx\ (x e X).
1 < i < n

(c) Ax = Ofor every x e N.

proof. It is clear that (a) implies (b) and that (b) implies (c). Assume (c)
holds. Let O be the scalar field. Define n: X -? O" by

7c(x) = (A1x, ..., A„x).

If 7c(x) = 7r(x'), then (c) implies Ax = Ax'. Hence/(7r(x)) = Ax defines a

linear functional / on n(X). Extend /to a linear functional F on O".

This means that there exist a, e O such that

F(ul9...9uJ =

ct1u1 +
•••

+a„tv

Thus

Ax = F(tt(x)) = F(Atx, ..., A„x) = ^ a.-A.-x,

which is (a). ////

3.10 Theorem Suppose X is a vector space and X' is a separating vector

space of linear functionals on X. Then the X'-topology %' makes X into a

locally convex space whose dual space is X'.

The assumptions on X' are, more explicitly, that X' is closed under

addition and scalar multiplication and that Axx # Ax2 for some A e X'

whenever xx and x^ are distinct points of X.

proof. Since R and <p are Hausdorff spaces, (b) of Section 3.8 shows

that t' is a Hausdorff topology. The linearity of the members of X'

shows that t' is translation-invariant. If Al5 ..., Ane X', if r, > 0, and

if

(1) V= {x: |A,x| <r{ for 1 < i < n},

then V is convex, balanced, and V e %'. In fact, the collection of all V

of the form (1) is a local base for t'. Thus t' is a locally convex

topology on X.

If (1) holds, then \V + \V = V. This proves that addition is

continuous. Suppose x e X and a is a scalar. Then x e sV for some

s > 0. If | p —

a | < r and y
— x e rV then

Py - olx = (P - (x)y + a(y - x)
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lies in V, provided that r is so small that

r(s + r) + \a\r < 1.

Hence scalar multiplication is continuous.

We have now proved that t' is a locally convex vector topology.

Every A e X' is r'-continuous. Conversely, suppose A is a r'-con-

tinuous linear functional on X. Then | Ax | < 1 for all x in some set V

of the form (1). Condition (b) of Lemma 3.9 therefore holds; hence so

does (a): A = Yj <** Af. Since Af e X' and X' is a vector space, A e X'.

This completes the proof. ////

Note: The first part of this proof could have been based on Theorem

1.37 and the separating family of seminorms pA(A e X') given by pA{x) =

|Ax|.

3.11 The weak topology of a topological vector space Suppose X is

a topological vector space (with topology t) whose dual X* separates points
on X. (We know that this happens in every locally convex X. It also

happens in some others; see Exercise 5.) The X*-topology of X is called the

weak topology ofX.
We shall let Xw denote X topologized by this weak topology tw.

Theorem 3.10 implies that Xw is a locally convex space whose dual is

also X*.

Since every A e X* is r-continuous and since tw is the weakest

topology on X with that property, we have tw a %. In this context, the given

topology t will often be called the original topology of X.

Self-explanatory expressions such as original neighborhood, weak

neighborhood, original closure, weak closure, originally bounded, weakly

bounded, etc., will be used to make it clear with respect to which topology
these terms are to be understood.1

For instance, let {x„} be a sequence in X. To say that xn -? 0 originally
means that every original neighborhood of 0 contains all xn with sufficiently

large n. To say that xn -? 0 weakly means that every weak neighborhood of

0 contains all xn with sufficiently large n. Since every weak neighborhood of

1
When X is a Frechet space (hence, in particular, when X is a Banach space) the original

topology of X is usually called its strong topology. In that context, the terms
"

strong" and
"

strongly
"

will be used in place of
"

original" and
"

originally." For locally convex spaces in

general, the term "strong topology" has been given a specific technical meaning. See [15], pp.

256-258; also [14], p. 169. It seems therefore advisable to use "original" in the present general

discussion.
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0 contains a neighborhood of the form

(1) V = {x: |Afx| <r{ for 1 < i < n}9

where Af e X* and r{ > 0, it is easy to see that xn -? 0 weakly if and only if

Axn -? Ofor every A e X*.

Hence every originally convergent sequence converges weakly. (The

converse is usually false; see Exercises 5 and 6.)

Similarly, a set E a X is weakly bounded (that is, £ is a bounded

subset of Xw) if and only if every V as in (1) contains tE for some

t = t(V) > 0. This happens if and only if there corresponds to each Ael*

a number y(A) < oo such that | Ax | < y(A) for every x e E. In other words,

a set E a X is weakly bounded if and only if every A e X* is a bounded

function on E.

Let V again be as in (1), and put

N = {x: Axx =
• ? •

= A„x = 0}.

Since x-^(A1x, ..., A„x) maps X into <p with null space N, we see

that dim X <n + dim N. Since N <= V, this leads to the following
conclusion.

// X is infinite-dimensional then every weak neighborhood of 0 contains

an infinite-dimensional subspace; hence Xw is not locally bounded.

This implies in many cases that the weak topology is strictly weaker

than the original one. Of course, the two may coincide: Theorem 3.10

implies that (XJW = Xw.
We now come to a more interesting result.

3.12 Theorem Suppose E is a convex subset of a locally convex space X.

Then the weak closure Ewof E is equal to its original closure E.

proof. Ew is weakly closed, hence originally closed, so that E cz Ew.
To obtain the opposite inclusion, choose x0 e X, x0 £ E. Part (b) of

the separation theorem 3.4 shows that there exist A e X* and y e R

such that, for every x e £,

Re Ax0 < y < Re Ax.

The set {x: Re Ax < y} is therefore a weak neighborhood of x0 that

does not intersect E. Thus x0 is not in Ew. This proves Ew cz E. ////

Corollaries. For convex subsets of a locally convex space,

(a) originally closed equals weakly closed, and

(b) originally dense equals weakly dense.
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The proofs are obvious. Here is another noteworthy consequence of

Theorem 3.12.

3.13 Theorem Suppose X is a metrizable locally convex space. If{xn} is

a sequence in X that converges weakly to some x e X, then there is a

sequence {y,} in X such that

(a) each y{ is a convex combination of finitely many xn, and

(b) y{ -? x originally.

Conclusion (a) says, more explicitly, that there exist numbers 0Lin > 0,

such that

00 00

and, for each i, only finitely many ain are #0.

proof. Let H be the convex hull of the set of all xn\ let K be the weak

closure of H. Then x e K. By Theorem 3.12, x is also in the original
closure of H. Since the original topology of X is assumed to be

metrizable, it follows that there is a sequence {yj in H that converges

originally to x. ////

To get a feeling for what is involved here, consider the following

example.
Let K be a compact Hausdorff space (the unit interval on the real line

is a sufficiently interesting one), and assume that/and/„ (n = 1, 2, 3,...) are

continuous complex functions on K such that fn(x) -»/(x) for every x e K,

as n -? oo, and such that | fn(x) | < 1 for all n and all x e K. Theorem 3.13

asserts that there are convex combinations of the/„ that converge uniformly

to/.
To see this, let C(K) be the Banach space of all complex continuous

functions on K, normed by the supremum. Then strong convergence is the

same as uniform convergence on K. If // is any complex Borel measure

on K, Lebesgue's dominated convergence theorem implies that j /„ dn~>

j / d[i. Hence /„ -?/ weakly, by the Riesz representation theorem which

identifies the dual of C(K) with the space of all regular complex Borel

measures on K. Now Theorem 3.13 can be applied.
After this short detour we now return to our main line of

development.

3.14 The weak*-topology of a dual space Let X again be a

topological vector space whose dual is X*. For the definitions that follow, it is
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irrelevant whether X* separates points on X or not. The important
observation to make is that every x e X induces a linear functional fx on X*,

defined by

fx A = Ax,

and that {fx: x e X) separates points on X*.

The linearity of each/x is obvious; if/xA =fxA' for all x e X, then

Ax = A'x for all x, and so A = A' by the very definition of what it means

for two functions to be equal.
We are now in the situation described by Theorem 3.10, with X* in

place of X and with X in place of X'.

The X-topology of X* is called the weak*-topology of X*

(pronunciation: weak star topology).
Theorem 3.10 implies that this is a locally convex vector topology on

X* and that every linear functional on X* that is weak*-continuous has the

form A -? Ax for some x e X.

The weak*-topologies have a very important compactness property to

which we now turn our attention. Various pathological features of the

weak- and weak*-topologies are described in Exercises 9 and 10.

Compact Convex Sets

3.15 The Banach-Alaoglu theorem // V is a neighborhood of 0 in a

topological vector space X and if

K = {A e X*: \ Ax\ < 1 for every x e V}

then K is weak*-compact.

Note: K is sometimes called the polar of V. It is clear that K is

convex and balanced, because this is true of the unit disc in (p (and of the

interval [—1, 1] in R). There is some redundancy in the definition of K,

since every linear functional on X that is bounded on V is continuous,

hence is in X*.

proof. Since neighborhoods of 0 are absorbing, there corresponds to

each x e X a number y(x) < oo such that x e y(x)V. Hence

(1) |Ax|<y(x) {xeX, A e K).

Let Dx be the set of all scalars a such that | a | < y(x). Let t be the

product topology on P, the cartesian product of all Dx, one for each

x e X. Since each Dx is compact, so is P, by Tychonoff's theorem. The

elements of P are the functions/on X (linear or not) that satisfy

(2) \f(x)\<y(x) (xsX).



CHAPTER 3: CONVEXITY 69

Thus K cz X* n P. It follows that K inherits two topologies:
one from X* (its weak*-topology, to which the conclusion of the

theorem refers) and the other, t, from P. We will see that

(a) these two topologies coincide on K, and

(b) K is a closed subset of P.

Since P is compact, (b) implies that K is r-compact, and then (a)

implies that K is weak*-compact.
Fix some A0 e K. Choose xt e X, for 1 < i < n; choose S > 0.

Put

(3) W1 = {Ae X*:\Axi-A0xi\<S for 1 < i < n)

and

(4) W2 = {feP:\f(xi)-A0xi\<S for 1 < i < n}.

Let n, x{, and S range over all admissible values. The resulting sets Wx
then form a local base for the weak*-topology of X* at A0 and the

sets W2 form a local base for the product topology t of P at A0. Since

KcPn X*, we have

Wx n K = W2 n K.

This proves (a).

Next, suppose f0 is in the r-closure of K. Choose x e X, y e X,

scalars a and /?, and e > 0. The set of all/e P such that \f—f0 \ < e

at x, at y, and at ax + /fy is a r-neighborhood of f0. Therefore K

contains such an/. Since this/is linear, we have

fo(*x + 0y) - <tf0(x) - 0fo(y)

= (/o -/X« + )9y) + «(/-/oXx) + Kf-fom

so that

l/o(« + frO - o/o(x) - Pf0(y)\ < (1 + |a| + |/?IK

Since e was arbitrary, we see that f0 is linear. Finally, if x e V and

e > 0, the same argument shows that there is an/eK such that

\f{x) —f0{x)\ < e. Since |/(x)| < 1, by the definition of K, it follows

that |/0(x)| < 1. We conclude that/0 e K. This proves (b) and hence

the theorem. ////

When X is separable (i.e., when there is a countable dense set in X),
then the conclusion of the Banach-Alaoglu theorem can be strengthened by

combining it with the following fact:
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3.16 Theorem // X is a separable topological vector space, if K a X*,

and ifK is weak*-compact, then K is metrizable, in the weak*-topology.

Warning: It does not follow that X* itself is metrizable in its weak*-

topology. In fact, this is false whenever X is an infinite-dimensional Banach

space. See Exercise 15.

proof. Let {xn} be a countable dense set in X. Put/„(A) = Axn, for

A e X*. Each/n is weak*-continuous, by the definition of the weak*-

topology. If /„(A) =fn(A') for all n, then Axn = A'xn for all n, which

implies that A = A', since both are continuous on X and coincide on

a dense set.

Thus {/„} is a countable family of continuous functions that

separates points on X*. The metrizability of K now follows from (c) of

Section 3.8. ////

3.17 Theorem // V is a neighborhood of 0 in a separable topological
vector space X, and if{An} is a sequence in X* such that

\Anx\<\ (xeV,n=l,2,3,...),

then there is a subsequence {An.} and there is a A e X* such that

Ax = lim A„. x (x e X).
i-*ao

In other words, the polar of V is sequentially compact in the weak*-

topology.

proof. Combine Theorems 3.15 and 3.16. ////

The next application of the Banach-Alaoglu theorem involves the

Hahn-Banach theorem and a category argument.

3.18 Theorem In a locally convex space X, every weakly bounded set is

originally bounded, and vice versa.

Part (d) of Exercise 5 shows that the local convexity of X cannot be

omitted from the hypotheses.

proof. Since every weak neighborhood of 0 in X is an original
neighborhood of 0, it is obvious from the definition of

"

bounded" that

every originally bounded subset of X is weakly bounded. The

converse is the nontrivial part of the theorem.
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Suppose E a X is weakly bounded and U is an original
neighborhood of Oin X.

Since X is locally convex, there is a convex, balanced, original

neighborhood V of 0 in X such that Va U. Let K cz X* be the polar
of V:

(1) K = {AeX*: \Ax\ < 1 for all xeF}.

We claim that

(2) V= {x e X: \ Ax \ < 1 for all A e K}.

It is clear that V is a subset of the right side of (2) and hence so is V,

since the right side of (2) is closed. Suppose x0 e X but x0 $ V.

Theorem 3.7 (with Pin place of B) then shows that Ax0 > 1 for some

A e K. This proves (2).
Since E is weakly bounded, there corresponds to each Ael*a

number y(A) < oo such that

(3) \?^x\<y{\) (xeE).

Since K is convex and weak*-compact (Theorem 3.15) and since the

functions A -? Ax are weak*-continuous, we can apply Theorem 2.9

(with X* in place of X and the scalar field in place of Y) to conclude

from (3) that there is a constant y < oo such that

(4) | Ax | < y (x e £, A e K).

Now (2) and (4) show that y~xx e Va U for all x e E. Since V is

balanced,

(5) E c t?a tU (t > y).

Thus E is originally bounded. ////

Corollary. IfX is a normed space, ifEaX, and if

(6) sup|Ax|<oo (AeX*)
xeE

then there exists y < oo such that

(7) ||x|| < y (xe E).

proof. Normed spaces are locally convex; (6) says that E is weakly

bounded, and (7) says that E is originally bounded. ////

We now turn to the question: What can one say about the convex

hull H of a compact set Kl Even in a Hilbert space, H need not be closed,

and there are situations in which H is not compact (Exercises 20, 22). In
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Frechet spaces the latter pathology does not occur (Theorem 3.20). The

proof of this will depend on the fact that a subset of a complete metric

space is compact if and only if it is closed and totally bounded (Appendix

A4).

3.19 Definitions (a) If X is a vector space and £cl, the convex hull

of E will be denoted by co(E). Recall that co(E) is the intersection of all

convex subsets of X which contain E. Equivalently, co(E) is the set of all

finite convex combinations of members of E.

(b) If X is a topological vector space and £cl, the closed convex

hull of E, written co(E), is the closure of co(E).

(c) A subset £ of a metric space X is said to be totally bounded if E

lies in the union of finitely many open balls of radius e, for every e > 0.

The same concept can be defined in any topological vector space,

metrizable or not:

(d) A set £ in a topological vector space X is said to be totally
bounded if to every neighborhood V of 0 in X corresponds a finite set F

such that E cz F + V.

If X happens to be a metrizable topological vector space, then these

two notions of total boundedness coincide, provided we restrict ourselves to

invariant metrics that are compatible with the topology of X. (The proof of

this is as in Section 1.25.)

3.20 Theorem

(a) If Al9 ..., An are compact convex sets in a topological vector space X,

then co(Ax u
• • •

u An) is compact.

(b) If X is a locally convex topological vector space and E cz X is totally

bounded, then co(E) is totally bounded.

(c) IfX is a Frechet space and K cz X is compact, then co(K) is compact.

(d) IfK is a compact set in Rn, then co(K) is compact.

proof, (a) Let S be the simplex in Rn consisting of all s = (su ..., sn)
with st > 0, St +

• • •

+ sn
= 1. Put A = A1X'-xAn. Define

(1) f(s,a) =

s1a1 +
•••

+ snan

andput K=/(S x A).
It is clear that K is compact and that K cz co(A1 u

• • •

u An).
We will see that this inclusion is actually an equality.



CHAPTER 3: CONVEXITY 73

If (s, a) and (t, b) are in S x A and if a > 0, /? > 0, a + /? = 1,

then

(2) af(s,a) + Pf(t,b)=f(u,c\

where u = as + fit e S and c e A, because

OCSi + /ft;

This shows that K is convex. Since At cz K for each i [take st
= 1 in

(1), Sj
= 0 for 7 # i], the convexity of K implies that co(A1 u

• • •

u

An) a K. This proves (a).

(b) Let 1/ be a neighborhood of 0 in X. Choose a convex

neighborhood V of 0 in X such that K + V c I/. Then E cz F + K for

some finite set Fcl. Hence £ cz co(F) + K. The latter set is convex.

It follows that

(4) co(E) cz co(F) + V.

But co(F) is compact [a special case of (a)], and therefore co(F) cz

Ft + F for some finite set F1 cz X. Thus

(5) co(E) cz Fx + V + K cz Fx + C/.

Since C/ was arbitrary, co(F) is totally bounded.

(c) Closures of totally bounded sets are totally bounded in every

metric space, and hence are compact in every complete metric space

(Appendix A4). So if K is compact in a Frechet space, then K is

obviously totally bounded; hence co(K) is totally bounded, by (b), and

therefore ~co(K) is compact.

(d) Let S be the simplex in Rn
+ 1

consisting of all t = (tl9 ...,

tH + 1) with tt > 0 and £ t{,= 1. Let K be compact, K cz K". By the

proposition that follows, x e co(K) if and only if

(6) x = t1x1 +
•••

+ tn+1xn+1

for some t e S and xf e K (1 < i < w + 1). In other words, co(K) is the

image of S x Kn
+ 1

under the continuous mapping

(7) (',*!,..., x» + i)->'i*i +
•'•

+'» + i*» + i-

Hence co(K) is compact. ////

Proposition. IfE<=Rn and x e co(E), then x lies in the convex hull of
some subset of E which contains at most n+ 1 points.

proof. It is enough to show that if k > n and x = Ya+1 tixi *s a

convex combination of some k + 1 vectors xt e Rn, then x is actually a

convex combination of some k of these vectors.
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Assume, with no loss of generality, that tt > 0 for 1 < i < k + 1.

The null space of the linear map

(fc+i
fc+i \

Z aiXi> Yaai\

which sends Rk
+ 1

into Rn x R, has positive dimension, since k > n.

Hence there exists (al9..., ak + 1), with some a{ # 0, so that Yjaixi = ®

and Y, at
= 0- Since tt > 0 for all i, there is a constant X such that

I /la* | < t{ for all i and la} =

^ for at least one ;. Setting ct
= t{

— Xat,
we conclude that x = £ c{x{ and that at least one c, is 0; note also

that X ct
= X '* = 1 and that c< > 0 for all L ////

The following analogue of part (b) of the separation theorem 3.4 will

be used in the proof of the Krein-Milman theorem.

3.21 Theorem Suppose X is a topological vector space on which X*

separates points. Suppose A and B are disjoint, nonempty, compact, convex

sets in X. Then there exists A e X* such that

(1) sup Re Ax < inf Re Ay.
xeA yeB

Note that part of the hypothesis is weaker than in (b) of Theorem 3.4

(since local convexity of X implies that X* separates points on X); to make

up for this, it is now assumed that both A and B are compact.

proof. Let Xw be X with its weak topology. The sets A and B are

evidently compact in Xw. They are also closed in Xw (because Xw is a

Hausdorff space). Since Xw is locally convex, (b) of Theorem 3.4 can

be applied to Xw in place of X; it gives us a A e (Xw)* that satisfies

(1). But we saw in Section 3.11 (as a consequence of Theorem 3.10)

th*t(xwr = x*. in/

'i.ll Extreme points Let K be a subset of a vector space X. A

nonempty set S a K is called an extreme set of K if no point of S is an internal

point of any line interval whose end points are in K, except when both end

points are in S. Analytically, the condition can be expressed as follows: If

x e K, y e K, 0 < t < 1, and

(1 - t)x + tyeS,

then x e S and y e S.

The extreme points of K are the extreme sets that consist of just one

point.
The set of all extreme points of K will be denoted by E(K).
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The following two theorems show that under certain conditions E(K)
is quite a large set.

3.23 The Krein-Milman theorem Suppose X is a topological vector

space on which X* separates points. If K is a nonempty compact convex set in

X, then K is the closed convex hull of the set of its extreme points.
In symbols, K = co(E(K)).

proof. Let 0 be the collection of all compact extreme sets of K. Since

Kg^,^#0. We shall use the following two properties of ^:

(a) The intersection S of any nonempty subcollection of 0* is a member

of&, unless S = 0.

(b) IfS e 0>, A e X*, n is the maximum of Re A on S, and

SA = {x e S: Re Ax = //},

then SA e 0>.

The proof of (a) is immediate. To prove (b), suppose tx +

(1 - t)y = z e SA, x e K, y e K, 0 < t < 1. Since z e S and S e 0>, we

have x e S and y e S. Hence Re Ax < ^, Re Ay < fi. Since Re Az =

fi

and A is linear, we conclude: Re Ax =

pi
= Re Ay. Hence x e SA and

y g SA. This proves (b).
Choose some S e 0>. Let 0*' be the collection of all members of

9 that are subsets of S. Since S e <?', 0' is not empty. Partially order

3F by set inclusion, let Q be a maximal totally ordered subcollection

of &\ and let M be the intersection of all members of Q. Since Q is

a collection of compact sets with the finite intersection property,

M # 0. By (a), M e 0>'. The maximality of Q implies that no proper

subset of M belongs to 0. It now follows from (b) that every A e X*

is constant on M. Since X* separates points on X, M has only one

point. Therefore M is an extreme point of K.

We have now proved that

(1) E(K) nS*0

for every S e 0. In other words, every compact extreme set of K

contains on extreme point of K.

Since K is compact and convex (the assumed convexity of K will

now be used for the first time), we have

(2) co{E{K)) c K

and this shows that cb\E(K)) is compact.

Assume, to reach a contradiction, that some x0 e K is not

in co(E(K)). Theorem 3.21 furnishes then a A g X* such that
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Re Ax < Re Ax0 for every x e co(E(K)). If KA is defined as in (b), then

KA e 0>. Our choice of A shows that KA is disjoint from co(E(K)\ and

this contradicts (1). ////

Remark. The convexity of K was used only to show that ~co(E(K)) is

compact. If X were assumed to be locally convex, the compactness of

co(E(K)) would not be needed, since one could use (b) of Theorem 3.4

in place of Theorem 3.21. The above argument proves then that K cz

co(E(K)). The following version of the Krein-Milman theorem is thus

obtained:

3.24 Theorem // K is a compact subset of a locally convex space then

K cz co{E(K)).

Equivalently, ~co(K) = ~co(E(K)).
It may happen in this situation that co(K) has extreme points which

are not in K. (See Exercise 33.) The next theorem shows that this pathology
cannot occur if co(K) is compact. Therefore it occurs in no Frechet space,

by (c) of Theorem 3.20.

3.25 Milman's theorem // K is a compact set in a locally convex space

X, and ifco(K) is also compact, then every extreme point ofco(K) lies in K.

proof. Assume that some extreme point p of ~co(K) is not in K. Then

there is a convex balanced neighborhood V of 0 in X such that

(1) (p+K)nX = 0.

Choose x!,..., xn: in K so that K cz (J^ (x, + V). Each set

(2) At = co(K n (x, + V)) (1 < i < n)

is convex and also compact, since At cz co(K). Also, K cz A1 u
• • •

u

An. Part (a) of Theorem 3.20 shows therefore that

(3) ~co(K) cz ~co(A1 u
• • •

u An) = co(A1 u
• • •

u An).

But the opposite inclusion holds also, because At cz ~co(K) for each i.

Thus

(4) co(K) = co(A1 u
•••

u An).

In particular, p
= txyx +

• • •

+ tNyN, where each y, lies in some

Ai9 each tj is positive, and £ t}
= 1. The grouping

(5) P
= tiyi + (i-t^y;l-

•

+ '»»

t2 -r
' * *

+ tN
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exhibits p as a convex combination of two points of W(K\ by (4).
Since p is an extreme point of ~co(K\ we conclude from (5) that yx

=

p.

Thus, for some i,

(6) p e At c xt + Fez K + K

which contradicts (1). [Note that ,4, cz x{ + P, by (2), because V is

convex.] ////

Vector-Valued Integration

Sometimes it is desirable to be able to integrate functions/that are defined

on some measure space Q (with a real or complex measure //) and whose

values lie in some topological vector space X. The first problem is to

associate with these data a vector in X that deserves to be called

I- fdp.
JQ

i.e., which has at least some of the properties that integrals usually have.

For instance, the equation

<W=i' (A/) dn
JQ / JQ

ought to hold for every A e X*, because it does hold for sums, and because

integrals are (or ought to be) limits of sums in some sense or other. In fact,

our definition will be based on this single requirement.

Many other approaches to vector-valued integration have been

studied in great detail; in some of these, the integrals are defined more

directly as limits of sums (see Exercise 23).

3.26 Definition Suppose // is a measure on a measure space Q, X is a

topological vector space on which X* separates points, and/is a function

from Q into X such that the scalar functions A/ are integrable with respect

to //, for every A e X*; note that A/is defined by

(1) MM = A(/(«)) (q e Q).

If there exists a vector y e X such that

(2) Ay =

for every A e X*, then we define

(A/) dii
Q

(3) fdfi =

y.
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Remarks. It is clear that there is at most one such y, because X*

separates points on X. Thus there is no uniqueness problem.
Existence will be proved only in the rather special case (sufficient

for many applications) in which Q is compact and/is continuous. In

that case,/(Q) is compact, and the only other requirement that will be

imposed is that the closed convex hull of/(Q) should be compact. By
Theorem 3.20, this additional requirement is automatically satisfied
when X is a Frechet space.

Recall that a Borel measure on a compact (or locally compact) Haus-

dorff space Q is a measure defined on the cr-algebra of all Borel sets in Q;
this is the smallest cr-algebra that contains all open subsets of Q. A

probability measure is a positive measure of total mass 1.

3.27 Theorem Suppose

(a) X is a topological vector space on which X* separates points, and

(b) [i is a Borel probability measure on a compact Hausdorff space Q.

Iff'Q->X is continuous and if~co(f(Q)) is compact in X, then the

integral

(i) y
=

exists, in the sense of Definition 3.26.

Moreover, y e co(f(Q)).

fdn

Remark. If v is any positive Borel measure on Q, then some scalar

multiple of v is a probability measure. The theorem therefore holds

(except for its last sentence) with v in place of //. It can then be

extended to real-valued Borel measures (by the Jordan decomposition

theorem) and (if the scalar field of X is <£) to complex ones.

Exercise 24 gives another generalization.

proof. Regard X as a real vector space. Put H = co(f(Q)). We have

to prove that there exists y e H such that

(2) Ay = (A/) dn
}Q

for every A e X*.

Let L = {A1? ..., A„} be a finite subset of X*. Let EL be the set

of all y e H that satisfy (2) for every A e L. Each EL is closed (by the

continuity of A) and is therefore compact, since H is compact. If no EL



CHAPTER 3: CONVEXITY 79

is empty, the collection of all EL has the finite intersection property.

The intersection of all EL is therefore not empty, and any y in it

satisfies (2) for every A e X*. It is therefore enough to prove EL # 0.

Regard L = (Al9 ..., AJ as a mapping from X into Rn, and put

K = L{f{Q)). Define

(3) mt
= (A,-/) dfi (1 < i < n).

We claim that the point m = (ml9..., mn) lies in the convex hull of K.

If t = (tl9 ...9tn)e Rn is not in this hull, then [by Theorem 3.20

and (b) of Theorem 3.4 and the known form of the linear functionals

on #"] there are real numbers cl9..., cn such that

n n

(4) T,ciui< Y,cili
i=i i=i

if u = (ul9..., un) e K. Hence

(5) tciAif(q)<tciti (qeQ).

Since // is a probability measure, integration of the left side of (5) gives

£ cf m{ < Yj C{ ti • Thus t # m.

This shows that m lies in the convex hull of K. Since

K = L(f(Qj) and L is linear, it follows that m = Ly for some y in the

convex hull H off{Q). For this y we have

iiy
=

mi= (Afj(6) A, y
=

mi= (A,/) <*/x (1 < f < n).

Hence y e EL. This completes the proof. ////

3.28 Theorem Suppose

(a) X is a topological vector space on which X* separates points,

(b) Q is a compact subset ofX9 and

(c) the closed convex hull HofQis compact.

Then y e H if and only if there is a regular Borel probability measure \i

on Q such that

(i) = \ x dfi(x).

Remarks. The integral is to be understood as in Definition 3.26, with

f{x) = x.
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Recall that a positive Borel measure on Q is said to be regular if

(2) //(£) =

sup {fi(K): K cz E) = inf {//(G): £cG}

for every Borel set E cz Q, where K ranges over the compact subsets

of E and G ranges over the open supersets of E.

The integral (1) represents every y e H as a "weighted average"
of Q, or as the

"

center of mass
"

of a certain unit mass distributed

over Q.
We stress once more that (c) follows from (b) if X is a Frechet

space.

proof. Regard X again as a real vector space. Let C(Q) be the Banach

space of all real continuous functions on Q, with the supremum norm.

The Riesz representation theorem identifies the dual space C(Q)* with

the space of all real Borel measures on Q that are differences of

regular positive ones. With this identification in mind, we define a

mapping

(3) <f>:C(Q)*-+X

by

= I x i

JQ

(4) cf>(n) = x dn(x).
JQ

Let P be the set of all regular Borel probability measures on Q.
The theorem asserts that (p(P) = H.

For each x e Q, the unit mass Sx concentrated at x belongs to P.

Since (p(Sx) = x, we see that Q cz <f)(P). Since <\> is linear and P is

convex, it follows that H cz <p(P), where H is the convex hull of Q. By
Theorem 3.27, <p(P) cz H. Therefore all that remains to be done is to

show that <f)(P) is closed in X.

This is a consequence of the following two facts:

(i) P is weak*-compact in C(Q)*.

(ii) The mapping <p defined by (4) is continuous if C(Q)* is given its

weak*-topology and ifX is given its weak topology.

Once we have (i) and (ii), it follows that (f)(P) is weakly compact,

hence weakly closed, and since weakly closed sets are strongly closed,

we have the desired conclusion.

To prove (i), note that

(5) HI hdii
JQ

< 1 if \\h\\ < 1

and that this larger set is weak*-compact, by the Banach-Alaoglu
theorem. It is therefore enough to show that P is weak*-closed.
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If he C(Q) and h > 0, put

(6) Eh = L: hdfi>0>.

Since // -? j h d[i is continuous, by the definition of the weak*-

topology, each Eh is weak*-closed. So is the set

(7) E = U: 1 dfi = 1 >.

Since P is the intersection of £ and the sets Eh, P is weak*-closed.

To prove (if) it is enough to prove that <\> is continuous at the

origin, since (f> is linear. Every weak neighborhood of 0 in X contains

a set of the form

(8) W={yeX:\Aiy\<ri for 1 < i < n},

where At e X* and rt > 0. The restrictions of the At to Q lie in C(Q).
Hence

J* d[i(9) F =

j/ieC«2)*:
is a weak*-neighborhood of 0 in C(Q)*. But

(10)

< r; for 1 < i < n

A(. d/i = Ai x d/i(x) j
= Ai4>(ti\

by Definition 3.26. It follows from (8), (9), and (10) that (f)(V) c py.

Hence <p is continuous. ////

The following simple inequality sharpens the last assertion in the

statement of Theorem 3.27.

3.29 Theorem Suppose Q is a compact Hausdorff space, X is a Banach

space,/: Q-> X is continuous, and [i is a positive Borel measure on Q. Then

fdfi I 11/11 dn.

proof. Put y
= j/dfi. By the corollary to Theorem 3.3, there is a

A e X* such that Ay = ||y|| and | Ax | < ||x|| for all x e X. In

particular,

|A/(s)|<||/(s)||

for all s e Q. By Theorem 3.27, it follows that

= Ay = (A/) dfi:
Q JQ4JQ

dfi. Illl
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Holomorphic Functions

In the study of Banach algebras, as well as in some other contexts, it is

useful to enlarge the concept of holomorphic function from complex-valued
ones to vector-valued ones. (Of course, one can also generalize the domains,

by going from <p to (pn and even beyond. But this is another story.) There

are at least two very natural definitions of
"

holomorphic
"

available in this

general setting, a
"

weak
"

one and a
"

strong
"

one. They turn out to define

the same class of functions if the values are assumed to lie in a Frechet

space.

3.30 Definition Let Q be an open set in <p and let I be a complex

topological vector space.

(a) A function /: Q -? X is said to be weakly holomorphic in Q if A/ is

holomorphic in the ordinary sense for every A e X*.

(b) A function/: Q -? X is said to be strongly holomorphic in Q if

exists (in the topology of X) for every zeQ.

Note that the above quotient is the product of the scalar (w — z)~l
and the vector/(w) — f(z) in X.

The continuity of the functional A that occur in (a) makes it obvious

that every strongly holomorphic function is weakly holomorphic. The

converse is true when X is a Frechet space, but it is far from obvious. (Recall
that weakly convergent sequences may very well fail to converge originally.)
The Cauchy theorem will play an important role in this proof, as will

Theorem 3.18.

The index of a point zef with respect to a closed path F that does

not pass through z will be denoted by Indr (z). We recall that

Indr(Z) = ^[-^.
All paths considered here and later are assumed to be piecewise

continuously differentiable, or at least rectifiable.

3.31 Theorem Let Q be open in <p, let X be a complex Frechet space,

and assume that

f.n-^x

is weakly holomorphic. The following conclusions hold:

(a) fis strongly continuous in Q.
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(b) The Cauchy theorem and the Cauchy formula hold: IfY is a closed path
in Q such that Indr (w) = Ofor every w $ Q, then

L>(i) I no dc = o,

and

(2) f(z) = ^-. [(t-z)-*f(0dt;2711 Jr

ifzeQ and Indr (z) = \.IfTl and F2 are closed paths in Q such that

Indri (w) = Indr2 (w)

for every w £ Q, then

f /(o ^c = f
Jri Jr2

(3) | /(0 <*C = /(0 C

(c) /is strongly holomorphic in Q.

The integrals in (b) are to be understood in the sense of Theorem 3.27.

Either one can regard dC as a complex measure on the range of T (a

compact subset of <P), or one can parametrize T and integrate with respect

to Lebesgue measure on a compact interval in R.

proof, (a) Assume 0 e Q. We shall prove that / is strongly
continuous at 0. Define

(4) Ar={ze£:|z|<r}.

Then A2r <= Q for some r > 0. Let V be the positively oriented

boundary of A2r.
Fix A e X*. Since A/is holomorphic,

(A/)(z) - (A/XO) 1 f (A/XO ,„

(5) —;—=^l(TxdC
if 0 < | z | < 2r. Let M(A) be the maximum of | A/1 on A2r. If

0 < | z | < r, it follows that

(6) \z-'Mf(z)-f(0m<r-'M(A).

The set of all quotients

(7) f/Mza:0<N,r
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is therefore weakly bounded in X. By Theorem 3.18, this set is also

strongly bounded. Thus if V is any (strong) neighborhood of 0 in X,

there exists t < oo such that

(8) f(z) -/(0) e ztV (0<|z|<r).

Consequently, f(z) ->/(0) strongly, as z -? 0. [It may be of some

interest to observe that the proof of (a) used only the local convexity of X.

Neither metrizability nor completeness has played a role so far.]
This was the crux of the matter. The rest is now almost

automatic.

(b) By (a) and Theorem 3.27, the integrals in (1) to (3) exist.

These three formulas are correct (by the theory of ordinary

holomorphic functions) if / is replaced in them by A/, where A is any

member of X*. The formulas are therefore correct as stated, by
Definition 3.26.

(c) Assume, as in the proof of (a), that A2r cz Q, and choose T

as in (a). Define

2ni Jr"
(9) y

=

2^JrC" /(C)C

The Cauchy formula (2) shows, after a small computation, that

(10) =

y + zg(z)
z

if 0 < | z | < 2r, where

(11) g(z) = ^ J* I2reie(2reie - z)]
"

1f(2reie) d6.

Let V be a convex balanced neighborhood of 0 in X. Put

K = {/(C): ICI = 2r}. Then K is compact, so that K cz tV for some

t < oo. If s = tr~2 and | z | < r, it follows that the integrand (11) lies in

sV for every 6. Thus g(z) e sVif \ z \ < r. The left side of (10) therefore

converges strongly to y, as z -? 0. ////

The following extension of Liouville's theorem concerning bounded

entire functions does not even depend on Theorem 3.31. It can be used in

the study of spectra in Banach algebras. (See Exercise 10, Chapter 10.)

3.32 Theorem Suppose X is a complex topological vector space on which

X* separates points. Suppose/: <p-> X is weakly holomorphic andf{(p) is a

weakly bounded subset ofX. Then f is constant.
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proof. For every A e X*, Af is a bounded (complex-valued) entire

function. If z e (p, it follows from Liouville's theorem that

Af(z) = A/(0).

Since X* separates points on X, this implies f(z) = /(0), for every

z e <p. /HI

Part (d) of Exercise 5 describes a weakly bounded set which is not

originally bounded, in an F-space X on which X* separates points.

Compare with Theorem 3.18.

Exercises

1. Call a set H a R" a hyper plane if there exist real numbers al9 ..., an, c (with

at ^ 0 for at least one i) such that H consists of all points x = (xl5 ..., x„) that

satisfy £ a,x,-
= c.

Suppose £ is a convex set in R", with nonempty interior, and y is a

boundary point of E. Prove that there is a hyperplane H such that y e H and £

lies entirely on one side of H. (State the conclusion more precisely.) Suggestion:

Suppose 0 is an interior point of E, let M be the one-dimensional subspace that

contains y, and apply Theorem 3.2.

2. Suppose L2 = L2([ —1, 1]), with respect to Lebesgue measure. For each scalar a,

let Ea be the set of all continuous functions / on [ — 1, 1] such that/(0) = a.

Show that each Ea is convex and that each is dense in L2. Thus Ea and Ep are

disjoint convex sets (if a ^ /?) which cannot be separated by any continuous

linear functional A on L2. Hint: What is A(£a)?
3. Suppose X is a real vector space (without topology). Call a point x0 e A a X an

internal point of /I if /I —

x0 is an absorbing set.

(a) Suppose A and £ are disjoint convex sets in X, and A has an internal point.
Prove that there is a nonconstant linear functional A on X such that

A(A) n A(£) contains at most one point. (The proof is similar to that of

Theorem 3.4.)

(b) Show (with X = R2, for example) that it may not be possible to have A(A)
and A(B) disjoint, under the hypotheses of (a).

4. Let Z00 be the space of all real bounded functions x on the positive integers. Let

t be the translation operator defined on Z00 by the equation

(Tx)(n) = x(n + 1) (n= 1,2,3,...).

Prove that there exists a linear functional A on Z00 (called a Banach limit) such

that

(a) Atx = Ax, and

(b) lim inf x(n) < Ax < lim sup x(n)
n-^oo n-^oo

for every x e Z00.
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Suggestion: Define

x(l) +
• ? •

+ x(n)

M = {x e Z00: lim A„x = Ax exists}
n-^oo

p(x) = lim sup A„ x

n-^oo

and apply Theorem 3.2.

5. For 0 < p < oo, let *fp be the space of all functions x (real or complex, as the

case may be) on the positive integers, such that

I l*(w)|'<oo.
n= 1

For 1 < p < oo, define \\x\\p = {£ |x(n)|p}1/p, and define ||x|L =

sup„ \x(n)\.

(a) Assume 1 < p < oo. Prove that ||x||p and Hxll^ make P and Z00 into Banach

spaces. If p_1 + q'1 = 1, prove that (*fp)* = fq, in the following sense: There

is a one-to-one correspondence A <-» y between (*fp)* and /*, given by

Ax = X x(»M«) (x e /p).

Assume 1 < p < oo and prove that P contains sequences that converge

weakly but not strongly.
On the other hand, prove that every weakly convergent sequence in Z1

converges strongly, in spite of the fact that the weak topology of Z1 is different

from its strong topology (which is induced by the norm).
If 0 < p < 1, prove that *fp, metrized by

d(x,y)= t\*(")-y(n)\p,
n= 1

is a locally bounded F-space which is not locally convex but that (*fp)*
nevertheless separates points on *fp. (Thus there are many convex open sets

in *fp but not enough to form a base for its topology.) Show that (*fp)* = Z00,

in the same sense as in (a). Show also that the set of all x with L | x(n) | < 1 is

weakly bounded but not originally bounded.

(e) For 0 < p < 1, let rp be the weak*-topology induced on Z00 by *fp; see (a) and

(d). If 0 < p < r < 1, show that rp and rr are different topologies (is one

weaker than the other?) but that they induce the same topology on each

norm-bounded subset of Z00. Hint: The norm-closed unit ball of Z00 is

weak*-compact.

6. Put fn(t) = eint (-n <t <n); let IF = Lp(-tc, tc), with respect to Lebesgue
measure. If 1 < p < oo, prove that/n -> 0 weakly in IF, but not strongly.

7. L^fljO, 1]) has its norm topology (H/H^ is the essential supremum of |/|) and its

weak*-topology as the dual of L1. Show that C, the space of all continuous

functions on [0, 1], is dense in L00 in one of these topologies but not in the

other. (Compare with the corollaries to Theorem 3.12.) Show the same with
"

closed
"

in place of
"

dense."

(c)

(d)
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8. Let C be the Banach space of all complex continuous functions on [0, 1], with

the supremum norm. Let B be the closed unit ball of C. Show that there exist

continuous linear functional A on C for which A(B) is an open subset of the

complex plane; in particular, | A | attains no maximum on B.

9. Let E c L2( —

7c, n) be the set of all functions

fm,n(t) = eim< + mein\

where m, n are integers and 0 < m < n. Let Ex be the set of all gel} such that

some sequence in E converges weakly to g. (El is called the weak sequential
closure of E.)

(a) Find all g e Ev

(b) Find all g in the weak closure Ew of E.

(c) Show that 0 e Ew but 0 is not in Eu although 0 lies in the weak sequential
closure of Ev

This example shows that a weak sequential closure need not be weakly

sequentially closed. The passage from a set to its weak sequential closure is

therefore not a closure operation, in the sense in which that term is usually used

in topology. (See also Exercise 28.)

10. Represent Z1 as the space of all real functions x on S = {(m, n): m > 1, n > 1},
such that

11*11 i =Z l*(m> n)\<co.

Let c0 be the space of all real functions y on S such that y(m, n) -? 0 as

m + rc-> oo, with norm WyW^ = sup|y(m, w)|.
Let M be the subspace of Z1 consisting of all x e tx that satisfy the

equations

00

mx(m, 1) = X x(m' n) (m = 1» 2, 3, ...).
n = 2

(a) Prove that Z1 = (c0)*. (See also Exercise 24, Chapter 4.)

(b) Prove that M is a norm-closed subspace of/1.

(c) Prove that M is weak*-dense in Z1 [relative to the weak*-topology given

by (a)].

(d) Let £ be the norm-closed unit ball of S1. In spite of (c), prove that the

weak*-closure ofMnfl contains no ball. Suggestion: If S > 0 and m > 2/(5,
then

W«.i)l*^<| m 2

if x e M n fl, although x(m, 1) = S for some x e SB. Thus (5£ is not in the

weak*-closure ofMnB. Extend this to balls with other centers.

(e) Put x0(m, 1) = m-2, x0(m, rc) = 0 when n > 2. Prove that no sequence in M is

weak*-convergent to x0, in spite of (c). Hint: Weak*-convergence of {x^} to

x0 implies that x/m, n) -? x0(m, n) for all m, rc, as j -* oo, and that {||^c_/|| i} is

bounded.

11. Let X be an infinite-dimensional Frechet space. Prove that X*, with its weak*-

topology, is of the first category in itself.
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12. Show that the norm-closed unit ball of c0 is not weakly compact; recall that

(c0)* = Z1 (Exercise 10).

13. Put fN(t) = N~1^=i eint- Prove that/N -? 0 weakly in L2(-tc, tc).

By Theorem 3.13, some sequence of convex combinations of the/N

converges to 0 in the L2-norm. Find such a sequence. Show that gN
= N~1(fl +

• • •

+fN) will not do.

14. (a) Suppose Q is a locally compact Hausdorff space. For each compact Kcfi

define a seminorm pK on C(Q), the space of all complex continuous functions

on Q, by

pK(f) =

sup {\f(x)\:xeK}.

Give C(Q) the topology induced by this collection of seminorms. Prove that

to every A e C(Q)* correspond a compact K cz Q and a complex Borel

measure \i on K such that

Af- fdfi [/eC(Q])].

(b) Suppose Q is an open set in (p. Find a countable collection T of measures

with compact support in Q such that H(Q) (the space of all holomorphic
functions in Q) consists of exactly those fe C(Q) which satisfy J / d\i = 0 for

every \i e T.

15. Let X be a topological vector space on which X* separates points. Prove that

the weak*-topology of X* is metrizable if and only if X has a finite or countable

Hamel basis. (See Exercise 1, Chapter 2 for the definition.)

16. Prove that the closed unit ball of L1 (relative to Lebesgue measure on the unit

interval) has no extreme points but that every point on the
"

surface
"

of the unit

ball in B (1 < p < oo) is an extreme point of the ball.

17. Determine the extreme points of the closed unit ball of C, the space of all

continuous functions on the unit interval, with the supremum norm. (The answer

depends on the choice of the scalar field.)

18. Let K be the smallest convex set in R3 that contains the points (1, 0, 1), (1, 0,
- 1), and (cos 0, sin 0, 0), for 0 < 0 < 2k. Show that K is compact but that the

set of all extreme points of K is not compact. Does such an example exist in R2?

19. Suppose K is a compact convex set in R". Prove that every x e K is a convex

combination of at most n + 1 extreme points of K. Suggestion: Use induction

on n. Draw a line from some extreme point of K through x to where it leaves K.

Use Exercise 1.

20. Let {uu u2, w3,...} be a sequence of pairwise orthogonal unit vectors in a

Hilbert space. Let K consist of the vectors 0 and n~lun (n > 1). Show that (a) K

is compact; (b) co(K) is bounded; (c) co(K) is not closed. Find all extreme points

oicd(K).

21. If 0 < p < 1, every/e B (except/= 0) is the arithmetic mean of two functions

whose distance from 0 is less than that of/ (See Section 1.47.) Use this to

construct an explicit example of a countable compact set K in B (with 0 as its

only limit point) which has no extreme point.

22. If 0 < p < 1, show that *fp contains a compact set K whose convex hull is

unbounded. This happens in spite of the fact that (*fp)* separates points on *fp;
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see Exercise 5. Suggestion: Define xn e fp by

x„(n) = np~\ x„(m) = 0 if m # n.

Let K consist of 0, xl9 x2, x3, If

yN
= N~1(X1 +••• +XW),

show that {yN} is unbounded in *fp.

23. Suppose ft is a Borel probability measure on a compact Hausdorff space Q, X is

a Frechet space, and/: Q -? X is continuous. A partition of Q is, by definition, a

finite collection of disjoint Borel subsets of Q whose union is Q. Prove that to

every neighborhood V of 0 in X there corresponds a partition {£,} such that the

difference

*= I fdii-ZKEdf(sd
JQ i

lies in K for every choice of st e Et. (This exhibits the integral as a strong limit

of "Riemann sums.") Suggestion: Take V convex and balanced. If A e X* and if

| Ax | < 1 for every x e V, then | Az | < 1, provided that the sets E{ are chosen so

that/(s) —f(t) e V whenever s and t lie in the same £,.

24. In addition to the hypotheses of Theorem 3.27, assume that T is a continuous

linear mapping of X into a topological vector space Y on which Y* separates

points, and prove that

T (fdfi= \(Tf)dfL
JQ JQ

Hint: AT e X* for every A e 7*.

25. Let E be the set of all extreme points of a compact set K in a topological vector

space X on which X* separates points. Prove that to every y e K corresponds a

regular Borel probability measure \i on Q = E such that

y
= \x dfi(x).

JQ

26. Suppose Q is a region in <p, X is a Frechet space, and/: Q -? X is holomorphic.

(a) State and prove a theorem concerning the power series representation of/
that is, concerning the formula/(z) = £ (z

—

a)"c„, where cn e X.

(b) Generalize Morera's theorem to X-valued holomorphic functions.

(c) For a sequence of complex holomorphic functions in Q, uniform

convergence on compact subsets of Q implies that the limit is holomorphic.
Does this generalize to X-valued holomorphic functions?

27. Suppose {aj is a bounded set of distinct complex numbers,/(z) = £j cnzn is an

entire function with every cn ^ 0, and

^)=/(a,4

Prove that the vector space generated by the functions gx is dense in the Frechet

space H((p) defined in Section 1.45.
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Suggestion: Assume // is a measure with compact support such that

J g{ dn = 0 for all i. Put

#v) = f(wz) dfi(z) (w e £).

Prove that <t>(w) = 0 for all w. Deduce that J z" d/z(z) = 0 for n = 1, 2, 3,.... Use

Exercise 14.

Describe the closed subspace of H((p) generated by the functions gt if some

of the cn are 0.

28. Suppose X is a Frechet space (or, more generally, a metrizable locally convex

space). Prove the following statements:

(a) X* is the union of countably many weak*-compact sets En.

(b) If X is separable, each En is metrizable. The weak*-topology of X* is

therefore separable, and some countable subset of X* separates points on X.

(Compare with Exercise 15.)

(c) If K is a weakly compact subset of X and if x0 e K is a weak limit point of

some countable set E c K, then there is a sequence {xn} in E which

converges weakly to x0. Hint: Let Y be the smallest closed subspace of X that

contains E. Apply (b) to Y to conclude that the weak topology of K n Y is

metrizable.

Remark: The point of (c) is the existence of convergent subsequences
rather than subnets. Note that there exist compact Hausdorff spaces in

which no sequence of distinct points converges. For an example, see Exercise

18, Chapter 11.

29. Let C(K) be the Banach space of all continuous complex functions on the

compact Hausdorff space K, with the supremum norm. For p e K, define Ap e

C(K)* by Ap/ = /(p). Show that p -*? Ap is a homeomorphism of K into C(K)*,

equipped with its weak*-topology. Part (c) of Exercise 28 can therefore not be

extended to weak*-compact sets.

30. Suppose that p is an extreme point of some convex set K, and that p
=

hxi +
"'

+ rn*n> where £ tx
= 1, t{ > 0 and xt e K for all i. Prove that x,

=

p

for all i.

31. Suppose that A1, ..., An are convex sets in a vector space X. Prove that every

x e co^! u
• • •

u An) can be represented in the form

x =

tlal +
•••

+ t„a,,,

with #; e /I, and f, > 0 for all i, £ r« = 1.

32. Let X be an infinite-dimensional Banach space and let S = {x e X: \\x\\ = 1} be

the unit sphere of X. We want to cover S with finitely many closed balls, none

of which contains the origin of X. Can this be done in (a) every X, (b) some X,

(c) no XI

33. Let C(I) be the Banach space of all continuous complex functions on the closed

unit interval J, with the supremum norm. Let M = C(I)*, the space of all

complex Borel measures on J. Give M the weak*-topology induced by C(I).
For each t e J, let et e M be the "evaluation functional" defined by etf =

f(t\ and define A e M by A/= J J f(s) ds.
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(a) Show that t —

et is a continuous map from J into M and that K = {et: t e 1}
is a compact set in M.

(b) Show that A e co(K).

(c) Find all /x e co(K).

(d) Let X be the subspace of M consisting of all finite linear combinations

c0A + Cjeri +
•••

+ cnetn

with complex coefficients Cj. Note that co(X) c X and that X n co(K) is

the closed convex hull of K within X. Prove that A is an extreme point of

X n co(K), even though A is not in K.



CHAPTER

4

DUALITY IN

BANACH

SPACES

The Normed Dual of a Normed Space

Introduction If X and Y are topological vector spaces, @(X, Y) will

denote the collection of all bounded linear mappings (or operators) of X

into 7. For simplicity, @(X, X) will be abbreviated to @{X). Each @(X, Y)
is itself a vector space, with respect to the usual definitions of addition and

scalar multiplication of functions. (This depends only on the vector space

structure of Y, not on that of X) In general, there are many ways in which

&(X, Y) can be made into a topological vector space.

In the present chapter, we shall deal only with normed spaces X and

Y. In that case, &(X, Y) can itself be normed in a very natural way. When

Y is specialized to be the scalar field, so that @(X, Y) is the dual space X*

of X, the above-mentioned norm on @(X, Y) defines a topology on X*

which turns out to be stronger than its weak*-topology. The relations

between a Banach space X and its normed dual X* form the main topic of

this chapter.

4.1 Theorem Suppose X and Y are normed spaces. Associate to each

A e @{X, Y) the number

(1) ||A||=sup{||Ax||:xe*, ||x|| < 1}.

92



CHAPTER 4: DUALITY IN BANACH SPACES 93

This definition of ||A|| makes &(X, Y) into a normed space. If Y is a Banach

space, so is &(X, Y).

proof. Since subsets of normed spaces are bounded if and only if they
lie in some multiple of the unit ball, ||A|| < oo for every A e &(X, Y).
If a is a scalar, then (aA)(x) = a

•

Ax, so that

(2) ||«A|| = |«||| A||.

The triangle inequality in Y shows that

\\(Al + \2)x\\ = ||A,x + A2x|| < IIA.xll + ||A2x||

^(IIAiII + IIAjIDIIxII^HA^I + IIA.II

for every x e X with ||x|| < 1. Hence

(3) l|Ai + A2ll<HA1|| + ||A2||.

If A # 0, then Ax # 0 for some xe X; hence ||A|| > 0. Thus @(X, Y)
is a normed space.

Assume now that Y is complete and that {AJ is a Cauchy

sequence in &(X, Y). Since

(4) ||Anx-Amx||<||A„-AJ|||x||

and since it is assumed that ||A„ — Am|| —? 0 as n and m tend to oo,

{A„ x} is a Cauchy sequence in Y for every x e X. Hence

(5) Ax = lim A„ x

n-* oo

exists. It is clear that A: X -? Y is linear. If e > 0, the right side of (4)
does not exceed e||x||, provided that m and n are sufficiently large. It

follows that

(6) ||Ax-Amx||<e||x||

for all large m. Hence ||Ax|| < (||AJ| + e)||x||, so that A e @(X, 7),
and || A -

AJ| < e. Thus Am -? A in the norm of @(X, Y). This

establishes the completeness of @(X, Y). ////

4.2 Duality It will be convenient to designate elements of the dual

space X* of X by x* and to write

(1) <x, x*>

in place of x*(x). This notation is well adapted to the symmetry (or duality)
that exists between the action of X* on X on the one hand and the action

of X on X* on the other. The following theorem states some basic

properties of this duality.
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4.3 Theorem Suppose B is the closed unit ball of a normed space X.

Define

\\x*\\ =sup{|<x,x*>|:xefl}

for every x* e X*.

(a) This norm makes X* into a Banach space.

(b) Let B* be the closed unit ball ofX*. For every x e X,

||x|| =

sup {| <*,**> | :x*efl*}.

Consequently, x* -? <x, x*> is a bounded linear functional on X*, of
norm \\x\\.

(c) B* is weak*-compact.

proof. Since @(X, Y) = X*, when Y is the scalar field, (a) is a

corollary of Theorem 4.1.

Fix x e X. The corollary to Theorem 3.3 shows that there exists

y* e B* such that

(1) <x, y*> = ||x||.

On the other hand,

(2) |<x,x*>|< ||x||||x*||<NI

for every x* e B*. Part (b) follows from (1) and (2).
Since the open unit ball U of X is dense in B, the definition of

||x*|| shows that x* e B* if and only if | <x, x*> | < 1 for every x e U.

Part (c) now follows directly from Theorem 3.15. ////

Remark. The weak*-topology of X* is, by definition, the weakest one

that makes all functionals

x* -? <x, x*}

continuous. Part (b) shows therefore that the norm topology of X* is

stronger than its weak*-topology; in fact, it is strictly stronger, unless

dim X < oo, since the proposition stated at the end of Section 3.11

holds for the weak*-topology as well.

Unless the contrary is explicitly stated, X* will from now on

denote the normed dual of X (whenever X is normed), and all

topological concepts relating to X* will refer to its norm topology. This

implies in no way that the weak*-topology will not play an important
role.

We now give an alternative description of the operator norm defined

in Theorem 4.1.
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4.4 Theorem IfX and Y are normed spaces and i/Ae &(X, Y), then

||A||=sup{|<Ax,j/*>|: ||x|| < 1, ||j/*|| < 1}.

proof. Apply (b) of Theorem 4.3 with Y in place of X. This gives

||Ax|| =sup {|<Ax, y*>|: ||j/*|| < 1}

for every x e X. To complete the proof, recall that

||A||= sup {||Ax||: ||x|| <1}. ////

4.5 The second dual of a Banach space The normed dual X* of a

Banach space X is itself a Banach space and hence has a normed dual of its

own, denoted by X**. Statement (b) of Theorem 4.3 shows that every x e X

defines a unique <f>x e X**, by the equation

(1) <x, x*) = <**, <fix} (x* e X*),

and that

(2) ll^|| = ||x|| (xeX).

It follows from (1) that (p: X -? X** is linear; by (2), <p is an isometry. Since

X is now assumed to be complete, <p(X) is closed in X**.

Thus <f) is an isometric isomorphism ofX onto a closed subspace ofX**.

Frequently, X is identified with (p{X); then X is regarded as a sub-

space of X**.

The members of (p(X) are exactly those linear functionals on X* that

are continuous relative to its weak*-topology. (See Section 3.14.) Since the

norm topology of X* is stronger, it may happen that (p(X) is a proper

subspace of X**. But there are many important spaces X (for example, all

If-spaces with 1 < p < oo) for which cf)(X) = X**; these are called reflexive.
Some of their properties are given in Exercise 1.

It should be stressed that, in order for X to be reflexive, the existence

of some isometric isomorphism <\> of X onto X** is not enough; it is crucial

that the identity (1) be satisfied by (p.

4.6 Annihilators Suppose X is a Banach space, M is a subspace of X,

and N is a subspace of X*; neither M nor N is assumed to be closed. Their

annihilators M1 and LN are defined as follows:

M1 = {x* e X*: <x, x*> = 0 for all x e M},

LN = {xe X: <x, x*> = 0 for all x* e N}.

Thus M1 consists of all bounded linear functionals on X that vanish

on M, and ±N is the subset of X on which every member of N vanishes. It
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is clear that M1 and ±N are vector spaces. Since M1 is the intersection of

the null spaces of the functionals (px, where x ranges over M (see Section

4.5), M1 is a weak*-closed subspace of X*. The proof that LN is a norm-

closed subspace of X is even more direct. The following theorem describes

the duality between these two types of annihilators.

4.7 Theorem Under the preceding hypotheses,

(a) ±(M±) is the norm-closure ofM in X, and

(b) ^N)1 is the weak*-closure ofN in X*.

As regards (a), recall that the norm-closure of M equals its weak

closure, by Theorem 3.12.

proof. If x e M, then <x, x*> = 0 for every x* e M1, so that

x e ±(M±). Since -L(M±) is norm-closed, it contains the norm-closure

M of M. On the other hand, if x $ M the Hahn-Banach theorem

yields an x* e M1 such that <x, x*> # 0. Thus x $ ±(M-L), and (a) is

proved.

Similarly, if x* e N, then <x, x*} = 0 for every x e LN, so that

x* e CN)1. This weak*-closed subspace of X* contains the weak*-

closure N of N. If x* $ N, the Hahn-Banach theorem (applied to the

locally convex space X* with its weak*-topology) implies the

existence of an x e LN such that <x, x*> # 0; thus x* <£ ("LN)±, which

proves (b). ////

Observe, as a corollary, that every norm-closed subspace of X is the

annihilator of its annihilator and that the same is true of every weak*-

closed subspace of X*.

4.8 Duals of subspaces and of quotient spaces If M is a closed sub-

space of a Banach space X, then X/M is also a Banach space, with respect

to the quotient norm. This was defined in the proof of (d) of Theorem 1.41.

The duals of M and of X/M can be described with the aid of the annihilator

M1 of M. Somewhat imprecisely, the result is that

M* = X*/ML and (X/M)* = M1.

This is imprecise because the equalities should be replaced by isometric

isomorphisms. The following theorem describes these explicitly.
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4.9 Theorem Let M be a closed subspace of a Banach space X.

(a) The Hahn-Banach theorem extends each m* e M* to a functional
x* e X*. Define

Gm* = x* + M1.

Then a is an isometric isomorphism ofM* onto X*/ML.

(b) Letn: X -? X/M be the quotient map. Put Y = X/M. For each y* e Y*,

define

zy* = y*n.

Then % is an isometric isomorphism of Y* onto M1.

proof, (a) If x* and xj are extensions of m*, then x* — x? is in M1;
hence x* + M1 = x? + M1. Thus a is well defined. A trivial

verification shows that a is linear. Since the restriction of every x* e X* to M

is a member of M *, the range of a is all of X*/ML.
Fix m* e M*. If x* e X* extends m*, it is obvious that

||m*|| < ||x*||. The greatest lower bound of the numbers ||x*|| so

obtained is ||x* + Mx||, by the definition of the quotient norm. Hence

l|m*|| < ||(7W*|| < ||X*||.

It follows that ||crm*|| = ||m*||. This completes (a).

(b) If x g X and y* e Y*, then 7rx g 7; hence x -? y*nx is a

continuous linear functional on X which vanishes for x e M. Thus

zy* g M1. The linearity of t is obvious. Fix x* g M1. Let N be the

null space of x*. Since M a N, there is a linear functional A on Y

such that An = x*. The null space of A is n(N), a closed subspace of

7, by the definition of the quotient topology in Y = X/M. By
Theorem 1.18, A is continuous, that is, A g Y*. Hence tA = An = x*.

The range of t is therefore all of M1.

It remains to be shown that t is an isometry.
Let B be the open unit ball in X. Then nB is the open unit ball

of Y = nX. Since xy* = y*n, we have

l|Ty*ll = lly*7r||=sup{|<7rx,y*>|:xGB}

= sup{|<y,y*>|:yG7rB} = ||y*||

for every y* e Y*. ////

Adjoints

We shall now associate with each T e &(X, Y) its adjoint, an operator

T* g ^(Y*, X*), and will see how certain properties of T are reflected in

the behavior of T*. If X and Y are finite-dimensional, every T e @I(X, Y)
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can be represented by a matrix [7]; in that case, [7*] is the transpose of

[7], provided that the various vector space bases are properly chosen. No

particular attention will be paid to the finite-dimensional case in what

follows, but historically linear algebra did provide the background and

much of the motivation that went into the construction of what is now

known as operator theory.

Many of the nontrivial properties of adjoints depend on the

completeness of X and Y (the open mapping theorem will play an important role).
For this reason, it will be assumed throughout that X and Y are Banach

spaces, except in Theorem 4.10, which furnishes the definition of 7*.

4.10 Theorem Suppose X and Y are normed spaces. To each

7 e @(X, Y) corresponds a unique 7* e ^( Y*, X*) that satisfies

(1) <7x, y*> = <x, 7*y*>

for all x e X and all y* e Y*. Moreover, 7* satisfies

(2) ||7*|| = ||7||.

proof. If y* e Y* and 7 e @{X, 7), define

(3) T*y* = y* o 7.

Being the composition of two continuous linear mappings,

7*y* e X*. Also,

<x, 7*y*> = (T*y*)(x) = y*(Tx) = <7x, y*>,

which is (1). The fact that (1) holds for every x e X obviously
determines T*y* uniquely.

Ifyfe y*andy?e 7*, then

<x, 7*(y* + y*)> = <7x,y* + y*>

= <Tx, y*> + <Tx, y*>

= <x, 7*j/*> + <x, 7*y2*>

= <x, T*y* + 7*y?>
for every x e X, so that

(4) T*(yt + yl)=T*yt + T*yt

Similarly, 7*(ay*) = a7*y*. Thus 7*: 7* -+X* is linear. Finally, (b)
of Theorem 4.3 leads to

||7||=sup{|<7x,>;*>|:||x||<l, ||>>*|| < 1}

= sup{|<x, 7*j/*>|:||x||<1, ||y*||<l}

= sup{||7*y*||:||y*||<l} = ||7*||. ////
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4.11 Notation If T maps X into Y, the null space and the range of T

will be denoted by Jf{J) and 0t(T\ respectively:

JT(T)= {xe X: Tx = 0},

0t{T) = {ye Y: Tx =

y for some x e X).

The next theorem concerns annihilators; see Section 4.6 for the notation.

4.12 Theorem Suppose X and Y are Banach spaces, and T e 0$(X, Y).
Then

JT(T*) = ®{T)L and JT(T) = L0t{T*\

proof. In each of the following two columns, each statement is

obviously equivalent to the one that immediately follows and/or precedes
it.

y* e JT(T*). x e JT(T).

T*y* = 0. Tx = 0.

<x, T*y*} = 0 for all x. <Tx, y*> = 0 for all y*.

(Tx,y*) = 0 for all x. <x, T*j/*> = 0 for all y*.

y* e ®(T)L. x e ^(T*). ////

Corollaries

(a) J^(T*) is weak*-closed in Y*.

(b) &(T) is dense in Y if and only if T* is one-to-one.

(c) T is one-to-one if and only if0t(T*) is weak*-dense in X*.

Recall that M1 is weak*-closed in Y* for every subspace M of

Y. In particular, this is true of 0t{T)L- Thus (a) follows from the

theorem.

As to (6), 0t{T) is dense in Y if and only if 0t{J)L = {0}; in that

case, jV(T*) = {0}.
Likewise, L0t{T*) = {0} if and only if 9t(T*) is annihilated by no

x e X other than x = 0; this says that &t(T*) is weak*-dense in X*.

Note that the Hahn-Banach theorem 3.5 was tacitly used in the

proofs of (b) and (c).
There is a useful analogue of (b), namely, that 0t{J) is all of Y if

and only if T* is one-to-one and its inverse [mapping 0t{J*) onto Y*]
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is bounded. The equivalence of (a) and (d) in the following theorem

expresses this in slightly different terms. Theorem 4.15 is closely
related. The union of the following three theorems is sometimes called

the closed range theorem.

4.13 Theorem Let U and V be the open unit balls in the Banach spaces

X and Y, respectively. IfTe &(X, Y) and 8 > 0, then the implications

(a)-(fc)-,(c)-(d)

hold among the following statements:

{a) || TVII ^ S\\y*\\ for every y* e Y*.

(b) J\U)^8V.

(c) T(U) => 8V.

(d) T(X)=Y.

Moreover, if(d) holds, then (a) holds for some 8 > 0.

proof. Assume (a), and pick y0 $ T(U). Since T(U) is convex, closed,

and balanced, Theorem 3.7 shows that there is a y* such that

I <y, y*> | < 1 for every y e T(U), but | <j/0, j/*> | > 1. If x e U, it

follows that

|<x,T*y*>| = |<rx,y*>|^l.

Thus || T*y*|| < 1, and now (a) gives

<5 < <5|<y0, y*>l < s\\y0\\ \\y*\\ * ll-Voll IIrVII < ||y0ll.

It follows that y e T(U) if ||y|| < 5. Thus (a) -? (b).

Next, assume (b). Take 8 = 1, without loss of generality. Then

T(U) =3 V. To every y e Y and every e > 0 corresponds therefore an

xe X with ||x|| < ||y|| and \\y - Tx\\ < e.

Pick yx e V. Pick en > 0 so that

2>„<i-llyil|.

Assume n > 1 and yn is picked. There exists xn such that ||xn|| < ||yn||

and||yn-rxn||<en.Put

yn+i
=

yn- Txn-

By induction, this process defines two sequences {xn} and {yn}. Note

that

11*,.+ill < ll^+lll = llyn-^nll <^n-
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Hence

£ llxJI < II*!|| + Zen<||yi||+ Z6„<1.
n= 1 n= 1 n= 1

It follows that x = £ x„ is in 1/ (see Exercise 23) and that

N N

Tx = lim £ TX, = lim £ (j/„ -

j/„ + J =

yx

since yN+ x
-? 0 as N -? oo. Thus ^

= Tx e T(l/), which proves (c).
Note that the preceding argument is just a specialized version of

part of the proof of the open mapping theorem 2.11.

That (c) implies (d) is obvious.

Assume (d). By the open mapping theorem, there is a S > 0 such

that T(U) =3 <5K. Hence

|| TV* 11= sup {| <x, r*y*)|:xel/}

= sup{|<Tfx,y*>|:xel/}

>sup{|<y,y*>|:ye<5K}=<5||y*||

for every y* e Y*. This is (a). ////

4.14 Theorem // X and Y are Banach spaces and if T e @(X, Y), then

each of the following three conditions implies the other two:

(a) 0t{T) is closed in Y.

{b) @{T*) is weak*-closed in X*.

(c) &(T*) is norm-closed in X*.

Remark. Theorem 3.12 implies that (a) holds if and only if 0t{J) is

weakly closed. However, norm-closed subspaces of X* are not always
weak*-closed (Exercise 7, Chapter 3).

proof. It is obvious that (b) implies (c). We will prove that (a) implies

(b) and that (c) implies (a).

Suppose (a) holds. By Theorem 4.12 and (b) of Theorem 4.7,

jV(T)l is the weak*-closure of &(T*). To prove (b) it is therefore

enough to show that Jf(T)L c @(T*).
Pick x* e J^(T)L. Define a linear functional A on 0t{T) by

ATx = <x, x*} {x e X).

Note that A is well defined, for if Tx = Tx\ then x - x' e Jf(T)\
hence

<x
— x\ x*} = 0.
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The open mapping theorem applies to

T:X->@(T)

since 0t(J) is assumed to be a closed subspace of the complete space Y

and is therefore complete. It follows that there exists K < oo such that

to each y e M(T) corresponds anxel with Tx =

y, \\x\\ < K\\y\\,
and

\Ay\ = \ATx\ = \<x,x*y\<K\\y\\\\x*\\.

Thus A is continuous. By the Hahn-Banach theorem, some y* e Y*

extends A. Hence

{Tx, y*} = ATx = <x, x*} {x e X).

This implies x* = T*y*. Since x* was an arbitrary element of J^iT)1,
we have shown that J^{T)L cz @(T*). Thus {b) follows from (a).

Suppose next that (c) holds. Let Z be the closure of 0t{J) in Y.

Define S e 0$(X, Z) by setting Sx = Tx. Since @(S) is dense in Z,

Corollary (b) to Theorem 4.12 implies that

S*: Z*-+X*

is one-to-one.

If z* e Z*, the Hahn-Banach theorem furnishes an extension y*
of z*; for every xel,

<x, TV) = <Tx, y*> = {Sx, z*> = <x, S*z*).

Hence S*z* = T*y*. It follows that S* and T* have identical ranges.

Since (c) is assumed to hold, &(S*) is closed, hence complete.

Apply the open mapping theorem to

S*:Z*->^(S*).

Since S* is one-to-one, the conclusion is that there is a constant c > 0

which satisfies

c||z*|| < ||S*z*||

for every z* e Z*. Hence S: X -? Z is an open mapping, by Theorem

4.13. In particular, S{X) = Z. But 0t{T) = @{S), by the definition of S.

Thus 0t{J) = Z, a closed subspace of Y.

This completes the proof that (c) implies (a). ////

The following consequence is useful in applications.

4.15 Theorem Suppose X and Y are Banach spaces, and T e 08(X, Y).
Then
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(a) 0t{T)=Y if and only if

(b) T* is one-to-one and &(T*) is norm-closed.

proof. If (a) holds then T* is one-to-one, by Theorem 4.12. The

implication (d) -? (a) of Theorem 4.13 shows that T* is (a multiple of)
a dilation; hence &(T*) is closed, by Theorem 1.26.

If (b) holds, then 0t{T) is dense in Y, again by Theorem 4.12, and

0t{T) is closed by Theorem 4.14.

Compact Operators

4.16 Definition Suppose X and Y are Banach spaces and U is the open

unit ball in X. A linear map T: X -? Y is said to be compact if the closure of

T(U) is compact in 7. It is clear that T is then bounded. Thus T e @{X, Y).

Since Y is a complete metric space, the subsets of Y whose closure is

compact are precisely the totally bounded ones. Thus T e &(X, Y) is

compact if and only if T(U) is totally bounded. Also, T is compact if and

only if every bounded sequence {xn} in X contains a subsequence {xn.} such

that {Txn.} converges to a point of Y.

Many of the operators that arise in the study of integral equations are

compact. This accounts for their importance from the standpoint of

applications. They are in some respects as similar to linear operators on finite-

dimensional spaces as one has any right to expect from operators on

infinite-dimensional spaces. As we shall see, these similarities show up

particularly strongly in their spectral properties.

4.17 Definitions (a) Suppose X is a Banach space. Then &(X) [which is

an abbreviation for &(X, 7)] is not merely a Banach space (see Theorem

4.1) but also an algebra: If S e @{X) and T e @{X\ one defines ST e @(X)

by

(STXx) = S(T(x)) (x e X).

The inequality

llsr||<||S||||T||

is trivial to verify.
In particular, powers of T e @I(X) can be defined: T° = /, the identity

mapping on X, given by Ix =

x, and Tn = TTn~l, for n = 1, 2, 3, ... .

(b) An operator T e 0$(X) is said to be invertible if there exists

S e @(X) such that

ST = 1 = TS.
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In this case, we write S = T l. By the open mapping theorem, this happens
if and only if Jf(T) = {0} and 0t{T) = X.

(c) The spectrum a(T) of an operator T e 0$(X) is the set of all scalars

X such that T — XI is not invertible. Thus X e a(T) if and only if at least one

of the following two statements is true:

(i) The range of T — XI is not all of X.

(ii) T — XI is not one-to-one.

If (ii) holds, X is said to be an eigenvalue of T; the corresponding

eigenspace is jV(T — XI); each x e jV(T — XI) (except x = 0) is an

eigenvector of T; it satisfies the equation

Tx = Xx.

Here are some very easy facts which will illustrate these concepts.

4.18 Theorem Let X and Y be Banach spaces.

(a) IfTe 0$(X, Y) and dim 0t(T) < oo, then T is compact.

(b) IfTe 0$(X, Y), T is compact, and 0t(T) is closed, then dim 0t{T) < oo.

(c) The compact operators form a closed subspace of &(X, Y) in its norm-

topology.

(d) IfTe @(X), T is compact, and X # 0, then dim Jf(T - XI) < oo.

(e) If dim X = oo, T e @(X), and T is compact, then 0 e a(T).

if) IfSe 0$(X), T e @(X), and T is compact, so are ST and TS.

proof. Statement (a) is obvious. If 0t{J) is closed, then 0t{J) is

complete (since Y is complete), so that T is an open mapping of X onto

0t{T)\ if T is compact, it follows that 0t(T) is locally compact; thus (b)
is a consequence of Theorem 1.22.

Put Y = JT(T - XI) in {d). The restriction of T to Y is a

compact operator whose range is Y. Thus (d) follows from (b), and so

does {e), for if 0 is not in a{T), then 0t(J) = X. The proof of (/) is

trivial.

If S and T are compact operators from X into Y, so is S + T,

because the sum of any two compact subsets of Y is compact. It

follows that the compact operators form a subspace £ of <%(X, Y).
To complete the proof of (c), we now show that £ is closed. Let T e

38(X, Y) be the closure of Z, choose r > 0, and let U be the open unit

ball in X. There exists Sel with \\S - T\\ < r. Since S(U) is totally

bounded, there are points xl9 ..., xn in U such that S(U) is covered

by the balls of radius r with centers at the points Sxt. Since
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||Sx — Tx|| < r for every x e U, it follows that T(U) is covered by the

balls of radius 3r with centers at the points Txt. Thus T(U) is totally

bounded, which proves that Tel. ////

The main objective of the rest of this chapter is to analyze the

spectrum of a compact T e $(X\ Theorem 4.25 contains the principal results.

Adjoints will play an important role in this investigation.

4.19 Theorem Suppose X and Y are Banach spaces and T e &(X, Y).
Then T is compact if and only ifT* is compact.

proof. Suppose T is compact. Let {y*} be a sequence in the unit ball

of 7*. Define

fn(y) = <y, y?> (y e n

Since | fn(y) -/„(/) | < \\y - y'\\, {/J is equicontinuous. Since T(U)
has compact closure in Y (as before, U is the unit ball of X), Ascoli's

theorem implies that {/J has a subsequence {/„.} that converges

uniformly on T(U). Since

\\T*y* -

T*y*\\ =

sup | <Tx, y* - y*> |

= suP|/nt.(rx)-/n.(rx)|,

the supremum being taken over x e U, the completeness of I*

implies that {T*y*.} converges. Hence T* is compact.

The second half can be proved by the same method, but it may

be more instructive to deduce it from the first half.

Let (f>: X -? X** and i//: Y -? Y** be the isometric embeddings

given by the formulas

<x, x*> = <x*, 0x> and <y, y*> = <y*, ij/y),

as in Section 4.5. Then

<y*, xjjTxy = <7x, y*> = <x, T*y*) = <7*y*, 0x> = <y*, 7**0x>

for all x e X and y* e Y*, so that

yj,T = T**<fr.

HxeU, then (f>x lies in the unit ball I/** of X**. Thus

il/T{U) c 7**(L/**).

Now assume that T* is compact. The first half of the theorem

shows that T**: X** -? Y** is compact. Hence T**(U**) is totally
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bounded, and so is its subset i//T(U). Since \jj is an isometry, T(U) is

also totally bounded. Hence T is compact. ////

4.20 Definition Suppose M is a closed subspace of a topological vector

space X. If there exists a closed subspace N of X such that

X = M + N and M n N = {0},

then M is said to be complemented in X. In this case, X is said to be the

direct sum of M and N, and the notation

X = M®N

is sometimes used.

We shall see examples of uncomplemented subspaces in Chapter 5. At

present we need only the following simple facts.

4.21 Lemma Let M be a closed subspace of a topological vector space X.

(a) IfX is locally convex and dim M < oo, then M is complemented in X.

(b) If dim {X/M) < oo, then M is complemented in X.

The dimension of X/M is also called the codimension of M in X.

proof, (a) Let {el9 ..., en} be a basis for M. Every x e M has then a

unique representation

x = ccl(x)el +
•••

+ an(x)en.

Each a, is a continuous linear functional on M (Theorem 1.21 and

Lemma 1.20) which extends to a member of X*, by the Hahn-Banach

theorem. Let N be the intersection of the null spaces of these

extensions. Then X = M®N.

(b) Let n: X ->X/M be the quotient map, let {el9 ..., e„} be a

basis for X/M, pick xt e X so that 7rxf
= e{\\ < i < n), and let N be

the vector space spanned by {xl9..., xn}. Then X = M © N. ////

4.22 Lemma // M is a subspace of a normed space X, if M is not dense

in X9 and ifr> 1, then there exists x e X such that

\\x\\ < r but \\x - y\\ > 1 for all y e M.

proof. There exists xx e X whose distance from M is 1, that is,

inf{||x1-y||:yeM} = l.

Choose yx e M such that ||xx —

yY || < r, and put x =

xY
—

yv ////
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4.23 Theorem // X is a Banach space, T e 0b(X), T is compact, and

X # 0, then T — XI has closed range.

proof. By (d) of Theorem 4.18, dim JT{T - XI) < oo. By (a) of

Lemma 4.21, X is the direct sum of Jf{J — XI) and a closed subspace

M. Define an operator S e @{M, X) by

(1) Sx = Tx - Xx.

Then S is one-to-one on M. Also, 0t(S) = 0t(J
-

XI). To show that

0t(S) is closed, it suffices to show the existence of an r > 0 such that

(2) r||x|| < ||Sx|| for all x e M,

by Theorem 1.26.

If (2) fails for every r > 0, there exists {xn} in M such that

||xj = 1, Sxn->0, and (after passage to a subsequence) Txn->x0 for

some x0 e X. (This is where compactness of T is used.) It follows that

Xxn -? x0. Thus x0 e M, and

Sx0 = lim (XSxn) = 0.

Since S is one-to-one, x0
= 0. But ||xj| = 1 for all n, and x0

=

lim Xxn, and so ||x0|| = | X\ > 0. This contradiction proves (2) for

some r > 0. ////

4.24 Theorem Suppose X is a Banach space, T e @(X), T is compact,
r > 0, and E is a set of eigenvalues XofT such that \X\ > r. Then

(a) for each X e E, 0t{T -

XI) # X, and

(b) E is a finite set.

proof. We shall first show that if either (a) or (b) is false then there

exist closed subspaces Mn of X and scalars Xne E such that

(1) M1c=M2c=M3c=..., MH*MH + l,

(2) T(Mn) cz M„ for n > 1,

and

(3) {T-XnI){Mn)^Mn_Y forn>2.

The proof will be completed by showing that this contradicts the

compactness of T.
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Suppose (a) is false. Then 0t{T —

X0 /) = X for some X0 e E. Put

S = T — X0I, and define Mn to be the null space of Sn. (See Section

4.17.) Since X0 is an eigenvalue of T, there exists xl e Ml9 xl # 0.

Since 0t(S) = X, there is a sequence {xn} in X such that Sxn+l =

xn,

n = 1, 2, 3,... . Then

(4) Snxn + l=xl^0 but Sn+lxn+l=Sxl=0.

Hence Mn is a proper closed subspace of Mn + 1. It follows that (1) to

(3) hold, with Xn = X0. [Note that (2) holds because ST = TS.]

Suppose (6) is false. Then E contains a sequence {/IJ of distinct

eigenvalues of T. Choose corresponding eigenvectors en, and let Mn
be the (finite-dimensional, hence closed) subspace of X spanned by

{et,..., en}. Since the Xn are distinct, {ex,..., en} is a linearly
independent set, so that Mn_l is a proper subspace of Mn. This gives (1). If

x e M„, then

x =

a1e1 +
???

+ane„,

which shows that Tx e Mn and

(7-/in/)x = a1(/i1 -;.>! +
•••

+a„_1(/ln_1 -4K-! eM^i.

Thus (2) and (3) hold.

Once we have closed subspaces Mn satisfying (1) to (3), Lemma

4.22 gives us vectors yn e Mn, for n = 2, 3, 4,..., such that

(5) ||j/J<2 and \\yn
- x\\ > 1 if xeM„_,

If 2 < m < n, define

(6) z=Tym-(T-XHI)ym.

By (2) and (3), z e Mn_v Hence (5) shows that

\\Tyn -

TyJ = \\Xnyn
- z|| = | A.| \\yn

- K'A\ >\K\>r.

The sequence {Tyn} has therefore no convergent subsequences,

although {yn} is bounded. This is impossible if T is compact. ////

4.25 Theorem Suppose X is a Banach space, T e &(X), and T is

compact.

(a) If X # 0, then the four numbers

a = dim JT{J
- U)

P = dim XI9KJ - XI)

a* = dim J^(T*
- XI)

P* = dim X*/@(T*
- XI)
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are equal and finite.

(b) If X # 0 and X e o(T) then X is an eigenvalue ofT and ofT*.

(c) cr(T) is compact, at most countable, and has at most one limit point,

namely, 0.

Note: The dimension of a vector space is here understood to be either

a nonnegative integer or the symbol oo. The letter / is used for the identity

operators on both X and X*; thus

(T -

XI)* = T* - XI* = T* - XI,

since the adjoint of the identity on X is the identity on X*.

The spectrum a(T) of T was defined in Section 4.17. Theorem 4.24

contains a special case of (a): P = 0 implies a = 0. This will be used in the

proof of the inequality (4) below.

It should be noted that a(T) is compact even if T is not (Theorem

10.13). The compactness of T is needed for the other assertions in (c).

proof. Put S = T — XI, to simplify the writing.
We begin with an elementary observation about quotient spaces.

Suppose M0 is a closed subspace of a locally convex space Y, and k is

a positive integer such that k < dim Y/M0. Then there are vectors

y!,..., yk in Y such that the vector space M, generated by M0 and

yl9 ..., yt contains M,-_ l
as a proper subspace. By Theorem 1.42, each

M, is closed. By Theorem 3.5, there are continuous linear functionals

A1} ..., Ak on 7 such that A,yf = 1 but Aty = 0 for all y e Mt_v
These functionals are linearly independent. The following conclusion

is therefore reached: If £ denotes the space of all continuous linear

functionals on Y that annihilate M0, then

(1) dim Y/M0 < dim I.

Apply this with Y = X, M0 = <#(S). By Theorem 4.23, M{S) is

closed. Also, I = ^(S)1 = JT(S*\ by Theorem 4.12, so that (1)
becomes

(2) p < a*.

Next, take Y = X* with its weak*-topology; take M0 = M(S*\

By Theorem 4.14, $(S*) is weak*-closed. Since £ now consists of all

weak*-continuous linear functionals on X* that annihilate &(S*), £ is

isomorphic to LM{S*) = jV(S) (Theorem 4.12), and (1) becomes

(3) P* < a.

Our next objective is to prove that

(4) a<j8.
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Once we have (4), the inequality

(5) a* < 0*

is also true, since T* is a compact operator (Theorem 4.19). Since

a < oo by (d) of Theorem 4.18, (a) is an obvious consequence of the

inequalities (2) to (5).
Assume that (4) is false. Then a > /?. Since a < oo, Lemma 4.21

shows that X contains closed subspaces E and F such that dim F = ft
and

(6) X = Jf{S) ®E = @(S) 0 F.

Every xeX has a unique representation x =

xl + x2, with xt e

jV{S\ x2 g E. Define n: X -? jV{S) by setting nx =

xv It is easy to see

(by the closed graph theorem, for instance) that n is continuous.

Since we assume that dim jV(S) > dim F, there is a linear

mapping (f) of jV{S) onto F such that 0xo = 0 for some x0 # 0. Define

(7) 0>x = Tx + 07rx (x g AT).

Then <I> e &(X). Since dim ^(0) < oo, cpn is a compact operator;

hence so is <S> (Theorem 4.18).
Observe that

(8) <D - U = S + (pit.

If x e E, then nx = 0,(<S> —

U)x = Sx; hence

(9) (d> - A/)(£) = mS).

If x g ^(S), then nx = x,

(10) (0) - U)x =

<px,

and therefore

(11) (d>
- A/)(^(S)) = q>(^(S)) = F.

It follows from (9) and (11) that

(12) ^(0> - /I/) id ^(S) + F = X.

But if (10) is used with x =

x0, we see that X is an eigenvalue of

<t>, and since <I> is compact, Theorem 4.24 shows that the range of

<S> — U cannot be all of X. This contradicts (12); hence (4) is true and

(a) is proved.
Part (b) follows from (a), for if k is not an eigenvalue of T, then

oc(T) = 0, and (a) implies that p{T) = 0, that is, that 0t{T - U) = X.

Thus T - U is invertible, so that X $ a{T).
It now follows from (b) of Theorem 4.24 that 0 is the only

possible limit point of cr(T), that a(T) is at most countable, and that
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<j(T) u {0} is compact. If dim X < oo, then a(T) is finite; if

dim X =

oo, then 0 e a(7), by {e) of Theorem 4.18. Thus a(T) is

compact. This gives (c) and completes the proof of the theorem. ////

Exercises

Throughout this set of exercises, X and Y denote Banach spaces, unless the contrary

is explicitly stated.

1. Let (j> be the embedding of X into X** described in Section 4.5. Let t be the

weak topology of X, and let o be the weak*-topology of X**—the one induced

by**.

(a) Prove that <j> is a homeomorphism of (X, t) onto a dense subspace of

(X**9 o).

(b) If B is the closed unit ball of X, prove that (j){B) is a-dense in the closed unit

ball of X**. (Use the Hahn-Banach separation theorem.)

(c) Use (a), (b), and the Banach-Alaoglu theorem to prove that X is reflexive if

and only if B is weakly compact.

(d) Deduce from (c) that every norm-closed subspace of a reflexive space X is

reflexive.

(e) If X is reflexive and Y is a closed subspace of X, prove that X/Y is reflexive.

(/) Prove that X is reflexive if and only if X* is reflexive.

Suggestion: One half follows from (c); for the other half, apply (d) to the sub-

space <j)(X) of X**.

2. Which of the spaces c0, *f\ *fp, Z00 are reflexive? Prove that every finite-

dimensional normed space is reflexive. Prove that C, the supremum-normed

space of all complex continuous functions, on the unit interval, is not reflexive.

3. Prove that a subset E of 0S{X, Y) is equicontinuous if and only if there exists

M < oo such that ||A|| < M for every Ae£.

4. Recall that X* = @(X, £), if <p is the scalar field. Hence A* e &($, x*) for evei7

A e X*. Identify the range of A*.

5. Prove that T e 0S(X, Y) is an isometry of X onto Y if and only if T* is an

isometry of 7* onto X*.

6. Let o and x be the weak*-topologies of X* and 7*, respectively, and prove that

S is a continuous linear mapping of (7*, t) into (X*, a) if and only if S = T* for

some T e @(X, Y).

7. Let [} be the usual space of integrable functions on the closed unit interval J,

relative to Lebesgue measure. Suppose T e <#(L\ 7), so that T* e ^(7*, L00).

Suppose ^(T*) contains every continuous function on J. What can you deduce

about T?

8. Prove that (ST)* = T*5*. Supply the hypotheses under which this makes sense.

9. Suppose S e @(X\ T e 0&{X).

(a) Show, by an example, that ST = I does not imply TS = I.

(b) However, assume T is compact, show that

S(I
-

T) = I if and only if (/ - T)S = /,

and show that either of these equalities implies that I —

(I — T)~l is

compact.
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10. Assume T e @(X) is compact, and assume either that dim X = oo or that the

scalar field is (p. Prove that o(T) is not empty. However, o(T) may be empty if

dim X < oo and the scalar field is R.

11. Suppose dim X < oo and show that the equality /?* = /? of Theorem 4.25

reduces to the statement that the row rank of a square matrix is equal to its

column rank.

12. Suppose T e @(X, Y) and <#(T) is closed in Y. Prove that

dim JT(T) = dim X*/0t(T*),

dim JT{T*) = dim Y/@(T).

This generalizes the assertions a = /?* and a* = /? of Theorem 4.25.

13. (a) Suppose T e @(X, Y), Tn e @(X, Y) for n = 1, 2, 3, ...,
each Tn has finite-

dimensional range, and lim \\T
—

Tn\\ = 0. Prove that T is compact.

(b) Assume Y is a Hilbert space, and prove the converse of (a): Every compact

T e &(X, Y) can be approximated in the operator norm by operators with

finite-dimensional ranges. Hint: In a Hilbert space there are linear

projections of norm 1 onto any closed subspace. (See Theorems 5.16, 12.4.)

14. Define a shift operator S and a multiplication operator M on *f2 by

(x(rc
— 1) if n > 1,

(MxX") = (n + 1)~ ^(n) if w > 0.

Put T = MS. Show that T is a compact operator which has no eigenvalue and

whose spectrum consists of exactly one point. Compute ||Tn||, for n = 1, 2, 3,...,

and compute lim^^ ||Tn\\1/n.
15. Suppose /x is a finite (or a-finite) positive measure on a measure space Q, /x x /x

is the corresponding product measure onQxQ, and K e ]}{\i x /x). Define

(T/Xs) = f *(s, t)f(t) dfi(t) [/e L2(/x)].

(a) Prove that T e ^(L2(/x)) and that

||T||2<|||/C(s,r)|2^(s)^/x(r).
(b) Suppose ai9 bt are members of L2(/x), for 1 < i < n, put K^s, t) = £ a£s)bAt\

and define Tx in terms of X! as T was defined in terms of K. Prove that

dim &{TX) < n.

(c) Deduce that T is a compact operator on L2(/x). Hint: Use Exercise 13.

(d) Suppose Ae (p,A^0. Prove: Either the equation

Tf-V=g

has a unique solution / e L2(/x) for every g e L2(/x) or there are infinitely

many solutions for some g and none for others. (This is known as the Fred-

holm alternative.)

(e) Describe the adjoint of T.
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16. Define

s)t if 0 < t < s

1(1"
v ]/i

t)s ifs<t< 1

and define T e ^(L2(0, 1)) by

(T/Xs)= rK(M)/«<fe (0<s<l).

(a) Show that the eigenvalues of T are (rm)~2, n = 1, 2, 3, ...,
that the

corresponding eigenfunctions are sin nnx, and that each eigenspace is one-

dimensional. Hint: If X ^ 0, the equation T/= A/implies that/is infinitely

differentiable, that Xf" +/ = 0, and that/(0) =/(l) = 0. The case k = 0 can

be treated separately.

(b) Show that the above eigenfunctions form an orthogonal basis for L2(0, 1).

(c) Suppose g(t) = £ cn sin nnt. Discuss the equation Tf — Xf =

g.

(d) Show that T is also a compact operator on C, the space of all continuous

functions on [0, 1]. Hint: If {/} is uniformly bounded, then {7/J is equi-
continuous.

17. If L2 = L2(0, oo) relative to Lebesgue measure, and if

i=- fVw dt
s Jo

(TfXs) = -

f(t) dt (0 < s < oo),
s Jo

prove that T e @(l3) and that T is not compact. (The fact that ||T|| < 2 is a

special case of Hardy's inequality. See p. 72 of [23].)

18. Prove the following statements:

(a) If {xn} is a weakly convergent sequence in X, then {||xj|} is bounded.

(b) If T e @(X, Y) and xn -> x weakly, then Tx„ -> Tx weakly.

(c) If T e ^(AT, Y), if x„ -> x weakly, and if T is compact, then ||Txn
-

Tx\\ -> 0.

(<0 Conversely, if X is reflexive, if T e @(X, 7), and if \\Txn
- Tx\\ -> 0

whenever xn -> x weakly, then T is compact. Hint: Use (c) of Exercise 1, and part

(c) of Exercise 28 in Chapter 3.

(e) If X is reflexive and T e @(X, t\ then T is compact. Hence m(T) # Z1.

Hmr: Use (c) of Exercise 5 of Chapter 3.

(/) If 7 is reflexive and T e 0S(co, 7), then T is compact.

19. Suppose Y is a closed subspace of X, and x* e X*. Put

|i
= sup{|<x,x8>|:xey, IWI < 1},

<5 = inf {||x*-xj||:x*e Y1}.

In other words, // is the norm of the restriction of xg to Y, and <5 is the distance

from xj to the annihilator of Y. Prove that //
= <5. Prove also that 3 =

||x* —

xg|| for at least one x* e Y1.

20. Extend Sections 4.6 to 4.9 to locally convex spaces. (The word
"

isometric
"

must

of course be deleted from the statement of Theorem 4.9.)

21. Let B and B* be the closed unit balls in X and X*, respectively. The following is

a converse of the Banach-Alaoglu theorem: If E is a convex set in X* such that
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E n (rB*) is weak*-compact for every r > 0, then E is weak*-closed. (Corollary:
A subspace of X* is weak*-closed if and only if its intersection with B* is

weak*-compact.)

Complete the following outline of the proof,

(f) E is norm-closed.

(ii) Associated to each F cz X its polar

P(F) = {x*:\ <x, x*> | < 1 for all x e F}.

The intersection of all sets P(F), as F ranges over the collection of all finite

subsets of r

"

1B, is exactly rB*.

(Hi) The theorem is a consequence of the following proposition: //, in addition

to the stated hypotheses, E n B* = 0, then there exists x e X such that

Re <x, x*> > I for every x* e E.

(iv) Proof of the proposition: Put F0 = {0}. Assume finite sets F0, ..., Fk_l
have been chosen so that iFt cz B and so that

(1) P(F0) n-- n P(Fk_,) n E n kB* = 0.

Note that (1) is true for k = 1. Put

Q = P(F0) n-" n P(Fk_t) n E n (k + 1)B*.

If P(F) n g ^ 0 for every finite set F cz k~*B, the weak*-compactness of

Q, together with (ii), implies that (kB*) n Q ^ 0, which contradicts (1).
Hence there is a finite set Fk cz k~*B such that (1) holds with k + 1 in place
of /c. The construction can thus proceed. It yields

(2) En f] P(Fk) = 0.

Arrange the members of [J Fk in a sequence {x„}. Then ||xj| -»0. Define

T:X*->c0by

Tx* = {<x„,x*>}.

Then T(E) is a convex subset of c0. By (2),

||Tx*|| = sup|<xn,x*>|>l
n

for every x* e E. Hence there is a scalar sequence {a„}, with £ |aj < oo,

such that

Re £an<xn,x*><l

for every x* e E. To complete the proof, put x = £ a„ x„.

22. Suppose T e ^(AT), T is compact, A # 0, and S = T - XL

(a) If jr(sn) = jr(Sn
+

1) for some nonnegative integer n, prove that J^(Sn) =

jr(Sn+k)iork= 1,2, 3,... .

(b) Prove that (a) must happen for some n. (Hint: Consider the proof of

Theorem 4.24.)
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(c) Let n be the smallest nonnegative integer for which (a) holds. Prove that

dim jV{Sn) is finite, that

X = jr(sn) 0 0t{Sn\

and that the restriction of S to @(Sn) is a one-to-one mapping of 0t{Sn) onto

23. Suppose {x„} is a sequence in a Banach space X, and

£ ||xj| = M < oo.

Prove that the series £ x„ converges to some x e X. Explicitly, prove that

lim \\x-(Xl + ---+Xl)\\=0.
n-^oo

Prove also that ||x|| < M. (These facts were used in the proof of Theorem 4.13.)

24. Let c be the space of all complex sequences

x = {xl5 x2, x3, ...)

for which x^
= lim x„ exists (in (p). Put ||x|| =

sup |x„|. Let c0 be the subspace
of c that consists of all x with x^

= 0.

(a) Describe explicitly two isometric isomorphisms u and v, such that u maps c*

onto Z1 and v maps c% onto S1.

(b) Define S: c0 -> c by Sf = f. Describe the operator vS*u~1 that maps Z1 to S1.

(c) Define T: c -> c0 by setting

Prove that T is one-to-one and that Tc =

c0. Find ||T|| and ||T_1||.
Describe the operator uT*v~1 that maps Z1 to f1.

25. If T e ^(X, 7) and <#(T*) = ^(T)\ prove that 0t{T) is closed.

26. Assume T e 0&{X, Y) and T(X) = Y. Show that there exists 3 > 0 such that

5(X) = 7 for all S e 0S{X, Y) with \\S
-

T\\ < 6.

27. Suppose T e 0S(X). Prove that X e a(T) if and only if there is a sequence {x„} in

X, ||xj| = 1, for which

lim \\Txn-XxJ=0.
n-* oo

[Thus every X e o(T) which is not an eigenvalue of T is an "approximate"

eigenvalue.]



CHAPTER

5

SOME

APPLICATIONS

This chapter contains some applications of the preceding abstract material

to more concrete problems in analysis. Most of these applications depend

only on a small part of the contents of Chapters 1 through 4. Here is a

partial list of the theorems, ordered more or less according to prerequisites.

Theorems

5.23

5.27

5.1, 5.2

5.4

5.5,5.7, 5.10, 5.11

5.18

5.9, 5.21

Prerequisites

Vector topologies
Minkowski functionals (and Brouwer's fixed point theorem)

Closed graph theorem

Hahn-Banach theorem

Banach-Alaoglu and Krein-Milman theorems

Banach-Steinhaus theorem and vector-valued integrals
Closed range theorem

A Continuity Theorem

One of the very early theorems in functional analysis (Hellinger and

Toeplitz, 1910) states that if T is a linear operator on a Hilbert space H

which is symmetric in the sense that

(Tx, y) = (x, Ty)

116
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for all x e H and y e H, then T is continuous. Here (x, y) denotes the usual

Hilbert space inner product. (See Section 12.1.)
If {xj is a sequence in H such that ||xj| ->0, the symmetry of T

implies that Txn -> 0 weakly. (This depends on knowing that all continuous

linear functional on H are given by inner products.) The Hellinger-Toeplitz
theorem is therefore a consequence of the following one.

5.1 Theorem Suppose X and Y are F-spaces, Y* separates points on Y,

T: X -> Y is linear, and ATxn -> 0 for every A e Y* whenever xn -> 0. Then

T is continuous.

proof. Suppose x„ -> x and Txn -> y. If A e Y*, then

A7(xn-x)->0

so that

Ay = lim ATxn = ATx.

Consequently, y
= Tx, and the closed graph theorem can be applied.

////

In the context of Banach spaces, Theorem 5.1 can be stated as

follows: IfT:X->Yis linear, if ||xj -> 0 implies that Txn -> 0 weakly, then

||xJ -> 0 actually implies that \\Tx„\\ -> 0.

To see that completeness is important here, let X be the vector space

of all complex infinitely differentiable functions on (— oo, oo) which vanish

outside the unit interval, put

(f,g) = ^fg, 11/11 ={fJY'\

and define T: X -> X by (Tf)(x) = if\x). Then (Tf g) = (f, Tg), but T is

not continuous.

Closed Subspaces of Lp-Spaces

The proof of the following theorem of Grothendieck also involves the

closed graph theorem.

5.2 Theorem Suppose 0 < p < oo, and

(a) ft is a probability measure on a measure space Q.

(b) S is a closed subspace ofE(n).

(c) Sc=L-(//).

Then S is finite-dimensional
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proof. Let; be the identity map that takes S into L00, where S is given
the Z?-topology, so that S is complete. If {/„} is a sequence in S such

that fn ->/ in S and fn -> g in L00, it is obvious that /= g a.e. Hence j

satisfies the hypotheses of the closed graph theorem, and we conclude

that there is a constant K < oo such that

(1) ll/IL £ Kll/ll,

for all/eS. As usual, ||/||, means {f\f\>dn)1*, and ||/|L is the

essential supremum of |/|. If p < 2 then \\f\\p < ||/||2. If 2 < p < oo,

integration of the inequality

i/ip£ii/ir«r2m2

leads to WfW^ < Kp,2\\f\\2. In either case, we have a constant M < oo

such that

(2) ll/IL£Af||/||2 (feS).

In the rest of the proof we shall deal with individual functions,

not with equivalence classes modulo null sets.

Let {(f)1,..., (f)n) be an orthonormal set in S, regarded as a sub-

space of L2. Let Q be a countable dense subset of the euclidean unit

ball B of r- If c = (cl9 ...,c„)gB, define/, = £ c,^. Then ||/c||2 < 1,

and so HXIloo ^ M. Since Q is countable, there is a set Q' cz Q, with

n(Q') = 1, such that | fc(x) \ < M for every c e Q and for every x e Q'.

If x is fixed, c -> | fc(x) \ is a continuous function on B. Hence

| fc(x) | < M whenever c e B and x e Q'. It follows that £ 10,(x) |2 <

M2 for every x e Q'. Integration of this inequality gives n < M2. We

conclude that dim S < M2. This proves the theorem. ////

It is crucial in this theorem that L00 occurs in the hypothesis (c). To

illustrate this we will now construct an infinite-dimensional closed subspace
of L1 which lies in If. For our probability measure we take Lebesgue
measure on the circle, divided by 2n.

5.3 Theorem Let E be an infinite set of integers such that no integer has

more than one representation as a sum of two members of E. Let PE be the

vector space of all finite sums f of the form

(1) f(eie)= I dn)eM
n=

—

oo

in which c(n) = 0 whenever n is not in E. Let SE be the L1-closure ofPE. Then

SE is a closed subspace of If.
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An example of such a set is furnished by 2k, k = 1, 2, 3, Much

slower growth can also be achieved.

proof. If/is as in (1), then

f2(ei9) = YJc(n)2e2ine+ £ c(n)c(m)ei{n
+

m)e.

Our combinatorial hypothesis about E implies that

[l/l4= fl/2|2 = Zk(«)|4 + 4 X |c(m)|2|c(n)|2

so that

<2

(2)

(3)

|/T<2(£|c(n)|2)2 = 2 |/
|2

Holder's inequality, with 3 and § as conjugate exponents, gives

\f\2< l/l4
1/3

1/

2/3

It follows from (2) and (3) that

(4) Il/ll4<21/4||/||2 and ||/||2 < 21/2||/||1

for every fe PE. Every L'-Cauchy sequence in PE is therefore also a

Cauchy sequence in If. Hence SE a L4. The obvious inequality

11 < ||/1| 4 then shows that SE is closed in Z4. ////

An interesting result can be obtained by applying a duality argument

to the second inequality (4). Recall that the Fourier coefficients g(n) of every

g e L00 satisfy £ |§(h)|2 < oo. The next theorem shows that nothing more

can be said about the restriction of g to E.

5.4 Theorem IfE is as in Theorem 5.3 and if

t\a(n)\2 = A2 < oo

-

oo

then there exists g e L00 such that g(n) = a(n)for every n e E.

proof. If/ e PE, the preceding proof shows that

|£/(»W«)I < A& I/Ml2}1'2 = >i||/||2 < i^Awn,.

Hence/-> Yjf(n)a(n) *s a linear functional on PE which is continuous

relative to the ZJ-norm. By the Hahn-Banach theorem, this functional

has a continuous linear extension to L1. Hence there exists g e L00
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(with ||g||00<21/M) such that

f(e-*W) d6 (fe PE).t /(»W») =

TIn

W\ihf{elB) = ew9 (n e E), this shows that g(n) = a{n). I///

The Range of a Vector-Valued Measure

We now give a rather striking application of the theorems of Krein-Milman

and Banach-Alaoglu.
Let 5CR be a cr-algebra. A real-valued measure X on 5CR is said to be

nonatomic if every set E e 5CR with | X \ (E) > 0 contains a set A e 5CR with

0 < | k | (A) < | /I | (E). Here | A | denotes the total variation measure of X\ the

terminology is as in [23].

5.5 Theorem Suppose nl9 ...

, fin are real-valued nonatomic measures on

a a-algebra 901 Define

^E) = {lll{E),...,nn(E)) (EeW).

Then \i is a function with domain 5CR whose range is a compact convex subset

ofRn.

proof. Associate to each bounded measurable real function g the

vector

Afif = ( \g dfiu ..., gd[in\

in K". Put <j = |/mI +
*''

+ l/^nl- If 9i
=

02 a.e. [a], then A^i = Ag2.
Hence A may be regarded as a linear mapping of L°°(cr) into Rn.

Each fit is absolutely continuous with respect to a. The Radon-

Nikodym theorem [23] shows therefore that there are functions

ht e l}(a) such that d[ix = ht da (1 < i < n). Hence A is a weak*-

continuous linear mapping of L°°(cr) into Rn; recall that L°°(cr) = l}(a)*.
Put

K = {^L»:0<^<1}.

It is obvious that K is convex. Since g e K if and only if

0< 4fg da < \fda

for every nonnegative/e l}{a), K is weak*-closed. And since K lies in

the closed unit ball of L°°(cr), the Banach-Alaoglu theorem shows that

K is weak*-compact. Hence A(K) is a compact convex set in Rn.
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We shall prove that //(2R) = A{K).
If Xe is tne characteristic function of a set E e $R, then xEe K

and fi(E) = Ag. Thus fi(W) a A(K). To obtain the opposite inclusion,

pick a point p e A(K) and define

Kp={geK:Ag = p}.

We have to show that Kp contains some Xe >
f°r tnen P

= /*(£)•
Note that Kp is convex; since A is continuous, Kp is weak*-

compact. By the Krein-Milman theorem, Kp has an extreme point.

Suppose 0O e Kp and g0 is not a characteristic function in L°°(cr).
Then there is a set £ e 5CR and an r > 0 such that o(E) > 0 and r <

g0 < 1 — r on E. Put 7 =

Xe
'

K°(g)- Since cr(£) > 0 and a is non-

atomic, dim Y > n. Hence there exists g e Y, not the zero element of

L°°(cr), such that Ag = 0, and such that —r<g<r. It follows that

g0 + g and g0
—

g are in Kp. Thus g0 is not an extreme point of Kp.
Every extreme point of Kp is therefore a characteristic function.

This completes the proof. ////

A Generalized Stone-Weierstrass Theorem

The theorems of Krein-Milman, Hahn-Banach, and Banach-Alaoglu will

now be applied to an approximation problem.

5.6 Definitions Let C(S) be the familiar sup-normed Banach space of

all continuous complex functions on the compact Hausdorff space S. A

subspace A of C(S) is an algebra if fg e A whenever fe A and g e A. A set

E a S is said to be A-antisymmetric if every fe A which is real on E is

constant on E; in other words, the algebra AE which consists of the

restrictions/^ of the functions fe A to E contains no nonconstant real

functions.

For example, if S is a compact set in (p and if A consists of all/e C(S)
that are holomorphic in the interior of S, then every component of the

interior of S is A-antisymmetric.

Suppose A cz C(S), p e S, q e S, and write p
~

q provided that there is

an ^-antisymmetric set E which contains both p and q. It is easily verified

that this defines an equivalence relation in S and that each equivalence class

is a closed set. These equivalence classes are the maximal ^-antisymmetric
sets.

5.7 Bishop's theorem Let A be a closed subalgebra of C(S). Suppose

g e C(S) and g\E e AEfor every maximal A-antisymmetric set E. Then g e A.

Stated differently, the hypothesis on g is that to every maximal A-

antisymmetric set E corresponds a function fe A which coincides with g on
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E, the conclusion is that one/exists which does this for every E, namely,

f=g-
A special case of Bishop's theorem is the Stone-Weierstrass theorem:

Suppose that

(a) A is a closed subalgebra ofC(S\

(b) A is self-adjoint {ie.,fe A for allfe A),

(c) A separates points on S, and

(d) at every p e S,f(p) # Ofor somefe A. Then A = C(S).

For in this case the real-valued members / + / of A separate points on

S. Therefore no ^-antisymmetric set contains more than one point. It

follows that every g e C(S) satisfies the hypothesis of Bishop's theorem.

proof. The annihilator A1 of A consists of all regular complex Borel

measures /ionS such that \fdfi = 0 for every fe A. Define

K = {fieA±: ||/i|| < 1},

where ||/j|| = |/i|(S). Then K is convex, balanced, and weak*-compact,

by (c) of Theorem 4.3. If K = {0}, then A1 = {0}; hence A = C(S), and

there is nothing to prove.

Assume K # {0}, and let /i be an extreme point of K. Clearly,

||//1| = 1. Let E be the support of//; this means that E is compact, that

| /i | (E) = ||/i||, and that E is the smallest set with these two properties.
We claim: E is antisymmetric.
Consider an fe A with f\E real; without loss of generality,

— 1 </< 1 on E. Define measures a and z by

do = i(l +/) dfi, dx = i(l -/) dpu

Since A is an algebra, a e AL and t g A1. Since 1 -h/and 1 —/are

positive on E, \\a\\ > 0, ||t|| > 0, and

(\-f)d\n\ = \n\(E)=\.
2Je

Q+f)d\p\+\
E

Z '£

This shows that /i is a convex combination of the measures a1
=

a/1| (j || and x1
= t/||t||. Both of these are in K. Since /i is extreme in K,

/i
=

a1. In other words,

i(l+/M/i=||<7M/i.

Therefore/= 2\\a\\ — 1 on E, i.e.,/|£ is constant.

This proves our claim.

If g satisfies the hypothesis of the theorem, it follows that

j g d[i = 0 for every /i that is extreme in K, hence for every /i in the

convex hull of these extreme points. Since /i -> J g df.i is a weak*-
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continuous function on K, the Krein-Milman theorem implies that

j g d\i = 0 for every [i e K, hence for every // e A1.

Every continuous linear functional on C(S) that annihilates A

thus also annihilates g. Hence g e A, by the Hahn-Banach separation
theorem. ////

Note: If (d) is dropped from the hypotheses of the Stone-Weierstrass

theorem, then (c) implies that there is at most one p0 e S, where f(p0) = 0

for every fe A. If this is the case, then the proof shows that A = {fe C(S):

f(Po) = 0}.
Here is an example that illustrates Bishop's theorem:

5.8 Theorem Suppose

(a) K is a compact subset ofRnx(p and

(b) ift = (tu ..., tn) e Rn, the set

Kt = {ze $: (t, z) e K)

does not separate (p.Ifge C(K), define gt on Kt by gt(z) = g(t, z).

Assume that g e C(K), that each gt is holomorphic in the interior of Kt
and that e > 0. Then there is a polynomial P in the variables tl9 ..., tn, z such

that

\ P(t, z) - g(t, z)\ <e

for every (t, z) e K.

proof. Let A be the closure in C(K) of the set of all polynomials

P(t, z). Since the real polynomials on Rn separate points, every

^-antisymmetric set lies in some Kt. By Theorem 5.7 it is therefore

enough to show that to every t e Rn corresponds drnfeA such that

ft =

9t>

Fix t e Rn. By Mergelyan's theorem [23] there are polynomials

Pt{z) such that

gt(z) = £ Pt(z) (z e Kt)
f=i

and |P,| < 2_I if i > 1. There is a polynomial Q on Rn that peaks at t,

in the sense that Q{t) = 1 but | Q(s) \ < 1 if s # t and Ks # 0. Consider

a fixed i > 1. The functions <pm defined on K by

<fim(s,z) = \Q"(s)Pl(z)\
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form a monotonically decreasing sequence of continuous functions

whose limit is <2~l at every point of K. Since K is compact, it follows

that there is a positive integer mx such that <pmi{s, z) <2~l at every

point of K. The series

f(s, z)=t Qmi{s)Plz)
1 = 1

converges uniformly on K. Hence/e A, and obviously/ =

gt. ////

Two Interpolation Theorems

The proof of the first of these theorems involves the adjoint of an operator.

The second furnishes another application of the Krein-Milman theorem.

The first one (due to Bishop) again concerns C(S). Our notation is as

in Theorem 5.7.

5.9 Theorem Suppose Y is a closed subspace of C(S), K is a compact

subset of S, and \fi\(K) = 0 for every // e YL. If g e C(K) and \g\ < 1, it

follows that there exists fe Y such thatf\K =

g and \ f \ < 1 on S.

Thus every continuous function on K extends to a member of Y. In

other words, the restriction map/->/|x maps Y onto C(K).
This theorem generalizes the following special case.

Let A be the disc algebra, i.e., the set of all continuous functions on

the closure of the unit disc U in (p which are holomorphic in U. Take

S = T, the unit circle. Let Y consist of the restrictions to T of the members

of A. By the maximum modulus theorem, Y is a closed subspace of C(T). If

K cz T is compact and has Lebesgue measure 0, the theorem of F. and M.

Riesz [23] states precisly that K satisfies the hypothesis of Theorem 5.9.

Consequently, to every g e C(K) corresponds anfe A such thatf =

g on K.

proof. Let p: Y -> C(K) be the restriction map defined by pf = f\K-
We have to prove that p maps the open unit ball of Y onto the open

unit ball of C(K).
Consider the adjoint p*: M(K)-> Y*, where M(K) = C(K)* is

the Banach space of all regular complex Borel measures on K, with

the total variation norm ||/j|| = \fi\(K). For each // e M(K), p*n is a

bounded linear functional on 7; by the Hahn-Banach theorem, p*//
extends to a linear functional on C(S), of the same norm. In other

words, there exists a e M(S), with \\a\\ = ||p*/i||, such that

I fda = <f, p*/z> = <pf, H> = fdfi
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for every fe Y. Regard [i as a member of M(S), with support in K.

Then a —

[i e Y1, and our hypothesis about K implies that

a(E) = fi(E) for every Borel set £cX. Hence ||/j|| < \\a\\. We

conclude that ||//1| < || p*/i ||. By (b) of Theorem 4.13, this inequality proves

the theorem. ////

Note: Since ||p*|| = ||p|| < 1, we also have \\a\\ < ||/i|| in the preceding

proof. It follows that a =

//. Hence p*// has a unique norm-preserving
extension to C(S).

Our second interpolation theorem concerns finite Blaschke products,

i.e., functions B of the form

B(z) = cUf^-,
k=i

1 -akz

where | c \ = 1 and | afc | < 1 for 1 < fc < N. It is easy to see that the finite

Blaschke products are precisely those members of the disc algebra whose

absolute value is 1 at every point of the unit circle.

The data of the Pick-Nevanlinna interpolation problem are two finite

sets of complex numbers, {z0,..., z„} and {w0, ..., w„}, all of absolute value

less than 1, with z, ^ Zj if i ^ j. The problem is to find a holomorphic
function / in the open unit disc U, such that | f(z) | < 1 for all z e U, and such

that

f(zt) =

wf (0 < i < n).

The data may very well admit no solution. For example, if {z0, zx) =

{0, ^} and {w0, wj = {0, f}, the Schwarz lemma shows this. But if the

problem has solutions, then among them there must be some very nice

ones. The next theorem shows this.

5.10 Theorem Let {z0,..., zj, {w0, ..., wn} be Pick-Nevanlinna data.

Let E be the set of all holomorphic functions f in U such that | /1 < 1 and

f(zt) =

w,- for 0 < i < n. If E is not empty, then E contains a finite Blaschke

product.

proof. Without loss of generality, assume z0
=

w0
= 0. We will show

that there is a holomorphic function F in U which satisfies

(1) Re F{z) > 0 for z e U, F(0) = 1,

1 4- w-

(2) F(Zi) = p, =
'- for 1 < i ^ n,

1 W:
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and which has the form

(3) F(z)= Ict^,
fc=i <*k-z

where ck > 0, £ ck
= 1, and \ak\ = 1. Once such an F is found, put

B = (F - 1)/(F + 1). This is a finite Blaschke product that

satisfies B(z() =

w, for 0 < i < n.

Let K be the set of all holomorphic functions F in U that

satisfy (1).
Associate to each // e M(T) = C(T)* the function

(4) FJ,z) = f" ^^ dn(eie) (z e U).
J-n e Z

If P is the set of all Borel probability measures on T, then // <-? FM is a

one-to-one correspondence between P and K (Theorems 11.9 and

11.30 of [23]). Define A: M(T) -> <£* by

(5) An = (Ffl(z1l...,Ftl(zn)).

Since E is assumed to be nonempty, there exists //0 e P such that

(6) A/i0 = /? = (/?!,...,/?„).

Since P is convex and weak*-compact, and since A is linear and

weak*-continuous, A(P) is a convex compact set in (p = R2n. Since

/? e A(P), P is a convex combination of N < In + 1 extreme points of

A(P) (Exercise 19, Chapter 3). If y is an extreme point of A(P), then

A
"

1(y) is an extreme set of K, and every extreme point of A
"

1(y) (their
existence follows from the Krein-Milman theorem) is an extreme point
of P. It follows that there are extreme points fi1, ..., fiN of P and

positive numbers ck with £ ck
= 1, such that

(7) A(c!|i! +
•••

+cNnN) = p.

Being an extreme point of P, each //k that occurs in (7) has a

single point ake T for its support; hence

If F is now defined by (3), it follows from (7) and (8) that F satisfies (1)
and (2). ////

Kakutani's Fixed Point Theorem

Fixed point theorems play an important role in many parts of analysis and

topology. The one we shall now prove will be used to establish the existence

of a Haar measure on every compact group. Rather than state it for linear
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maps, we shall state it in terms of affine maps. These are essentially linear

maps followed by a translation (Exercise 17), but in the present context they
need not be defined globally. The following definition makes this precise:

If K is a convex set, Y is a vector space, and T: K -> Y satisfies

T{{\ - k)x + ky) = (1 - X)Tx + kTy

whenever x e K, y e K, 0</l< 1, then T is said to be affine.

5.11 Theorem Suppose that

(a) K is a nonempty compact convex set in a locally convex space X, and

(b) G is an equicontinuous group of affine maps taking K into K.

Then G has a common fixed point in K.

More explicitly, the conclusion is that there exists p e K such that

Tp =

p for very T e G.

Part (b) of the hypothesis may need some explanation. To say that G

is a group means that every T e G is a one-to-one map of K into K whose

inverse T_1 also belongs to G (so T maps K onto K\) and that TXT2 e G

whenever 7J e G for i = 1, 2. Here {TxT2)x = Tx{T2x\ of course; note that

the composition of two affine maps is affine.

To say that G is equicontinuous (compare with Section 2.3) means

now that to every neighborhood W of 0 in X corresponds a neighborhood
V of 0 in X such that Tx-Ty eW whenever x e K, y e K, x

-

y e V,

and T e G.

Hypothesis (b) is satisfied, for instance, when G is a group of linear

isometries on a normed space X.

proof. Let Q be the collection of all nonempty compact convex sets

H cz K such that T(H) cz H for every T e G. Partially order Q by set

inclusion. Note that Q # 0, since K e Q. By HausdorfFs maximality

theorem, Q contains a maximal totally ordered subcollection Q0. The

intersection Q of all members of Q0 is a minimal member of Q. The

theorem will be proved by showing that Q contains only one point.

Assume, to the contrary, that there exist x e Q, y e Q, x # y.

Then there is a neighborhood W of 0 in X such that x
—

y $ W. Let

V be associated to W as in the preceding definition of equicontinuity.
If Tx - Ty were in V, for some T e G, then

x-y= T-\Tx)- T~\Ty)

would be in W, a contradiction. We conclude:

For noT e G is Tx - Ty in V.
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Put z = i(x + y). Then z e Q. Define G(z) = {Tz: T e G}. This
"

G-orbit of z" is G-invariant (i.e., every T e G maps it into itself),

hence so is its closure K0 = G(z), and therefore c~o(K0) is a nonempty

G-invariant compact convex subset of Q. The minimality of Q implies

that~co(K0) = Q.
Let p be an extreme point of Q. (It exists, by the Krein-Milman

theorem.) Since Q is compact and Q = co(K0), Theorem 3.25 shows

that p lies in the closure K0 of G(z).
Define a set

E = {(Tz, Tx, Ty): TeG}czQxQxQ.

Since p e G(z) and Q x Q is compact, the lemma that is stated below

shows that there exists a point (x*, y*) e Q x Q so that (p, x*, y*) lies

in the closure of E. Since 2Tz = Tx + Ty for every T e G, it follows

that 2p = x* + y*, and this implies that x* = y* because p is an

extreme point of Q.
But Tx- Tyi V, for every T e G; hence x* - y* £ K; hence

x* # y*, and we have our contradiction. ////

Lemma Suppose that A and B are topological spaces, B is compact, n is

the natural projection ofAxB onto A, and E cz A x B.

IfpeA lies in the closure ofn(E), then (p, q) lies in the closure of E for
some q e B.

proof. If the conclusion fails, then every q e B has a neighborhood

Wq cz B so that (Vq x Wq) n E = 0 for some neighborhood Vq of p in

A. The compactness of B implies that B cz Wqi u
• • •

u Wqn for some

finite set {qx, ..., qn}. Then Vqi n
• ••

n Vqn is a neighborhood of p

which does not intersect n(E\ contrary to the assumption that p lies in

the closure of n(E). ////

Haar Measure on Compact Groups

5.12 Definitions A topological group is a group G in which a topology
is defined that makes the group operations continuous. The most concise

way to express this requirement is to postulate the continuity of the

mapping <p: G x G -> G defined by

(f)(x, y) = xy~\

For each a e G, the mappings x -> ax and x -> xa are homeomor-

phisms of G onto G; so is x->x_1. The topology of G is therefore

completely determined by any local base at the identity element e.

If we require (as we shall from now on) that every point of G is a closed

set, then the analogues of Theorems 1.10 to 1.12 hold (with exactly the same
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proofs, except for changes in notation); in particular, the Hausdorff

separation axiom holds.

Iff is any function with domain G, its left translates Ls/and its right
translates Rsf&re defined, for every s e G, by

(L, /Xx) = f(sx), (R, /)(x) = /(xs) (x e G).

A complex function /on G is said to be uniformly continuous if to

every e > 0 corresponds a neighborhood V of e in G such that

|/(t)-/(s)|<e

whenever s e G, t e G, and s~ 1t e V.

A topological group G whose topology is compact is called a compact

group; in this case, C(G) is, as usual, the Banach space of all complex
continuous functions on G, with the supremum norm.

5.13 Theorem Let G be a compact group, suppose fe C(G), and define

HL{f) to be the convex hull of the set of all left translates off Then

(a) s -> Lsfis a continuous map from G into C(G), and

(b) the closure ofHL(f) is compact in C(G).

proof. Fix e > 0. Since / is continuous, there corresponds to each

a e G a neighborhood Wa of e such that | f{x) — f(a)\ < e if xa~x e

Wa. The continuity of the group operations gives neighborhoods Va of

e which satisfy V~xVa<^Wa. Since G is compact, there is a finite set

A a G such that

(1) G=\JVa- a.

ae A

Put

(2) V=C)Va.
ae A

Choose x, y e G so that yx~x e V, and choose a e A so that ya~x e

Va. Then | f(y) -f(a)\ < e, and since xa'1 = (xy'^ya'1) e V~xVa c

Wa, we also have | f(x) —f(a) \ < e.

Thus | f(x) —f(y)| < 2e whenever yx~x e V.

For any s e G, (ys^xs)'1 = yx'1. Hence yx'1 e V implies that

| f(xs) — f{ys)\ < 2e. This is just another way of saying that

(3) \\Lxf-Lyf\\<2s

whenever y lies in the neighborhood Vx of x. This proves (a).
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As a consequence of (a), {Lxf: x e G} is compact in the Banach

space C{G). Hence (b) follows from part (c) of Theorem 3.20. ////

5.14 Theorem On every compact group G exists a unique regular Borel

probability measure m which is left-invariant, in the sense that

(i) f dm =

G

(LJ)dm lseG,feC(G)l

This m is also right-invariant:

(2) I fdm = I (RJ) dm [s e G,fe C(G)]
JG JG

and it satisfies the relation

(3) I f(x) dm(x) = I f(x ~x) dm(x) [/ e C(G)l
JG JG

This m is called the Haar measure of G.

proof. The operators Ls satisfy Ls Lt = Lts, because

(LsLtf)(x) = (Ltf)(sx) =f(tsx) = (Ltsf)(x).

Since each Ls is an isometry of C(G) onto itself, {Ls: 5 e G} is an equi-
continuous group of linear operators on C(G). Iffe C(G)9 let Kf be

the closure of HL(f). By Theorem 5.13, Kf is compact. It is obvious

that Ls(Kf) =

Kf for every s e G. The fixed point theorem 5.11 now

implies that Kf contains a function (f> such that Ls(f> = (f> for every

5 e G. In particular, (f)(s) = (f>{e\ so that (f> is constant. By the

definition of Kf, this constant cart be uniformly approximated by functions

in HL(f).
So far we have proved that to each/e C(G) corresponds at least

one constant c which can be uniformly approximated on G by convex

combinations of left translates of/ Likewise, there is a constant c'

which bears the same relation to the right translates of/ We claim

that d = c.

To prove this, pick e > 0. There exist finite sets {at} and {bj} in

G, and there exist numbers a, > 0, /?, > 0, with £ a = 1 = £ /?,., such

that

(4) U-E <**/(*.-*) <£ (xeG)
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and

(5) C ~ I PjAxbj) < e (X 6 G).

Put x = bj in (4); multiply (4) by /?,-, and add with respect to j.
The result is

(6) c-HviPjffabj) < e.

Put x =

at in (5), multiply (5) by at, and add with respect to i, to

obtain

(7) *-I.*iPjAaibj) < e.

Now (6) and (7) imply that c = c'.

It follows that to each/e C(G) corresponds a unique number,

which we shall write Mf, which can be uniformly approximated by
convex combinations of left translates of /; the same Mf is also the

unique number that can be uniformly approximated by convex

combinations of right translates of / The following properties of M are

obvious:

(8) Mf>0 if/>0.

(9) Ml = 1.

(10) M(ctf) = ccMf if a is a scalar.

(11) M(LS f) = Mf= M(RS f) for every 5 e G.

We now prove that

(12) M(f+g) = Mf+Mg.

Pick e > 0. Then

(13) W-I«JM < e (xeG)

for some finite set {aj cz G and for some numbers a, > 0 with

Z oii,
= 1. Define

(14) h{x) = YJ^iQ{aix\
i

Then h e Kg9 hence Kh cz Kg, and since each of these sets contains a

unique constant function, we have Mh = Mg. Hence there is a finite

set {bj} c G, and there are numbers j?7 > 0 with £ j?7 = 1, such that

(15) Mg-Zpjh(bjx) < e (x e G);
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by (14), this gives

(16) Mg-Y,<*iPj9(aibjx) < e (x e G).

Replace x by bjx in (13), multiply (13) by pJt and add with respect to;',

to obtain

(17)

Thus

(18)

Mf-Zccipjfiatbjx) < e

Mf+Mg-YtVtW+Mfiikjx)

(x e G).

<2e (x e G).

Since £ atPj = 1, (18) implies (12).
The Riesz representation theorem, combined with (8), (9), (10),

and (12), yields a regular Borel probability measure m that satisfies

(19) -IMf= fdm (feC(G));

properties (1) and (2) follow now from (11).
To prove uniqueness, let /i be a regular Borel probability

measure on G which is left-invariant. Since m is right-invariant, we

have, for every/£ C{G\

[fdfi= f
JG JG

dm(y) f(yx) dfi(x)

= dtfx) f(yx) dm(y) = \ fdm.
JG JG JG

Hence \i
= m.

The proof of (3) is similar. Put g(x) =f(x~1). Then

dm(y) g(xy~1)dm(x)= dm(x) fiyx'^dmiy).
JG JG JG

The two inner integrals are independent of y and x, respectively.
Hence J g dm = J / dm. ////

Uncomplemented Subspaces

Complemented subspaces of a topological vector space were defined in

Section 4.20; Lemma 4.21 furnished some examples. It is also very easy to

see that every closed subspace of a Hilbert space is complemented

(Theorem 12.4). We will now show that some very familiar closed subspaces
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of certain other Banach spaces are, in fact, not complemented. These

examples will be derived from a rather general theorem about compact groups of

operators that have an invariant subspace; its proof uses vector-valued

integration with respect to Haar measure.

We begin by looking at some relations that exist between

complemented subspaces on the one hand and projections on the other.

5.15 Projections Let AT be a vector space. A linear mapping P: X -? X

is called a projection in X if

P2 = P,

i.e., if P(Px) = Px for every x e X.

Suppose P is a projection in X, with null space ^V(P) and range 0t(P\
The following facts are almost obvious:

(a) @(P) = jr(I-P) = {xeX:Px = x}.

(b) JT{P) = 0t(l - P).

(c) 0t(P) n JT(P) = {0} and X = 0t(P) + JT{P).

(d) If A and B are subspaces of X such that A n B = {0} and X = A + B9

then there is a unique projection P in X with A = 0t(P) and B = ^V(P).

Since (/
- P)P = 0, 0t(P) c JT{I

- P). If xe JT{I - P), then

x
— Px = 0, and so x = Px e 0t{P\ This gives (a); (b) follows by applying

(a) to / - P. If x e ^(P) n ^(P), then x = Px = 0; if x £ X, then

x = Px + (x
— Px), and x

— Px e ^T(P). This proves (c). If 4 and £ satisfy

(d), every x £ X has a unique decomposition x = x' + x", with x' £ 4,

x" £ B. Define Px = x'. Trivial verifications then prove (d).

5.16 Theorem

(a) IfP is a continuous projection in a topological vector space X, then

x = m{P) e jt{p).

(b) Conversely, if X is an F-space and if X = A © B9 then the projection P

with range A and null space B is continuous.

Recall that we use the notation X = A © B only when A and B are

closed subspaces of X such that A n B = {0} and A + B = X.

proof. Statement (a) is contained in (c) of Section 5.15, except for the

assertion that 0t(P) is closed. To see the latter, note that

gt(P) = jf(\ - p) and that / - P is continuous.
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Next, suppose P is the projection with range A and null space B,

as in (b). To prove that P is continuous we verify that P satisfies the

hypotheses of the closed graph theorem: Suppose xn-+x and Pxn -? y.

Since Pxn e A and A is closed, we have y e A, hence y
= Py. Since

xn
—

Pxn e B and B is closed, we have x
—

y e B, hence Py = Px. It

follows that y
= Px. Hence P is continuous. ////

Corollary. A closed subspace of an F-space X is complemented in X if
and only if it is the range of some continuous projection in X.

5.17 Groups of linear operators Suppose that a topological vector

space X and a topological group G are related in the following manner: To

every s e G corresponds a continuous linear operator Ts: X ^ X such that

Te = I9 Tst=TsTt (seG9teG);

also, the mapping (5, x) -? 7^ x of G x X into X is continuous.

Under these conditions, G is said to act as a group of continuous

linear operators on X.

5.18 Theorem Suppose

(a) X is a Frechet space,

(b) Y is a complemented subspace ofX,

(c) G is a compact group which acts as a group of continuous linear

operators on X, and

(d) Ts(Y)cz Yfor every s e G.

Then there is a continuous projection Q of X onto Y which commutes

with every Ts.

proof. For simplicity, write sx in place of Tsx. By (b) and Theorem

5.16, there is a continuous projection P of X onto Y. The desired

projection Q is to satisfy s~1Qs = Q for all 5 6 G. The idea of the

proof is to obtain Q by averaging the operators s~1Ps with respect to

the Haar measure m of G: define

-!?-(1) Qx= s'iPsxdmis) (x e X).

To show that this integral exists, in accordance with Definition

3.26, put

(2) fx(s) = s~1Psx (seG).
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By Theorem 3.27, it suffices to show that/x: G -? X is continuous. Fix

50 e G; let U be a neighborhood of/x(s0) in X. Put y
= Ps0 x, so that

(3) So1y=fx(s0).

Since (5, z) -? sz is assumed to be continuous, s0 has a neighborhood

Vx and y has a neighborhood W such that

(4) s-\W)aU if 5 eVx.

Also, 50 has a neighborhood F2 such that

(5) PsxeW if 5 e V2.

The continuity of P was used here. If 5 £ Vl n K2, it follows from (2),

(4), and (5) that/x(s) £ U. Thus/X is continuous.

Since G is compact, each fx has compact range in X. The

Banach-Steinhaus theorem 2.6 implies therefore that {s~1Ps: s e G} is

an equicontinuous collection of linear operators on X. To every

convex neighborhood U1 of 0 in X corresponds therefore a

neighborhood U2 of 0 such that s~1Ps(U2) <= Ux. It now follows from (1) and

the convexity of U1 that Q(U2) <= f/i- (See Theorem 3.27.) Hence Q is

continuous. The linearity of Q is obvious.

If x £ X, then Psx £ 7, hence s~ 1Psx e Y by (d\ for every 5 £ G.

Since Y is closed, gx £ Y.

If x £ 7, then sx e 7, Psx = sx, and so s~1Psx =

x, for every

5 £ G. Hence Qx = x.

These two statements prove that Q is a projection of X onto 7.

To complete the proof, we have to show that

(6) Qs0 = s0Q for every s0 £ G.

Note that s~1Pss0 = s0(ss0)~1 P(ss0). It now follows from (1) and

(2) that

Qs0x= s~1Pss0x dm(s)

s0fx(ss0) dm(s)

= s0fx(s)dm(s)

=

s0 fx(s)dm(s) = s0Qx.

The third equality is due to the translation-invariance of m; for

the fourth (moving s0 across the integral sign), see Exercise 24 of

Chapter 3. ////

I-
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5.19 Examples In our first example, we take X = L1, Y = H1. Here L1

is the space of all integrable functions on the unit circle, and H1 consists of

those / e L1 that satisfy f(n) = 0 for all n < 0. Recall that f(n) denotes the

nth Fourier coefficient off:

»-il(1) /(n) =

^l f{6)e~ d0 (" = 0, ±1, ±2,...).

Note that we write f(0) in place off(ew), for simplicity.
For G we take the unit circle, i.e., the multiplicative group of all

complex numbers of absolute value 1, and we associate to each eis e G the

translation operators ts defined by

(2) (T./X0) =f(s + 6).

It is a simple matter to verify that G then acts on L1 as described in Section

5.17 and that

(3) (rsfV(n) = einsm

Hence ts(H x) = H1 for every real 5. (See Exercise 12.)
If H1 were complemented in L1, Theorem 5.18 would imply that there

is a continuous projection Q of L1 onto H1 such that

(4) tsQ = Qts for all 5.

Let us see what such a Q would have to be.

Put em(0) = eine. Then xsen
= einsen, and

(5) ?sQen = Q?sen = einsQen9

since Q is linear. The first equality in

(6) eik\Qett)
*

(k) = (t, Qen)
*

(k) = ein\Qen)
*

(*)

follows from (3), the second from (5). Hence (Qen)A(k) = 0 when k ^ n. Since

L1-functions are determined by their Fourier coefficients, it follows that

there are constants cn such that

(7) Qen =

cnen (n = 0, ±1, ±2,...).

So far we have just used (4). Since Qen e H1 for all n, cn
= 0 when

n < 0. Since Qf = f for every /e ifx, c„
= 1 when n > 0. Thus Q (if it exists

at all) is the "natural" projection of L1 onto if1, the one that replaces/(n)
by 0 when n < 0. In terms of Fourier series,

And

0

To get our contradiction, consider the functions

(8) 0 1^=1^

(9) /r(0) = X r'-'e'''"' (0 < r < 1).
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These are the well-known Poisson kernels. Explicit summation of the series

(9) shows that/r > 0. Hence

(io) W^=h\u imide=:L\n mde = 1

for all r. But

00

J

(H) MM = YJr»eine =

-——e.
o

i re

Fatou's lemma implies that 112/Ji ~*> °° as r-)> 1> smce j" 11 — eie\~l dO

= oo. By (10), this contradicts the continuity of Q.
Hence H1 is not complemented in L1.

The same analysis can be applied to A and C, where C is the space of

all continuous functions on the unit circle, and A consists of those feC
that have/(n) = 0 for all n < 0. If A were complemented in C, the operator

Q described by (8) would be a continuous projection from C onto A.

Application of Q to real-valued fe C shows that there is a constant M < oo that

satisfies

(12) sup |/(0)| <M- sup | Re f(0) \
e e

for every fe A. To see that no such M can exist, consider conformal

mappings of the closed unit disc onto tall thin ellipses.
Hence A is not complemented in C.

However, the projection (8) is continuous as an operator in If, if

1 < p < oo. Hence Hp is then a complemented subspace of If. This is a

theorem of M. Riesz (Th. 17.26 of [23]).
We conclude with an analogue of (b) of Theorem 5.16; it will be used

in the proof of Theorem 11.31.

5.20 Theorem Suppose X is a Banach space, A and B are closed sub-

spaces of X, and X = A + B. Then there exists a constant y < oo such that

every x e X has a representation x = a + b, where a e A, b e B, and

\\a\\ + \\b\\<y\\xl

This differs from (b) of Theorem 5.16 inasmuch as it is not assumed

that A n B = {0}.

proof. Let Y be the vector space of all ordered pairs (a, fe), with

a e A, b g B, and componentwise addition and scalar multiplication,
normed by

||(a, 6)|| = HI + ||6||.



138 PART I: GENERAL THEORY

Since A and B are complete, Y is a Banach space. The mapping
A: Y -? X defined by

A(a, b) = a + b

is continuous, since \\a + fe|| < ||(a, fe)||, and maps Y onto X. By the

open mapping theorem, there exists y < oo such that each x e X is

A(a, 6) for some (a, 6) with ||(a, fe)|| < y||x||. ////

Sums of Poisson Kernels

Let U and T be the open unit disc and the unit circle in (p. Let L1 = l}(T)
be as in Theorem 5.19, with norm

2tc
\f(ei6)\dO.

Associate to each z e (7 the Poisson kernel Pze l}(T):

1^"

It is easy to check that \\PJi = 1 for every z e U.

Call a set £ c (7 nontangentially dense on T if to every ew e T and to

every e > 0 there is a point z e E such that

|z-^|<min(e, 2(1 -|z|)).

There are such sets which have no limit point in U. To construct one, let

0 < r1 < r2 <
- -

-, lim rn
= 1, and place mn equally spaced points on the

circle rn T, taking mn > 2/(1 —

r„).
It is a rather surprising fact that every fe l}(T) can be represented as

the sum of a convergent series of multiples of Poisson kernels. This was

proved by F. F. Bonsall as an application of the closed range theorem. Here

is his more precise statement:

5.21 Theorem If {zl9 z2, z3, ...} aU is nontangentially dense on T,

then to every f el}(T) and every e>0 correspond scalars cn such that

1 |cj< 11/11!+earn*

00

1

This turns out to be a special case of the following abstract result:

5.22 Theorem Let {xn} be a sequence in a Banach space X, with \\xn\\ <

1 for all n, and suppose that there is a S > 0 such that

sup |<x„,x*>| ><5||x*||
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for every x* e X*. Ifs>0, every x e X can then be represented in the form

00

n=l

00

proof. Define T: tx -? X by Tc =YJcnxn9 for c ={c1, c2, c3, ...}e Z1.
i

Then, for every x* e X*9

00

<c, T*x*> = <Tc, x*> = X cn<x„, x*>
1

so that

Zc„<*„>**> < \\T*x*

if Hclli < 1. The supremum of the left side, over all such c, is

sup„ !<*„, x*>|, which is >5||x*|| by assumption. Theorem 4.13

asserts therefore that T maps the set of all c with £ | cn\ < l/d onto a

set that contains the open unit ball of X.

This proves Theorem 5.22. Let us apply it with X = l}(T),
xn

= PZn, where {zn} is nontangentially dense on T. Every

g e L°(T) = I}(T)* has a harmonic extension

^ J* P^eXe")G(Z) =

2^ ' ^OrtOdfl = <P„ 0>.

Since {zn} is nontangentially dense on T, Fatou's theorem concerning

nontangential limits of bounded harmonic functions implies that

sup | <PZn, g> | =

sup | G(zn) | =\\g\\ „.

n n

Therefore Theorem 5.21 is a consequence of Theorem 5.22, with 3=1.

Illl

Two More Fixed Point Theorems

It is a well-known consequence of the axiom of choice that there is no

measure on the real line R which is finite on compact sets, not identically

zero, translation-invariant, and defined on the a-algebra of all subsets of R.

The usual proof that nonmeasurable sets exist shows this. However, if

countable additivity—a property that, by definition, measures have—is

weakened to finite additivity, i.e., to the requirement that

fi(El u
• • •

u En) = liiEJ +
• • •

+ ii{En)
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for all finite unions of pairwise disjoint sets Ei9 then there do exist such

"finitely additive" measures /i which have all the other above-mentioned

properties. Moreover, one can have 0 < /i(£) < 1 for every E a R.

Theorem 5.25 will prove this, with any abelian group G in place of R,

as an application of an
"

invariant" version of the Hahn-Banach theorem.

The latter will be derived from the surprisingly elementary fixed point
theorem 5.23, due to Markov and Kakutani:

5.23 Theorem // K is a nonempty compact convex set in a topological
vector space X and 3F is a commuting family of continuous affine maps taking
K into K, then there exists a point p e K such that Tp = pfor every T e !F.

proof. For T e &, put T1 = T, Tn
+ 1

= T ° T\ for n = 1, 2, 3, ....

The fact that the averages

(1) T„ = -(/ + T + T2 +
---

+ J""1)
n

are also affine maps of K into K leads to the conclusion that any two

of them (with possibly different T's and different n's) commute with

each other.

Let J^* be the semigroup generated by the maps (1). Thus ^* is

the collection of all compositions of finitely many averages (1). If/,

ge^*,zndh=fog = gof then h e ^*. Since f(g(K)) af(K) and

g(f(K)) a g{K\ we see that

(2) f(K) n g(K) =d h(K).

Induction shows therefore that the collection {f(K):fe ^*} has the

finite intersection property. Since each f(K) is compact, there is a

point p e K which lies in f(K) for every/£ &*.

Now fix T £ J^ and let V be a neighborhood of 0 in X. For

every n > 1, p e Tn(K\ since Tn £ #"*. This means that there exist

points xn £ K such that

(3) p
= -(xn+Txn +

---

+ Tn-1xn).

But then

(4) p
-

Tp =

-n (xn
-

Tnxn) e~n{K- K\

and K — K anV for all sufficiently large n, because K — K is

compact and therefore bounded. Thus p
—

Tp e V, for every

neighborhood V of 0. This forces p- Tp to be 0. ////
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5.24 An invariant Hahn-Banach theorem Suppose that Y is a sub-

space of a normed linear space X9fe Y*9 T cz 0&(X)9 and that

(a) T(Y) cz Yand ST = TSfor all S9T e T,

(6) /o T=f for every TeT.

Then there exists F e X* such that F =f on Y, \\F\\ = \\f\\, and

F o T = F for every TeT.

Briefly, the given T-invariant / has a T-invariant Hahn-Banach

extension F.

proof. Assume that ||/|| = 1, without loss of generality. Define

(1) K = {A e X*: ||A|| < 1, A =/on 7}.

It is clear that K is convex. The Hahn-Banach theorem implies that K

is not empty. Since K is weak*-closed, the Banach-Alaoglu theorem

shows that K is a weak*-compact subset of X*. For every TeT, the

map

(2) A -> A o T

is an affine map of K into K which is weak*-continuous (as we will

see in a moment). Theorem 5.23 shows therefore that some F e K

satisfies F° T = F for every TeT.

To finish, we show that (2) is a weak*-continuous map of X* into

X*,for every T e @{X). Fix A1 e X*9 let

(3) V = {Le X*: \ Lxt
- (Ax T)xt\ < e, 1 < i < n)

be a typical weak*-neighborhood of AXT, determined by xl9...9

xn g X and e > 0. Then

(4) W = {A g X*: | A(7X)
- A^Tx,-) | < e, 1 < i < n}

is a weak*-neighborhood of Al9 and if A g W9 it is clear that AT e V.

mi

5.25 Theorem // G is an abelian group (with + as group operation) and

Jl is the collection of all subsets of G (the "power set
"

of G)9 then there is a

function \i.' Ji -? [0, 1] such that

(a) n(Ex u E2) = ^(EJ + n(E2) ifE1 n E2 = 0,

(b) ii(E + a) = fi(E)for allEeJt9ae G, and

(c) n(G)=h
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proof. This is trivial if G is finite. So assume G is infinite, and let

*f °°(G) be the Banach space of all bounded complex functions on G,

with the supremum norm.

Let Y be the space of all/e *f°°(G) which have a limit, call it Af
at oo. This means that, if fe Y and e > 0, then there is a finite set

E c G so that | Af-f(x)\ < e for all x outside E. Note that A e Y*

and that ||A|| = 1.

Let T be the set of all translation operators xa, for a e G, defined

by

(1) {xaftx)=f{x-a).

Since G is abelian, any two members of T commute; each xa is a linear

isometry of /°°(G); and it is clear that za(Y) c Y and that At0 = A

on Y.

The hypotheses of Theorem 5.24 are thus satisfied, with

X = ^°°(G). We conclude that there exists an extension L of A, a linear

functional of norm 1 on ^°°(G), which satisfies

(2) Lf=Af for every feY

and

(3) LxQ f=Lf for every / e /°°(G).

If we now define /i(£) = LxE (where Xe *s tne characteristic

function of E c G), then (a) holds because Xe^ + Xe2
=

Xe^e2 if

£x n E2 = 0, and L is linear, and (b) holds because

(4) Xe+0M = Xe(* ~a) =

xa Xe(*)-

It remains to be shown that 0 < /i(£) < 1 for every E c G. This

is done by the following lemma, since A (hence also L) preserves

constants: If/(x) = c for all x e G, then/e 7 and A/= c. ////

5.26 Lemma Suppose that X is a normed linear space of bounded

functions, with the supremum norm, and that L is a linear functional on X, such

that

\\L\\=L(l)=\.

Then 0 < Lf< 1 iffe X and 0 <f< 1.

proof. Put Lf = a + ijS. For every real t,

L(/-i + it) = a- i + i(jS + r).

Since ||/- ill < i, it follows that

(«-i)2 + (i5 + 02<ll/-i + ^ll2<i + f2,
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so that a2 -

a + j?2 + 2/ft < 0 for every real t. This forces /? = 0,

hence a2 < a, hence 0 < a < 1. ////

5.27 Example Commutativity cannot be dropped from the hypotheses
of the preceding three theorems. To see this, let G be the free group on two

generators, a and b. Except for the identity element, G is the union of four

disjoint sets, say I, II, III, IV, consisting of those reduced words that start

with a, a-1, fe, fe_1, respectively. If /i is a finitely additive measure on the

power set of G, with 0 < \i < 1 and n(aE) = /i(£) = fi(bE) for all E cz G,

then we see that /i(I u III u IV) = //(I) and /i(I u II u III) = /i(III). The

first of these shows that /i(III) = /i(IV) = 0, the second that /i(I) = /i(II) = 0.

Since singletons must have measure 0, /i
= 0. Thus Theorem 5.25 fails for

this group.

We conclude this chapter with the Schauder-Tychonoff fixed point
theorem. This is an infinite-dimensional version of Brouwer's theorem

concerning the fixed point property of closed balls in Rn. It is nonlinear, and its

proof is therefore not really an application of any of the preceding material,

except that it will involve a Minkowski functional.

5.28 Theorem // K is a nonempty compact convex set in a locally convex

space X, andf: K -+ K is continuous, thenf(p) = pfor some p e K.

proof. Assume/fixes no point of K. Its graph

(1) G = {(*,/(*)) £ X x X: x e K}

is then disjoint from the diagonal A of X x X and is compact. Hence

there is a convex balanced neighborhood V of 0 in X such that

G + (V x V) misses A. In particular,

(2) f(x) £x+V (xeK).

Let \x be the Minkowski functional of V. Theorem 1.36 shows

that \i is continuous on X and that \i{x) < 1 if and only if x £ V.

Define

(3) a(x) = max {0, 1 -

fi(x)} (x e X).

Choose xl9 ..., xn £ K so that the sets xt + V (1 < i < n) cover K, put

cti(x) = a(x
—

Xf), and define

(4) filx) =

g<(x)
(xeK, \<i<n\

«iW +
• • •

+ a„(x)

noting that the denominator in (4) is positive for every xeK.
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Let H = co{xt, ..., xn}. Then g, defined by

(5) g(x) = t Pixyx, (x € K\
1

is a continuous map from K into the compact finite-dimensional

simplex H a K. The same is true of g of. Brouwer's fixed point
theorem asserts therefore that there is an x* e if such that

(6) g(f(x*)) = x*.

Since /?j(x) = 0 outside xt + V, we see that

(7) x - g(x) = £ ft(x)(* - xd (x e K)
1

is a convex combination of vectors x
—

xt e V. Thus x — g(x) e V, for

every x e K. In particular, this is true for x =f(x*). We conclude that

(8) f(x*) £ g(f(x*)) + V = x* + K,

contrary to (2). ////

Exercises

1. Define measures /j1? //2 on the unit circle by

d/ij = cos 0 d6, &\i2 = sin 0 dO

and find the range of the measure \i
= (/il9 fi2\

2. Construct two functions/and g on [0, 1] with the following property: If

dlii =f{x) dx, d/i2 = d(x) dx, ii
= (Hu V-i\

then the range of// is the square with vertices at (1, 0), (0, 1), (— 1, 0), (0,
— 1).

3. Suppose that the hypotheses of Theorem 5.9 are satisfied, that <j> e C(S), <j> > 0,

g e C(K), and \g\ < <t>\K. Prove that there exists feY such that f\K =

g and

| /1 < (j> on S. Hint: Apply Theorem 5.9 to the space of all functions//(/>, with

feY.
4. Supply the details of the proof that every extreme point of P has its support at a

single point. (This refers to the end of proof of Theorem 5.10.)

5. Prove the analogues of Theorems 1.10 to 1.12 that are alluded to in Section

5.12. (Do not assume that G is commutative.)

6. Suppose G is a topological group and H is the largest connected subset of G

that contains the identity element e. Prove that H is a normal subgroup of G,

that is, a subgroup that satisfies x~1Hx = H for every x e G. Hint: If A and B

are connected subsets of G, so are AB and A'1.

7. Prove that every open subgroup of a topological group is closed. (The converse

is obviously false.)

8. Suppose m is the Haar measure of a compact group G, and V is a nonempty

open set in G. Prove that m(V) > 0.
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9. Put e„(6) = ein6. Let L2 refer to the Haar measure of the unit circle. Let A be the

smallest closed subspace of L2 that contains e„ for n = 0, 1, 2, ...,
let B be the

smallest closed subspace of L2 that contains e_„ + ne„ for n = 1, 2, 3, .... Prove

the following:

(fl)i4nB= {0}.
(b) UX = A + B then X is dense in L2, but X # L2.

(c) Although X = ,4 © £, the projection in X with range A and null space £ is

not continuous. (The topology of X is, of course, the one that X inherits

from L2. Compare with Theorem 5.16.)

10. Suppose X is a Banach space, P e 38(X\ Q e 38{X\ and P and Q are

projections.

(a) Show that the adjoint P* of P is a projection in X*.

(b) Show that \\P -

Q\\ > 1 if Pg = QP and P # g.

11. Suppose P and Q are projections in a vector space X.

(a) Prove that P + Q is a projection if and only if PQ = QP = 0. In that case,

Jf(P + Q) = JT(P) n Jf(Q\

m(P + g) = ^(P) + ^(g),

^(P) n ^(g) = {0}.

(t) If PQ = QP, prove that PQ is a projection and that

J^(PQ) = JT(P) + jV(Q),

m(PQ) = m(P) n m(Q).

(c) What do the matrices

G t) - (i -:)
show about part (b)l

12. Prove that the translation operators ts used in Example 5.19 satisfy the

continuity property described in Section 5.17. Explicitly, prove that

IM-t./iu-o

if r -? s and g ->/in L1.

13. Use the following example to show that the compactness of G cannot be

omitted from the hypotheses of Theorem 5.18. Take X = L1 on the real line R,

relative to Lebesgue measure;/e Y if and only if $Rf= 0; G = R with the usual

topology; G acts on L1 by translation: (ts/Xx) =f(s + x). The joint continuity

property is satisfied (see Exercise 12), zsY = Y for every s, and Y is

complemented in X. Yet there is no projection of X onto Y (continuous or not) that

commutes with every ts .

14. Suppose S and T are continuous linear operators in a topological vector space,

and

T = TST.

Prove that T has closed range. (See Theorem 5.16 for the case S = I.)



146 PART I: GENERAL THEORY

15. Suppose A is a closed subspace of C(S), where S is a compact Hausdorff space;

suppose fi is an extreme point of the unit ball of AL\ and suppose fe C(S) is a

real function such that

[gfdfi = o

for every g e A. Prove that / is then constant on the support of \x. (Compare
with Theorem 5.7.) Show, by an example, that the conclusion is false if the word
"

real" is omitted from the hypotheses.

16. Suppose X is a vector space, E c X, T: co(E)-+X is afiine, and T(E) c E.

Prove that T(co(E)) c co(E). (This was tacitly used in the proof of Theorem

5.11.)

17. If X and Y are vector spaces and T: X -? Y is afiine, prove that T —

T(0) is

linear.

18. Suppose K is a compact set in a Frechet space X and /: X -? K is continuous.

Prove that/fixes some point of K.

Do the same if Q is a convex open set in X, Q 3 K, and /: Q -? K is

continuous.

19. Prove the existence of a continuous function/on / = [0, 1] which satisfies the

equation

f(x)= J' sin (x +/2(0) dt

for all x e /. Hint: Denoting the right side by (T/Xx), show that the set

{Tf:fe C(/)} is uniformly bounded and equicontinuous and that its closure is

therefore compact in C(I). Apply Schauder's fixed point theorem (via Exercise

18).



PART

II

DISTRIBUTIONS

AND FOURIER
TRANSFORMS





CHAPTER

6

TEST

FUNCTIONS

AND

DISTRIBUTIONS

Introduction

6.1 The theory of distributions frees differential calculus from certain

difficulties that arise because nondifferentiable functions exist. This is done

by extending it to a class of objects (called distributions or generalized

functions) which is much larger than the class of differentiable functions to

which calculus applies in its original form.

Here are some features that any such extension ought to have in order

to be useful; our setting is some open subset of Rn:

(a) Every continuous function should be a distribution.

(b) Every distribution should have partial derivatives which are again
distributions. For differentiable functions, the new motion of derivative

should coincide with the old one. (Every distribution should therefore

be infinitely differentiable.)

(c) The usual formal rules of calculus should hold.

149
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(d) There should be a supply of convergence theorems that is adequate for

handling the usual limit processes.

To motivate the definitions to come, let us temporarily restrict our

attention to the case n = 1. The integrals that follow are taken with respect

to Lebesgue measure, and they extend over the whole line R9 unless the

contrary is indicated.

A complex function/is said to be locally integrable if/is measurable

and §K I/| < oo for every compact K cz R. The idea is to reinterpret / as

being something that assigns the number J f(f> to every suitably chosen

"test function" 0, rather than as being something that assigns the number

f(x) to each x e R. (This point of view is particularly appropriate for

functions that arise in physics, since measured quantities are almost always

averages. In fact, distributions were used by physicists long before their

mathematical theory was constructed.) Of course, a well-chosen class of test

functions must be specified.
We let 9 = 9(R) be the vector space of all (j> e C°°(K) whose support

is compact. Then j" /0 exists for every locally integrable / and for every

(f> e 9. Moreover, <2> is sufficiently large to assure that/is determined (a.e.)

by the integrals J f</>. (To see this, note that the uniform closure of 9

contains every continuous function with compact support.) If/happens to be

continuously differentiable, then

(1) jY4>=-jV fte 9).

If/e C°°(K), then

jV«0 = (-1(2) /<*></> = (-!)< fct>{k) (<l>e99k= 1,2,3,...).

The compactness of the support of 0 was used in these integrations by

parts.

Observe that the integrals on the right sides of (1) and (2) make sense

whether f is differentiable or not and that they define linear junctionals on 9.

We can therefore assign a
"

/cth derivative" to every / that is locally

integrable :/(fc) is the linear functional on 9 that sends <\> to (— l)k j" f(j){k\
Note that/itself corresponds to the functional </>-?{/</>.

The distributions will be those linear functionals on 9 that are

continuous with respect to a certain topology. (See Definition 6.7.) The preceding
discussion suggests that we associate to each distribution A its

"

derivative
"

A' by the formula

(3) AW=-A(« We®).

It turns out that this definition (when extended to n variables) has all

the desirable properties that were listed earlier. One of the most important
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features of the resulting theory is that it makes it possible to apply Fourier

transform techniques to many problems in partial differential equations
where this cannot be done by more classical methods.

Test Function Spaces

6.2 The space @(Sl) Consider a nonempty open set Q cz Rn. For each

compact KcQ, the Frechet space <3)K was described in Section 1.46. The

union of the spaces ^x,asK ranges over all compact subsets of Q, is the

test function space ^(Q). It is clear that ^(Q) is a vector space, with respect

to the usual definitions of addition and scalar multiplication of complex
functions. Explicitly, (/> £ ^(Q) if and only if (f> e C°°(Q) and the support of

(f) is a compact subset of Q.

Let us introduce the norms

(1) Uh = max {\Dac/>(x)\: x e Q, |a| < N}9

for 4> e @(Q) and N = 0, 1, 2, ...; see Section 1.46 for the notations Da

and | a |.
The restrictions of these norms to any fixed <2)K cz <2)(Q) induce the same

topology on @K as do the seminorms pN of Section 1.46. To see this, note that

to each K corresponds an integer N0 such that K a KN for all N > N0.
For these N, \\(/)\\N = pN((t>) if 4> e @k- Since

(2) \\<t>\\N<\\<t>\\N + i and pN(<t>) < pN + 1(<t>),

the topologies induced by either sequence of seminorms are unchanged if

we let N start at N0 rather than at 1. These two topologies of @K coincide

therefore; a local base is formed by the sets

(3) VN = {ct> £ 9K: W\N<^ (N = 1, 2, 3, ...).

The same norms (1) can be used to define a locally convex metrizable

topology on ^(Q); see Theorem 1.37 and (b) of Section 1.38. However, this

topology has the disadvantage of not being complete. For example, take

n = 1, Q = K, pick </> £ 3>(R) with support in [0, 1], $ > 0 in (0, 1), and

define

il/m(x) = (t>(x
-

1) +
-

(t>(x
-

2) +
• • •

+
-

(t>(x
-

m).

Then {^w} is a Cauchy sequence in the suggested topology of @(R\ but

lim \j/m does not have compact support, hence is not in @(R).
We shall now define another locally convex topology t on ^(Q) in

which Cauchy sequences do converge. The fact that this t is not metrizable

is only a minor inconvenience, as we shall see.
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6.3 Definitions Let Q be a nonempty open set in Rn.

(a) For every compact K cz Q, xK denotes the Frechet space topology of

@K9 as described in Sections 1.46 and 6.2.

(b) P is the collection of all convex balanced sets W cz <3)(Q) such that

$)K n W e xK for every compact Xcfi.

(c) t is the collection of all unions of sets of the form (f> + W9 with

(t> e ^(Q) and W e p.

Throughout this chapter, K will aways denote a compact subset of Q.

The following two theorems establish the basic properties of the

topology t, which is quite different from the one discussed in Section 6.2.

For example, if {xm} is a sequence in Q, without limit point in Q, and if {cm}
is a sequence of positive numbers, then the set

{<pe9(n):\(p(xj\ < cm for m = 1, 2, 3, ...}

belongs to /?, i.e., is a T-neighborhood of 0 in <2)(Q). It is this fact (see
Theorem 6.5) which forces T-bounded sets (and hence T-Cauchy sequences)
to be concentrated on a common compact set Kcfi, and therefore

T-Cauchy sequences converge.

6.4 Theorem

(a) t is a topology in ^(ft), and ft is a local base for t.

(b) t makes @(Q) into a locally convex topological vector space.

proof. Suppose Vl £ t, V2 £ t, 4> £ Kx n K2. To prove (a), it is clearly

enough to show that

(1) c/)-hWczV1n V2

for some Weft.
The definition of t shows that there exist 0f £ ^(Q) and Wt e P

such that

(2) ^^+H5c»i (»= 1,2).

Choose X so that <2>K contains </>l9 </>29 and 0. Since ^ n Wt is open

in ^, we have

(3) 4> -

<£,. e (1 - 8m

for some <5, > 0. The convexity of Wt implies therefore that

(4) 4>-<j>i + diWi^{\-5^Wi + diWi=Wi,
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so that

(5) (t> + St Wt c fa + Wt cz Vt (i = 1, 2).

Hence (1) holds with W = (8^) n (<S2 W2), and (a) is proved.

Suppose next that (f)1 and 02 are distinct elements of 0(fi), and

put

(6) W = {<t>e®(nY-\\<t>\\o<\\<t>i-<t>2\U

where ||0||o is as in (1) in Section 6.2. Then W e j? and 4>i is not m

4>2 + W- It follows that the singleton {0X} is a closed set, relative to t.

Addition is T-continuous, since the convexity of every W e j?

implies that

(7) OK + ±W) + y2 + ±W) = Oh +^2) + W

for any ^ e 0(12), ^2 e 0(12).
To deal with scalar multiplication, pick a scalar a0 and a 0O e

0(12). Then

(8) ac/> -cc0(f)0 = a(c/> -

0O) + (a
-

ao)0o.

If W e /?, there exists (5 > 0 such that S(/)0 e \W. Choose c so that

2c( | a01 + <5) = 1. Since W is convex and balanced, it follows that

(9) atf>-a0(/>0e W

whenever | a
—

a01 < 3 and $
—

4>0 e cW.

This completes the proof. ////

Note: From now on, the symbol 0(Q) will denote the topological
vector space (0(£2), t) that has just been described. All topological concepts

related to 0(Q) will refer to this topology t.

6.5 Theorem

(a) A convex balanced subset V of@(Q) is open if and only ifVe/1.

(b) The topology zK of any <3)K c 0(Q) coincides with the subspace topology
that 3)K inherits from 0(Q).

(c) // E is a bounded subset of 0(£2), then E a @K for some KcQ, and

there are numbers MN < oo such that every (f) e E satisfies the

inequalities

\\<t>\\N<MN (N = 0,1,2,...).

(d) 3>(Cl) has the Heine-Borel property.
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(e) If {(t>i\ is a Cauchy sequence in ^(fi), then {(/>J cz @Kfor some compact

Kcfi, and

lim \\4>.-4>.\\N = 0 (N = 0,1,2,...)-
i, j~* oo

(/) If $^0 in the topology of <3)(£l\ then there is a compact K cz Q which

contains the support of every (f)i9 and Da(^->0 uniformly, as i-> oo, for

every multi-index a.

(g) In ^(fi), every Cauchy sequence converges.

Remark. In view of (fc), the necessary conditions expressed by (c), (e),
and (/) are also sufficient. For example, if E cz <2>K and ||0||N < MN <

oo for every <t> e E, then £ is a bounded subset of @K (Section 1.46),
and now (b) implies that E is also bounded in ^(Q).

proof. Suppose first that Vet. Pick $ e @K n V. By Theorem 6.4,

(f> + W cz V for some W e /?. Hence

0 + (^ n W) cz @K n K.

Since ^ n W is open in ^, we have proved that

(1) ®K n K e xK if K e t and Xcfi.

Statement (a) is an immediate consequence of (1), since it is

obvious that j? cz t.

One half of (b) is proved by (1). For the other half, suppose

E £ tk. We have to show that E = @K n V for some Vet. The

definition of zK implies that to every (f) e E correspond N and S > 0

such that

(2) {xj,e®K:M-4>\\N<d}^E.

Put % = {iA £ ®(n): Hi/i* < «}• Then % £ ft and

(3) 9K n ((/> + %) = (/> + (^ n %) cz £.

If V is the union of these sets </>+%, one for each (f> e E, then K has

the desired property.

For (c), consider a set £ cz ^(Q) which lies in no <2>K. Then there

are functions <$>m £ E and there are distinct points xm e Q, without

limit point in Q, such that (t>m(xm) # 0 (m = 1, 2, 3, ...). Let W be the

set of all 4> £ ^(Q) that satisfy

(4) \<t>(xm)\<rn-1\(t>m(xm)\ (m = 1, 2, 3, ...).

Since each X contains only finitely many xw, it is easy to see that

3)K n W e tk. Thus W e p. Since (f>m^mW, no multiple of W

contains £. This shows that £ is not bounded.
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It follows that every bounded subset E of 0(Q) lies in some @K.

By (fc), E is then a bounded subset of <3)K. Consequently (see Section

1.46)

(5) sup {\\4>\\N: 4>eE}<w (N = 0, 1, 2, ...).

This completes the proof of (c).
Statement (d) follows from (c), since @K has the Heine-Borel

property.

Since Cauchy sequences are bounded (Section 1.29), (c) implies
that every Cauchy sequence {(/>J in <2)(Q) lies in some <2>K. By (fc), {(/>J
is then also a Cauchy sequence relative to xK. This proves (e).

Statement (/) is just a restatement of (e).

Finally, (g) follows from (fe), (e), and the completeness of <2>K.

(Recall that <2>K is a Frechet space.) ////

6.6 Theorem Suppose A is a linear mapping of @(Q) into a locally
convex space Y. Then each of the following four properties implies the others:

(a) A is continuous.

(b) A is bounded.

(c) // fa -? 0 in 0(12) then A<£, -? 0 in Y.

(d) The restrictions of A to every <2)K cz 0(Q) are continuous.

proof. The implication (a) -? (b) is contained in Theorem 1.32.

Assume A is bounded and (/>,-? 0 in 0(Q). By Theorem 6.5,

(t>i -? 0 in some <2>K, and the restriction of A to this <2>K is bounded.

Theorem 1.32, applied to A: @K-> Y, shows that Ac^-^0 in Y. Thus

(b) implies (c).
Assume (c) holds, {</>J<=^k, and 0f-? 0 in @K. By (b) of

Theorem 6.5, 0f -? 0 in 0(Q). Hence (c) implies that A0f -? 0 in 7, as

i -? oo. Since @K is metrizable, (d) follows.

To prove that (d) implies (a), let U be a convex balanced

neighborhood of 0 in 7, and put V = A_1((7). Then V is convex and

balanced. By (a) of Theorem 6.5, V is open in 0(Q) if and only if <2>K n K

is open in 0X, for every 0X cz 0(Q). This proves the equivalence of (a)
and (d). ////

Corollary. Every differential operator Da is a continuous mapping of

0(12) into 0(12).

proof. Since || Dollar < ||^||N+|a| for iV = 0, 1, 2, ...,
Da is continuous

on each <3)K. ////
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6.7 Definition A linear functional on 0(Q) which is continuous (with

respect to the topology t described in Definition 6.3) is called a distribution

in Q.

The space of all distributions in Q is denoted by <3)\£l).
Note that Theorem 6.6 applies to linear functional on <2)(Q). It leads

to the following useful characterization of distributions.

6.8 Theorem If A is a linear functional on 0(fi), the following two

conditions are equivalent:

(a) AeSP

(b) To every compact K czQ corresponds a nonnegative integer N and a

constant C < oo such that the inequality

\A(t>\<C\\<t>\\N

holds for every (f> e <3)K.

proof. This is precisely the equivalence of (a) and (d) in Theorem 6.6,

combined with the description of the topology of <2>K by means of the

seminorms ||0||N given in Section 6.2. ////

Note: If A is such that one N will do for all K (but not necessarily
with the same C), then the smallest such N is called the order of A. If no N

will do for all K, then A is said to have infinite order.

6.9 Remark Each x e Q determines a linear functional Sx on 0(fi), by
the formula

&M = <p(x).

Theorem 6.8 shows that Sx is a distribution, of order 0.

If x = 0, the origin of Rn, the functional S = S0 is frequently called the

Dirac measure on Rn.

Since @K, for K cz Q, is the intersection of the null spaces of these 5X,
as x ranges over the complement of K, it follows that each <2)K is a closed

subspace of ^(Q). [This follows also from Theorem 1.27 and part (b) of

Theorem 6.5, since each <3)K is complete.] It is obvious that each Q)K has

empty interior, relative to ^(Q). Since there is a countable collection of sets

K{ cz Q such that 0(12) = (J @Ki, 0(Q) is of the first category in itself. Since

Cauchy sequences converge in 0(Q) (Theorem 6.5), Baire's theorem implies
that 0(Q) is not metrizable.
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Calculus with Distributions

6.10 Notations As before, Q will denote a nonempty open set in Rn. If

a = (<xl9..., a„) and j? = (fil9..., /?„) are multi-indices (see Section 1.46) then

(1) |a| =ax +
•••

+a„,

(2) Da = Dal- D?, where Dj =

t~,

(3) /? < a means /?, < af for 1 < i < n,

(4) a±/J = («i±/Ji,...,all±/Jll).

Ifxe K" and ye Rn9 then

(5) x
•

y
=

x1y1 +
•••

+xj„,

(6) |x|=(x-x)1/2=(x? + ---+xj)1/2-

The fact that the absolute value sign has different meanings in (1) and

in (6) should cause no confusion.

If x e Rn and a is a multi-index, the monomial xa is defined by

(7) xa = x\l
• • •

x

6.11 Functions and measures as distributions Suppose /is a locally

integrable complex function in Q. This means that/is Lebesgue measurable

and J* l/MI dx < co for every compact Kcfi; dx denotes Lebesgue
measure. Define

Jn
(i) a/0) = i #*)/(*) dx [</» 6 mm

Since

(2) |A/4>)|<(Jj/|)- HtfHIo »e^

Theorem 6.8 shows that Af e &(Q).
It is customary to identify the distribution Ay with the function / and

to say that such distributions
"

are
"

functions.

Similarly, if /i is a complex Borel measure on Q, or if /i is a positive
measure on Q with ii(K) < oo for every compact Kcfi, the equation

(3) AM) = 4>dpi [(/> e ^(Q)]

defines a distribution AM in Q, which is usually identified with \i.
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6.12 Differentiation of distributions If a is a multi-index and

A e 3)\£l\ the formula

(1) (D*AM) = (- 1)'"A(DV) [0 e 9(a)]

(motivated in Section 6.1) defines a linear functional DaA on 9(Q). If

(2) \A<t>\<C\\<t>\\N

for all 4> e @K >
tnen

(3) \(Dam)\<C\\D*ct>\\N<C\\<t>\\N + lal.

Theorem 6.8 shows therefore that DaA e <2>'(Q).
Note that the formula

(4) LTD* A = Da+pA = DpDaA

holds for every distribution A and for all multi-indices a and /?, simply
because the operators Da and Dp commute on C°°(Q):

(DaDpA)((t>) = (- 1)W(D'AXDV)

= (-\p
+

\P\\(DpDa(t>)

= (-\)\*+P\A(Da+p(t>)

6.13 Distribution derivatives of functions The ath distribution

derivative of a locally integrable function fin Q is, by definition, the distribution

DPKf.
If Daf also exists in the classical sense and is locally integrable, then

Daf is also a distribution in the sense of Section 6.11. The obvious

consistency problem is whether the equation

(1) D*\f = A*,

always holds under these conditions.

More explicitly, the question is whether

(2) (-1)'" I RxWMx) dx = f (imxMx) dx

for every (f> e 9(Q).

Iff has continuous partial derivatives of all orders up to N,

integrations by part give (2) without difficulty, if | a | < N.

In general, (1) may be false. The following example illustrates this, in

the case n = 1.

6.14 Example Suppose Q is a segment in R, and/is a left-continuous

function of bounded variation in Q. If D = d/dx, it is well known that
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(Df)(x) exists a.e. and that Dfel}. We claim that

(1) DA, = A,

where \i is the measure defined in Q by

(2) n([a, b)) =f(b) -f(a).

Thus DAf = ADf if and only iff is absolutely continuous.

To prove (1), we have to show that

(A„X<« = (DA/X0 = -A/W)

for every § e ^(ft), that is, that

(3) L ,fo = - (V(*)/w <k.

But (3) is a simple consequence of Fubini's theorem, since each side of (3) is

equal to the integral of (j>\x) over the set

(4) {(x,y): xeQ, y e Q9 x < y}

with respect to the product measure of dx and d\i. The fact that 4> nas

compact support in Q is used in this computation.

6.15 Multiplication by functions Suppose A e 3)\Q) and fe C°°(Q).
The right side of the equation

(1) (/A)(0) = A(fcf>) [0 e 9(Gf]

makes sense because f(j> e <3)(Q) when (f> e ^(Q). Thus (1) defines a linear

functional/A on ^(Q). We shall see that/A is, in fact, a distribution in Q.

Observe that the notation must be handled with care: If/e ^(ft), then

Af is a number, whereas/A is a distribution.

The proof that/A e <2>'(Q) depends on the Leibniz formula

(2) DTfo)= EaD«-W9),

valid for all/and g in C°°(Q) and all multi-indices a, which is obtained by
iteration of the familiar formula

(3) (mi;)' = u'v + mi/.

The numbers caP are positive integers whose exact value is easily computed
but is irrelevant to our present needs.

To each compact K czQ correspond C and N such that | A(f) | <

C||0||N for all (/) e @K. By (2), there is a constant C", depending on/, X, and

JV, such that ||jf#||N < C'||^||Nfor (/> £ ®x. Hence

(4) l(/AX0)I^CC||0IU (^^

By Theorem 6.8,/A £ ^'(Q).
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Now we want to show that the Leibniz formula (2) holds with A in

place of g, so that

(5) D*(fA)= Xc^-'/XZy'A).

The proof is a purely formal calculation. Associate to each u e Rn the

function hu defined by

hu(x) =

exp (u
•

x).

Then Dahu = uahu. If (2) is applied to hu and hv in place of / and g, the

identity

(6) (u + v)a= X caP ua" V (u eR\ve Rn)
P<a

is obtained. In particular,

P<a y<p

= £(-D'V-V X (-l)1"^,,-
y<a y<P<a

Hence

(7) JJ-D'^-le) otherwise.

Apply (2) to D^D"'"/), and use (7), to obtain the identity

(8) x (- lyic^/y^D"-'/) = (- i)M/d>

The point of all this is that (8) gives (5). For if (f> e @(Q)9 then

D*(/A)(0) = (- l)w(/A)(Z>*<A) = (- 1)WA(PV)

= I (-!)"%, A^D""'/))

= Ic^AX*^-'/)

= Zca/,[(Z)a-"/)(Z)''A)](0).

6.16 Sequences of distributions Since S)\Q) is the space of all

continuous linear functions on ^(ft), the general considerations made in Section

3.14 provide a topology for <2)\£l)—its weak*-topology induced by ^(Q)—
which makes <3}\£l) into a locally convex space. If {AJ is a sequence of

distributions in Q, the statement

(1) A, -? A in @'(Q)
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refers to this weak*-topology and means, explicitly, that

(2) \im At(t) = A(t> [^9(Q)].

In particular, if {f} is a sequence of locally integrable functions in Q,

the statements "ft -? A in ^'(^)" or
"

{ft} converges to A in the distribution

sense
"

mean that

(3) lim

1-* 00

</>(*)/X*) dx = A(t>

for every <\> e ^(Q).
The simplicity of the next theorem, concerning termwise

differentiation of a sequence, is rather striking.

6.17 Theorem Suppose At e 3)\Q)for i = 1, 2, 3,..., and

(1) Ac/) = limA^
i-»oo

exists (as a complex number) for every (f> e ^(Q). Then A e !3>'(£l)9 and

(2) D'Ai -? DaA in ^'(Q),

for every multi-index a.

proof. Let K be an arbitrary compact subset of Q. Since (1) holds for

every (f) e @K9 and since @K is a Frechet space, the Banach-Steinhaus

theorem 2.8 implies that the restriction of A to @K is continuous. It

follows from Theorem 6.6 that A is continuous on @(Q); in other

words, A e <2)\£l). Consequently (1) implies that

(DaAU) = (-lpA(D^)

= (- 1)'" lim AiD*4>) = lim (D-AJ0). ////

6.18 Theorem If A{ -? A in &(Q) and g{^g in C°°(Q), then gt At -? gA in

Note: The statement "gt-^ g in C°°(Q)" refers to the Frechet space

topology of C°°(Q) described in Section 1.46.

proof. Fix 4> £ @(Q). Define a bilinear functional B on C°°(Q) x @'(Q)

by

flfo, A) = (gAU) = Afofl.
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Then B is separately continuous, and Theorem 2.17 implies that

B(gt, A,) -? B(g, A) as i -? oo.

Hence

(0AX4>)-(0A)«>). ////

Localization

6.19 Local equality Suppose A; e S){Q) (i = 1, 2) and co is an open

subset of Q. The statement

(1) Ax = A2 in co

means, by definition, that Ax(/> = A2 0 for every 0 e <2)(co).
For example, if/ is a locally integrable function and \i is a measure,

then A/ = 0 in co if and only if/(x) = 0 for almost every x e co, and A^ = 0

in co if and only if fi(E) = 0 for every Borel set E cz co.

This definition makes it possible to discuss distributions locally. On

the other hand, it is also possible to describe a distribution globally if its

local behavior is known. This is stated precisely in Theorem 6.21. The proof
uses partitions of unity, which we now construct.

6.20 Theorem If T is a collection of open sets in Rn whose union is Q,

then there exists a sequence {^J cz ^(Q), with i/^- > 0, such that

(a) each i/^- has its support in some member ofT,
00

(b) X lAiM = 1 for every x e Q,
i=l

(c) to every compact K cz Q correspond an integer m and an open set

W zd K such that

(1) *l(*) +
-"

+*??(*)= 1

for all x e W.

Such a collection {^J is called a locally finite partition of unity in Q,

subordinate to the open cover T of Q. Note that it follows from (b) and (c)
that every point of Q has a neighborhood which intersects the supports of

only finitely many i/^. This is the reason for calling {^J locally finite.

proof. Let S be a countable dense subset of Q. Let {Bu B2, B3, ...}
be a sequence that contains every closed ball Bt whose center p( lies in

S, whose radius rt is rational, and which lies in some member of T. Let
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V{ be the open ball with center pt and radius rJ2. It is easy to see that

a = \jvt.
The construction described in Section 1.46 shows that there are

functions fa e ^(Q) such that 0 < 0 < 1, fa = 1 in V{, fa = 0 off Bt.
Define \l/l = (f)u and, inductively,

(2) *f+i=(l-*i)"-(l-*M+i 0>1).

Obviously, i/^ = 0 outside Bt. This gives (a). The relation

(3) t/,1 +
...

+ t/,.= i_(i_4,l)...(i_4,i.)

is trivial when i = 1. If (3) holds for some i, addition of (2) and (3)

yields (3) with i + 1 in place of i. Hence (3) holds for every i. Since

4>i = 1 in VJ, it follows that

(4) !M*) +
-"

+ !Ux)=l ifxeKi u---u Kw.

This gives (fc). Moreover, if X is compact, then K cz Kx u
• • •

u Vm for

some m, and (c) follows. ////

6.21 Theorem Suppose F is an open cover of an open set Q cz Rn9 and

suppose that to each co e F corresponds a distribution A^ e Q)\co) such that

(1) A^ = A^ in co' n co"

whenever co' n co" ^ 0.
Then there exists a unique A e &(Q) such that

(2) A = Aw in co

for every co e F.

proof. Let {ij/i} be a locally finite partition of unity, subordinate to T,

as in Theorem 6.20, and associate to each i a set cot e F such that cot

contains the support of ^.
If (f) e ^(ft), then ct> = Yj *Ai 0- Only finitely many terms in this

sum are different from 0, since 4> has compact support. Define

00

(3) A<£= EAJ^)-

It is clear that A is a linear functional on ^(Q).
To show that A is continuous, suppose fa -? 0 in ^(Q). There is

a compact K cz Q which contains the support of every ^. If m is

chosen as in part (c) of Theorem 6.20, then

m

(4) A^=£AJ^) 0 = 1,2,3,...).
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Since \j/t (f>} -? 0 in ^(co,), as j -? oo, it follows from (4) that A^ -? 0. By

Theorem 6.6, A e @'(Q).
To prove (2), pick </> e <2>(cd). Then

(5) ^^6®(o)i n co) (i = 1,2,3,...)

so that (1) implies Aw.(^(|)) = AJfti<l>). Hence

(6) Ac/> = X A„(iA; 0) = A„£ *i 4) = K *,

which proves (2).
This gives the existence of A. The uniqueness is trivial since (2)

(with cot in place of co) implies that A must satisfy (3). ////

Supports of Distributions

6.22 Definition Suppose A e <2>'(Q). If co is an open subset of Q and if

Acf) = 0 for every 4> e @(co), we say that A vanishes in co. Let W be the union

of all open co c Q in which A vanishes. The complement of W (relative to

Q) is the support of A.

6.23 Theorem // W is as above, then A vanishes in W.

proof. W is the union of open sets co in which A vanishes. Let T be

the collection of these co's, and let {i/^} be a locally finite partition of

unity in W, subordinate to T, as in Theorem 6.20. If <$> e <3)(W), then

0 = X *Ai 0- Only finitely many terms of this sum are different from 0.

Hence

A0 = £ AMtf>) = 0

since each ^ has its support in some co e T. ////

The most significant part of the next theorem is (d). Exercise 20

complements it.

6.24 Theorem Suppose A e <2)\Q) and SA is the support of A.

(a) If the support of some </> e ^(Q) does not intersect SA, then Ac/) = 0.

(b) IfSA is empty, then A = 0.

(c) If & e C°°(Q) and \\t = 1 in some? open set V containing SA, then

ij/A = A.

(d) IfSA is a compact subset ofQ, then A has finite order; in fact, there is a

constant C < oo and a nonnegative integer N such that

|A<H<C||4>L
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for every <\> e @(Q). Furthermore, A extends in a unique way to a

continuous linear functional on C°°(Q).

proof. Parts (a) and (b) are obvious. If \j/ is as in (c) and if (/) e @(Q\
then the support of </>

—

\\t<$> does not intersect SA. Thus A0 =

A(W) = MrAXfl.by(a).
If SA is compact, it follows from Theorem 6.20 that there exists

\j/ e ^(Q) that satisfies (c). Fix such a \j/; call its support K. By
Theorem 6.8, there exist cx and N such that | A0| < cJ^IU for all

(f) e @K. The Leibniz formula shows that there is a constant c2 such

that ||iA^IU ^ C2II0IU f°r every </> £ ^(Q). Hence

|A0| = lA^^I^Cill^L^c^ll^ll^

for every </> £ ^(Q).
Since Ac/) = A(^0) for all </> £ ^(Q), the formula

(1) Af=AW) [/eHO)]

defines an extension of A. This extension is continuous, for if /| -? 0 in

C°°(Q), then each derivative of f tends to 0, uniformly on compact

subsets of Q; the Leibniz formula shows therefore that */(/)-? 0 in

^(Q); since A £ ^f(Q), it follows that \f -? 0.

If/£ C°°(Q) and if K0 is any compact subset of Q, there exists

(/) £ ^(Q) such that </> =/ on X0. It follows that ^(Q) is dense in

C°°(Q). Each A £ <2)\£l) has therefore at most one continuous

extension to C°°(Q). ////

Note: In (a) it is assumed that <$> vanishes in some open set

containing SA, not merely that <$> vanishes on SA.
In view of (fe), the next simplest case is the one in which SA consists of

a single point. These distributions will now be completely described.

6.25 Theorem Suppose A £ &(Q), p e Q, {p} is the support of A, and A

has order N. Then there are constants ca such that

(1) A= X caD"dp,
\a\<N

where Sp is the evaluation functional defined by

(2) &J,4>) = <A(P).

Conversely, every distribution of the form (1) has {p} for its support

(unless ca
= Ofor all a).

proof. It is clear that the support of DaSp is {/?}, for every multi-index

a. This proves the converse.
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To prove the nontrivial half of the theorem, assume that p
= 0

(the origin of Rn% and consider a <$> e ^(Q) that satisfies

(3) (£>a</>)(0) = 0 for all a with | a | < N.

Our first objective is to prove that (3) implies Ac/) = 0.

If t] > 0, there is a compact ball Kcfi, with center at 0, such

that

(4) | Da(t> | < n in K, if | a | = JV.

We claim that

(5) \D"(/)(x)\ < f/n"-|a||x|"-|a| (x e X, |a| < N).

When | a | = N, this is (4). Suppose 1 <i< N, assume (5) is

proved for all a with | a | = i, and suppose | j? | = i — 1. The gradient of

Dp(f) is the vector

(6) grad Dty = (D^fa ...,/)„ Dfy).

Our induction hypothesis implies that

(7) | (grad D'cftx) \ < n
• rjnN~' \ x \N~' (x e K),

and since (Z)^c/))(0) = 0 the mean value theorem now shows that (5)
holds with j? in place of a. Thus (5) is proved.

Choose an auxiliary function \\t e <2>(Rn), which is 1 in some

neighborhood of 0 and whose support is in the unit ball B of Rn.

Define

(8) M*) = *a(;) (r > 0, x e Rn).

If r is small enough, the support of \j/r lies in rB cz K. By Leibniz'

formula

(9) WtyT <£)(*) = £ cJD*-V)(-V^)W'-"""'*'•
It now follows from (5) that

(io) Mr<i>\\»<nCM\u

as soon as r is small enough; here C depends on n and N.

Since A has order N9 there is a constant C1 such that | A^ | <

CiII^IIn f°r a^ *A 6 ^x- Since ^r = 1 in a neighborhood of the support

of A, it now follows from (10) and (c) of Theorem 6.24 that

|A<£| = \A(^rcf>)\ < CMrcj>\\N < riCCM\\N.

Since r\ was arbitrary, we have proved that Ac/) = 0 whenever (3)
holds.
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In other words, A vanishes on the intersection of the null spaces

of the functional DaS0 (| a | < N)9 since

(11) (D"S0)(t> = (-lpd0(D*ct>) = (-l)'"(Z)a(/>)(0).

The representation (1) follows now from Lemma 3.9. ////

Distributions as Derivatives

It was pointed out in the introduction to this chapter that one of the aims

of the theory of distributions is to enlarge the concept of function in such a

way that partial differentiations can be carried out unrestrictedly. The

distributions do satisfy this requirement. Conversely—as we shall now see—

every distribution is (at least locally) Daf for some continuous function/and
some multi-index a. If every continuous function is to have partial
derivatives of all orders, no proper subclass of the distributions can therefore be

adequate. In this sense, the distribution extension of the function concept is

as economical as it possibly can be.

6.26 Theorem Suppose A e @\£l\ and K is a compact subset ofQ. Then

there is a continuous function f in Q and there is a multi-index cc such that

(1) Atf = (-l)l"

for every § e <2)K.

f{x){Da<t>){x) dx

to

proof. Assume, without loss of generality, that K cz g, where Q is the

unit cube in Rn, consisting of all x = (xu ..., xn) with 0 < xt < 1 for

i = 1,..., n. The mean value theorem shows that

(2) |iA|<max|(Z)^Xx)| (tfr e ®Q)
xeQ

for i = 1, ...,
n. Put T = DJ>2

• •

Dn. For y e g, let Q(y) denote the

subset of Q in which xt < yt (1 < i < n). Then

(3) MO = f (7>X*) dx W £ ®Q\
JQ(y)

If N is a nonnegative integer and if (2) is applied to successive

derivatives of \j/9 (3) leads to the inequality

||iAII» < max \(TNn*)\ < f \(TN
+

1nx)\dx9
xeQ JQ

for every \j/ e @Q.

(4)



168 PART II: DISTRIBUTIONS AND FOURIER TRANSFORMS

Since A e @'(Q\ there exist N and C such that

(5) \A(t>\<C\\<t>\\N (4>e®K\

Hence (4) shows that

il(TW+1<(6) |A0|<jJ(T*+1<«x)Mx (0£^)-

By (3), T is one-to-one on ^Q, hence on <2>K. Consequently,
TN+1: @K^>@K is one-to-one. A functional A1 can therefore be

defined on the range Y of TN
+1

by setting

(7) A1TN+1c/> = Ad> {4>e®K\

and (6) shows that

(8) |Ai<AI<C |^(x)| dx (ij/e Y).

The Hahn-Banach theorem therefore extends Ax to a bounded linear

functional on l}(K). In other words, there is a bounded Borel function

g on K such that

(9) A<t> = AlTN+l<t>=\ g(x)(TN+lct>)(x) dx {cf> e SK).

Define g(x) = 0 outside K and put

(10) f(y)=
•••

g(x)dx„-dXl (yeR").
J —

oo J —

oo

Then/is continuous, and n integrations by parts show that (9) gives

(11) \<t> = (-1)" f /(x)(T"
+

2<£Xx) dx (<f> e 9j.
JO.

This is (1), with a = (N + 2, ...,
N + 2), except for a possible change

in sign. ////

When A has compact support, the local result just proved can be

turned into a global one:

6.27 Theorem Suppose K is compact, V and Q are open in Rn9 and

K cz V cz Q. Suppose also that A e @'(£l\ that K is the support of A, and that

A has order N. Then there exist finitely many continuous functions fp in Q

(one for each multi-index j? with j8f < N + 2 for i = 1, ..., n) with supports in

V, such that

(i) a = £d<v
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These derivatives are, of course, to be understood in the distribution

sense: (1) means that

f*

(2) A<A = Z (-1)"" fWMx) dx [0 6 ®(fl)].
p JO.

proof. Choose an open set W with compact closure W9 such that

K cz W and Wcz V. Apply Theorem 6.26 with Win place of K. Put

a = (N + 2, ...,
N + 2). The proof of Theorem 6.26 shows that there

is a continuous function/in Q such that

I(3) A0 = (-1)'" f(x)(D"(t>)(x) dx [(/> e 9(W)].
Jn

We may multiply / by a continuous function which is 1 on W and

whose support lies in K, without disturbing (3).
Fix \j/ e ^(Q), with support in W9 such that \j/ = 1 on some open

set containing K. Then (3) implies, for every (f> e ^(ft), that

f*

Atf> = A0A<£) = (-i)w f-D\M)

= (-l)W f/I^D-V^-
This is (2), with

/, = (-l)"-"c^/-D«-V (/?<a). ////

Our next theorem describes the global structure of distributions.

6.28 Theorem Suppose A £ <2)\Q). There exist continuous functions ga in

Q, one for each multi-index a, such that

(a) each compact K cz Q intersects the supports of only finitely many ga, and

(b) A = I^..
a

If A has finite order, then the functions ga can be chosen so that only

finitely many are different from 0.

proof. There are compact cubes Qt and open sets V{ (i = 1, 2, 3, ...)
such that Qt cz V{ cz Q, Q is the union of the Qt, and no compact

subset of Q intersects infinitely many Vt. There exist 4>i e ^(K) sucn

that (t>i = 1 on Qt. Use this sequence {0J to construct a partition of

unity {^}, as in Theorem 6.20; each \^i has its support in Vt.
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Theorem 6.27 applies to each i/^-A. It shows that there are

finitely many continuous functions/ a
with supports in Vi9 such that

(i) <AiA = x/>«/;,,.
a

Define

00

(2) 0,
= £/«.«•

i=l

These sums are locally finite, in the sense that each compact

K czQ intersects the supports of only finitely many ft a.
It follows that

each ga is continuous in Q and that (a) holds.

Since <$> = £ i/^c/>, for every (f> e ^(Q), we have A = £ i/^A, and

therefore (1) and (2) give (b).
The final assertion follows from Theorem 6.27. ////

Convolutions

Starting from convolutions of two functions, we shall now define the

convolution of a distribution and a test function and then (under certain

conditions) the convolution of two distributions. These are important in the

applications of Fourier transforms to differential equations. A characteristic

property of convolutions is that they commute with translations and with

differentiations (Theorems 6.30, 6.33, 6.37). Also, differentiations may be

regarded as convolutions with derivatives of the Dirac measure (Theorem

6.37).
It will be convenient to make a small change in notation and to use

the letters u, v9... for distributions as well as for functions.

6.29 Definitions In the rest of this chapter, we shall write @ and & in

place of 3)(Rn) and 3)\Rn\ If u is a function in K", and x e Rn, xx u and u are

the functions defined by

(1) (tx u\y) = u(y
-

x), u(y) = u(-y) (ye R").

Note that

(2) (zx u)(y) = u(y
-

x) = u(x
-

y).

If u and v are complex functions in Rn, their convolution u * v is

defined by

(3) (u * v)(x) = u(y)v(x
- y) dy,u(y)v(x

JRn
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provided that the integral exists for all (or at least for almost all) x e Rn, in

the Lebesgue sense. Because of (2),

(4) (u*v)(x)= f u(y)(Txv)(y)dy.
JR"

This makes it natural to define

(5) (u * (f))(x) = u(zx <£) (u e Q}\ <t> e 0, x e Rn\

for if u is a locally integrable function, (5) agrees with (4). Note that u * 4> is

a function.

The relation j" (txu)
•

i; = j" u
•

(t_xi;), valid for functions u and v9

makes it natural to define the translate xx u of u e & by

(6) (txuU) = u(t.xcI>) (ct>e^xeRn).

Then, for each x e Rn,zxu e &; we leave the verification of the appropriate

continuity requirement as an exercise.

6.30 Theorem Suppose u e 3)\<$> e 3),\\i e 3). Then

(a) tx(u * 4>) = (TxM) * <t> = u * {ix<t>)for aU * £ Rn:

(b) u * (f> £ C00 aw/

Z)a(M *</>) = (Z)aw) * (f) = u* (Da(t>)

for every multi-index a;

(c) u *((/>* ^) = (m *(/>)* ^.

proof. For any y £ K",

(tx(m * (t>))(y) = (u* (t>)(y -x) = u{xy_x<f)\

((txm) * c/>X)>) = (txmX^<?) = uky-x<l>)>

(U * (txflXjO = K(T,(Tx0v) = k(t,-x&

which gives (a); the relations

*y*-*
=

*y-* and (Tx(t>y=T_x^>

were used. In the sequel, purely formal calculations such as the

preceding ones will sometimes be omitted.

If u is applied to both sides of the identity

(1) rx((D"<t>y) = (-lpD*(rJ)

one obtains part of (fe), namely,

(u * (Da(/)))(x) = ((Dau) * (/))(x).
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To prove the rest of (fc), let e be a unit vector in Rn, and put

(2) rjr
= r-\T0-zre) (r>0).

Then (a) gives

(3) r]r(u * (t>) = u*(rjr (/>).

As r -? 0, t]r (t> -? De (f> in ^, where Z)e denotes the directional derivative

in the direction e. Hence

T,to»v)-Tx(Z)c(/>rin^

for each x e Rn9 so that

(4) lim(ii*(iyr^)Xx) = (ii*(D^)Xx).

By (3) and (4) we have

(5) De(u*<t>) = u*(Dect>l

and iteration of (5) gives (b).
To prove (c), we begin with the identity

JRn

(6) W>*«ArW= W.sfrMt)ds.
JRn

Let Kx and X2 be the supports of $ and \J/. Put K = Kx + K2. Then

is a continuous mapping of Rn into @K, which is 0 outside K2.
Therefore (6) may be written as a @K-valued integral, namely,

(7) (^ * iA)v =

and now Theorem 3.27 shows that

\J/(s)ts((> ds9
K2

\J/(s)u(zs\J/) ds = il/(-s)(u * (t>)(s) ds,
JK2 JRn

or

(8) (u * ((/) * i/0)(0) = ((u * (/>) * iA(0).

To obtain (8) with x in place of 0, apply (8) to t_x^ in place of

\j/9 and appeal to (a). This proves (c). ////
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6.31 Definition The term approximate identity on Rn will denote a

sequence of functions hj of the form

hJ(x)=jnh(jx) 0 = 1,2,3,...),

where h e ^(Rn\ h > 0, and $Rn h(x) dx = 1.

6.32 Theorem Suppose {hj} is an approximate identity on Rn9 $ e 3), and

u e 2'. Then

(a) lim (f> * hj = (f> in @9
j->co

(b) lim u * hj = u in $)'.

j->co

Note that (b) implies that every distribution is a limit, in the topology
of $)', of a sequence of infinitely differentiable functions.

proof. It is a trivial exercise to check that / * hj ->f uniformly on

compact sets, iff is any continuous function on Rn. Applying this to

Da(f) in place off we see that Da((f) * h^-^Da^> uniformly. Also, the

supports of all 4> * hj lie *n some compact set, since the supports of

the hj shrink to {0}. This gives (a).

Next, (a) and statement (c) of Theorem 6.30 give (fe), because

m(^) = (u * 4>)(0) = lim (u * (hj * 4>))(0)

= lim ((ii * hj) * 4>)(0) = lim (u * h^). ////

6.33 Theorem

(a) lfueQ)' and

(1) L(f> = u * 4> {(f> e 3)\

then L is a continuous linear mapping ofQ) into C00 which satisfies

(2) txL = Ltx (xeR»).

(b) Conversely, if L is a continuous linear mapping of 3) into C(Rn\ and if L

satisfies (2), then there is a unique u e $)' such that (1) holds

Note that (b) implies that the range of L actually lies in C00.

proof, (a) Since tx(u * $) = u * (tx0), (1) implies (2). To prove that L

is continuous, we have to show that the restriction of L to each <2>K is

a continuous mapping into C00. Since these are Frechet spaces, the

closed graph theorem can be applied. Suppose that 4>i -+ (j> in<3)K and

that u * 0. -?/in C00; we have to prove that/= u * 4>.
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Fix x e Rn. Then xx & -? tx $ in ^, so that

f(x) = lim (u * (t>i)(x) = lim u(tx $f) = u(zx $) = (u * (/>)(*).

(b) Define u(c/>) = (L$)(0). Since <$> -? $ is a continuous operator

on ^, and since evaluation at 0 is a continuous linear functional on C,

u is continuous on Q). Thus u e &'. Since L satisfies (2),

(Lct>)(x) = (T_xLct>)(0) = (LT.xct>)(0)

= u((T_x<t>y) = u(TxJ>) = (u*<t>)(x).

The uniqueness of u is obvious, for if u e & and u * (f> = 0 for

every 0 e @9 then

u((£) = (u * 4>)(0) = 0

for every <\> e @\ hence u = 0. ////

6.34 Definition Suppose now that u e <3)' and that u has compact

support. By Theorem 6.24, u extends then in a unique fashion to a

continuous linear functional on C00. One can therefore define the convolution of u

and any (f> e C00 by the same formula as before, namely,

(u * (t))(x) = u(zx^>) (x e Rn).

6.35 Theorem Suppose u e & has compact support, and 4> e C00. Then

(a) tx(u * (f>) = (zxu) * (f) = u * {tx4>) if* e Rn9

(b) u * <t> e C00 and

Z)a(M *</>) = (Dau) * (f) = u* (Da(f)).

If, in addition, \\i e @9 then

(c) u * \j/ £ ^, and

(d) M *((/>* ^) = (M *(/>)* ^ = (M * ^) * (/>.

proof. The proofs of (a) and (fe) are so similar to those given in

Theorem 6.30 that they need not be repeated. To prove (c), let K and

H be the supports of u and ij/9 respectively. The support of xx \jj is

x
— H. Therefore

(u * il/)(x) = u(tx \jj) = 0

unless K intersects x
—

//, that is, unless x e K -\- H. The support of

m * ^ thus lies in the compact set K + //.

To prove (d), let W be a bounded open set that contains K, and

choose 4>0 £ ^ so that $0 = $ in W + H. Then (0 * ^)v = (0O * ^)v
in W, so that

(1) (u * (tf> * iA))(0) = (ii * (ct>0 * <A))(0).
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If —5 e H, then zs$ = ts$0 in W; hence u * (f) = u * c/>0 in —H.

This gives

(2) ((ii * <t>) * MO) = ((m * </>0) * <A)(0).

Since the support of u * ^ lies in X + //,

(3) ((ii * <A) * *X0) = ((m * <A) * ^0(0).

The right sides of (1) to (3) are equal, by Theorem 6.30; hence so

are their left sides. This proves that the three convolutions in (d) are

equal at the origin. The general case follows by translation, as at the

end of the proof of Theorem 6.30. ////

6.36 Definition If u e $)', v e &, and at least one of these two

distributions has compact support, define

(1) L<t> = u * (v * <t>) ((/> e 3)\

Note that this is well defined. For if v has compact support, then

v * (f) £ Q), and L(f) e C00; if u has compact support, then again Lc/> £ C00,

since v * (f> e C00. Also, zxL = Lzx, for all x e Rn. These assertions follow

from Theorems 6.30 and 6.35.

The functional (f> -? (L$X0) is in fact a distribution. To see this,

suppose (t>i -? 0 in @. By (a) of Theorem 6.33, v * <j){f -? 0 in C00; if, in

addition, v has compact support then t; * $, -? 0 in 3). It follows, in either case,

that (L&XO) - 0.

The proof of (b) of Theorem 6.33 now shows that this distribution,

which we shall denote by u * v, is related to L by the formula

(2) L<\> = (u * v) * (/) (4>e 3)\

In other words, u * v e & is characterized by

(3) (u * v) * (f> = u * (v * (/>) ((/) £ ^).

6.37 Theorem Suppose u e 3)',v e 3)',w e 3)'.

(a) If at least one ofu, v has compact support, then u * v = v * u.

(b) If Su and Sv are the supports of u and v, and if at least one of these is

compact, then

(c) // at least two of the supports Su, Sv, Sw are compact, then

(u * v) * w = u * (v * w).

(d) If 6 is the Dirac measure and a is a multi-index, then

Dau = (DaS) * ii.

In particular, u = S * u.
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If at least one of the sets Su, Sv is compact, then

D\u * v) = (Dau) * v = u * (Dav)

for every multi-index a.

Note: The associative law (c) depends strongly on the stated hypoth-

; see Exercise 24.

proof, (a) Pick (f> e @, \\t e Q). Since convolution of functions is

commutative, (c) of Theorem 6.30 implies that

(u * v) * (<j) * \j/) = u * (v * ((f) * il/))

= u * ((v * 4>) * *A)= M * OA * (*> * $))•

If Sy is compact, apply (c) of Theorem 6.30 once more; if Su is

compact, apply (d) of Theorem 6.35; in either case

(1) (u * v) * (<j) * ij/) = (u * if/) * (v * 4>).

Since 4> * \j/ = \j/ * 0, the same computation gives

(2) (i; * u) *((/>* ^) = (v *(/>)* (m * ^).

The two right members of (1) and (2) are convolutions of

functions (one in @9 one in C00); hence they are equal. Thus

(3) ((m * v) *(/>)* \\i = ((v * u) *(/>)* \j/.

Two applications of the uniqueness argument used at the end of the

proof of Theorem 6.33 now give u * v = v * u.

(b) If 4> £ 3>9 a simple computation gives

(4) (u * v)(<t>) = u((v * $n

By (a) we may assume, without loss of generality, that Sv is compact.

The proof of (c) of Theorem 6.35 shows that the support of v * (f> lies

in Sv
—

Sf. By (4), (u * v)(0) = 0 unless Su intersects S0
-

SV9 that is,

unless S^ intersects Su + Sv.

(c) We conclude from (b) that both

(m * v) * w and u * (v * w)

are defined if at most one of the sets Su9 SV9 Sw fails to be compact. If

4> £ ^, it follows directly from Definition 6.36 that

(5) (m * (i; * w)) * 0 = m * ((i; * w) * 0) = m * (i> * (w * (/>)).

If Sw is compact, then

(6) ((u * v) * w) * (f) = (u * v) * (w * (f>) = u * (v * (w * (/>))
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because w * (f> e 3), by (c) of Theorem 6.35. Comparison of (5) and (6)

gives (c) whenever Sw is compact.

If Sw is not compact, then Su is compact, and the preceding case,

combined with the commutative law (a), gives

u * (v * w) = u * (w * v) = (w * v) * u

= w * (v * u) = w * (m * v) = (u * v) * w.

(d) If (t> e ^, then S * (f> = (f>9 because

(5 * (/>)(*) = S{r J) = (zj)(0) = k-*) = <Kx).

Hence (c) above and (b) of Theorem 6.30 give

(Dau) * 4> = u * Z)a0 = m * Da(S *</>) = u * (Z)a(5) * (/>.

Finally, (e) follows from (d), (c), and (a):

D\u *v) = (DaS) *(u*v) = ((DaS) *u)*v = (Dau) * v

and

((DaS) * u) * v = (u * Z)a(5) *!> = !!* ((Z)a(5) * i>) = m * Z)at;. ////

Exercises

1. Suppose/is a complex continuous function in R", with compact support. Prove

that ij/Pj ->f uniformly on R", for some \\i e ^ and for some sequence {P;} of

polynomials.

2. Show that the metrizable topology for @(Q) that was rejected in Section 6.2 is

not complete for any Q.

3. If E is an arbitrary closed subset of Rn, show that there is an / e C°°(Kn) such

that/(x) = 0 for every x e E and/(x) > 0 for every other x e Rn.

4. Suppose A g &(Cl) and A</> > 0 whenever <f> e @(Q) and <f> > 0. Prove that A is

then a positive measure in Q (which is finite on compact sets).

5. Prove that the numbers cafi in the Leibniz formula are

^
= n

6. (a) Suppose cm
=

exp {—(m!)!}, m = 0,1, 2,... . Does the series

m
= 0

converge for every $ e C°°(R)?

(fr) Let Q be open in R", suppose Af e ^'(Q), and suppose that all At have their

supports in some fixed compact Kcfi. Prove that the sequence {AJ cannot

converge in &(Q) unless the orders of the A; are bounded. Hint: Use the

Banach-Steinhaus theorem,

(c) Can the assumption about the supports be dropped in (fr)?
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7. Let Q = (0, oo). Define

A</> = £ (/>*</>/-) [</>e^(Q)].
m=i W

Prove that A is a distribution of infinite order in Q. Prove that A cannot be

extended to a distribution in R; that is, there exists no A0 e &(R) such that

A0 = A in (0, oo).

8. Characterize all distributions whose supports are finite sets.

9. (a) Prove that a set E a @(Q) is bounded if and only if

sup {| A(/> |: 0 e E] < oo

for every A e &(Q).

(b) Suppose {(/>j} is a sequence in @(Q) such that {A<f>j} is a bounded sequence

of numbers, for every A e &(Q). Prove that some subsequence of {0y}
converges, in the topology of @(Q).

(c) Suppose {Aj} is a sequence in @'(Q) such that {A;(/>} is bounded, for every

<f> e @(Q). Prove that some subsequence of {A;} converges in &(Q) and that

the convergence is uniform on every bounded subset of ^(Q). Hint: By the

Banach-Steinhaus theorem, the restrictions of the A; to <2)K are equi-
continuous. Apply Ascoli's theorem.

10. Suppose {/•} is a sequence of locally integrable functions in Q (an open set in

Rn) and

lim [\f£x)\dx = 0

i-oo JK

for every compact KcQ. Prove that then Daf{ -> 0 in &(Q), as i -? oo, for every

multi-index a.

11. Suppose Q is open in R2, and {/•} is a sequence of harmonic functions in Q that

converges in the distribution sense to some A e &(Q); explicitly, the assumption
is that

A<t> = lim fi(x)<t>(x) dx [<t> e 0(O)].

Prove then that {/} converges uniformly on every compact subset of Q and that

A is a harmonic function. Hint: If/ is harmonic,/(x) is the average of/over
small circles centered at x.

12. Recall that 3 (the Dirac measure) is the distribution defined by 3(<t>) = 0(0), for

<t> e <2)(R). For which/ e C°°(K) is it true that/(5' = 0? Answer the same question
for fd". Conclude that a function / e C°°(K) may vanish on the support of a

distribution A e @'(R) although/A ^ 0.

13. If 0 g <2>(Q) and A e @\£l), does either of the statements

<t>A = 0, A(j) = 0

imply the other?



CHAPTER 6: TEST FUNCTIONS AND DISTRIBUTIONS 179

14. Suppose K is the closed unit ball in R", A e <2)\Rn) has its support in K, and

fe C°°(Kn) vanishes on K. Prove that/A = 0. Find other sets K for which this is

true. (Compare with Exercise 12.)

15. Suppose K c V c Q, K is compact, V and Q are open in R", A e &(Q) has its

support in K, and {0J c ^(Q) satisfies

W lim|sup|(Z)^Xx)|] = 0

for every multi-index a. Prove that then

lim A(^) = 0.

f-»oo

16. The preceding statement becomes false if V is replaced by K in the hypothesis

(a). Show this by means of the following example, in which Q = R. Choose

c1 > c2 >
• • •

> 0, such that £ c} f < oo; define

A</> = t(<Kcj)-<K0)) (*e«;

and consider functions 0f g <2)(R) such that (/>j(x) = 0 if x < ci+1, (/>,(x) = 1/i if

ci < x < Cj. Show also that this A is a distribution of order 1.

However, for certain K, V can be replaced by K in the hypothesis (a) of

Exercise 15. Show that this is so when K is the closed unit ball of R". Find other

sets K for which this is true.

17. If A g <2)\R) has order N, show that A = DN+2f, for some continuous function/
If A = (5, what are the possibilities for/?.

18. Express S e @'(R2) in the form given by Theorem 6.27, as explicitly as you can.

19. Suppose A g @'(Q.), <t> e ^(Q), and (Da</>X*) = 0 for every x in the support of A

and for every multi-index a. Prove that A(/> = 0. Suggestion: Do it first for

distributions with compact support, by the method used in Theorem 6.25.

20. Prove that every continuous linear functional on C°°(Q) is of the form /-? A/,
where A is a distribution with compact support in Q; this is a converse to (d) of

Theorem 6.24.

21. Let C^iT) be the space of all infinitely differentiable complex functions on the

unit circle T in <£,. One may regard C™{T) as the subspace of C°°(K) consisting of

those functions that have period 2ti. Suppose

f(z)= t^"
n

= 0

converges in the open unit disc U in (p. Prove that each of the following three

properties of/implies the other two:

(a) There exist p < oo and y < oo such that

\an\<ynr (n = 1, 2, 3, ...).

(b) There exist p < oo and y < oo such that

|/(z)|<7-(l-|z|)-' (zeU).

(c) lim^j \n_n f(reid)<t>(eid) dO exists (as a complex number) for every c\> e C°°(T).
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22. For u e @'{R\ show that

U
—

TXU
Du in @'(R),

as x -? 0. (The derivative of u may thus still be regarded as a limit of quotients.)

23. Suppose {ft} is a sequence of locally integrable functions in R", such that

lim (/, * </>Xx)
i-»oo

exists, for each <f> e <2)(Rn) and each x e Rn. Prove that then {Da(ft * $)}
converges uniformly on compact sets, for each multi-index a.

24. Let H be the Heaviside function on K, defined by

H(x)-{0 ifx<0,

and let 3 be the Dirac measure.

(a) Show that (H * <t>)(x) = ji^ </>(s) ds, if 0 e ^(K).

(fc) Show that 5' * H = 3.

(c) Show that 1 * 3' = 0. (Here 1 denotes the locally integrable function whose

value is 1 at every point and which is thought of as a distribution.)

(d) It follows that the associative law fails:

1 * (<$' * H) = 1 * 3 = 1,

but

(1 * <$') * H = 0 * H = 0.

25. Here is another characterization of convolutions analogous to Theorem 6.33.

Suppose L is a continuous linear mapping of Q) into C00 which commutes with

every Da, that is,

(a) LDa<t> = DaL<t> (<t> e 3>).

Then there is a u e @f such that

L(\> = M * (/>.

Suggestion: Fix </>e^, put

h(x) = (t_xLtx 0X0) = (Ltx </>Xx) (x e R"\

let De be the directional derivative used in the proof of Theorem 6.30, and show

that

(De h){x) = (De Ltx </>Xx)
-

(Ltx De </>Xx),

which is 0 if (a) holds. Thus h(x) = h(0), which implies that tx L = Lxx.
Can the assumption that the range of L is in C00 be weakened?

26. If/e /}(( —

oo,
—

3) u (3, oo)) for every 3 > 0, define its principal value integral to

be

PF r /(x) dx = lim ( I + I )/(x) </x

J-oo <S->0 VJ-oo J<5 /
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if the limit exists. For <f> e @(R), put

f°°
A<t> = <t>(x) log | x | dx.

J— oo

Show that

f00 dx

\'4> = PV <t>(x)—,
J-oo X

f00 <t>(x)
- $(0)

A»«/> = -PV \
^V }

JK
'

dx.

J-OC X

27. Find all distributions u e &(Rn) that satisfy at least one of the following two

conditions:

(a) txu
= u for every x e Rn,

(b) Dau = 0 for every a with | a | = 1.



CHAPTER

7

FOURIER

TRANSFORMS

Basic Properties

7.1 Notations (a) The normalized Lebesgue measure on Rn is the

measure mn defined by

dmn(x) = (2nyn/2 dx.

The factor (27r)~n/2 simplifies the appearance of the inversion theorem 7.7

and the Plancherel theorem 7.9. The usual Lebesgue spaces IF, or IF(Rn),
will be normed by means of mn\

\f\pdmX'P (l<p<cx>).
Rn J

It is also convenient to redefine the convolution of two functions on Rn by

(/*<?)(*)= f f(x - y)g(y) dmn(y)
JR"

whenever the integral exists.

(b) For each t e Rn, the character et is the function defined by

et(x) = eitx =

exp {i(t1x1 +
• • •

+ tnxn)} (x e Rn).

182
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Each et satisfies the functional equation

et(* + y) = et(x)et(y).

Thus et is a homomorphism of the additive group Rn into the multiplicative

group of the complex numbers of absolute value 1.

(c) The Fourier transform of a function fe l}(Rn) is the function/
defined by

f(t) = I fe_, dm„ (t e Rn).

The term
"

Fourier transform
"

is often also used for the mapping that takes

ftof. Note that

f(t) = (f*et)(0).

(d) If a is a multi-index, then

The use of Da in place of Da simplifies some of the formalism. Note that

Daet = taet

where, as before, ta = t\l
• • •

tann. If P is a polynomial of n variables, with

complex coefficients, say

the differential operators P(D) and P(
—

D) are defined by

P(D) = Y,caDx, P(-Z)) = X(-l)'"caZ>a.

It follows that

P(D)e, = P(t)e, (t e R").

(e) The translation operators xx are denned, as before, by

(ixfXy)=f(y-x) (x,yeR°).

7.2 Theorem Suppose/, g e I}(Rn), x e R". Then

(a) (TX/)A = «_,/;

(b) (exfy = xj;

(c) (f*gr=fg.

(d) lfk > 0 and h(x) =f(x/X), then fi(t) = k"f{M).
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proof. It follows from the definitions that

(T./rM = {(**/)
•

c-«
= {/• *-*c-<

= \f- *-&Y-x = e.x(t)f(t)

and

(exfnt) = jexfe.t = |/e_(,-„ = (t./XO-

An application of Fubini's theorem gives (c); (d) is obtained by a

linear change of variables in the definition off ////

7.3 Rapidly decreasing functions This name is sometimes given to

those/e C°°(Kn) for which

(1) sup sup(l + |x|2f|(Z)a/)(x)|<a)
\a\<N xe Rn

for N = 0, 1, 2, .... (Recall that |x|2 = £ xf.) In other words, the

requirement is that P -

Daf is a bounded function on Rn, for every polynomial P

and for every multi-index a. Since this is true with (1 + \x\2)NP(x) in place
of P(x), it follows that every P •

Z)a/lies in l}(Rn).
These functions form a vector space, denoted by £fn9 in which the

countable collection of norms (1) defines a locally convex topology, as

described in Theorem 1.37.

It is clear that @{Rn) a </>n.

1.4 Theorem

(a) Sfn is a Frechet space.

(b) If P is a polynomial g e Sfn, and a is a multi-index, then each of the

three mappings

f-+Pf, f-+gf, f-+o*f

is a continuous linear mapping of' Sfn into ^n.

(c) /// e Sfn and P is a polynomial, then

(P(D)fr = Pf and (Pf)A = P(-D)f.

(d) The Fourier transform is a continuous linear mapping of '£fn into £fn.

[Part (d) will be strengthened in Theorem 7.7.]

proof, (a) Suppose {f} is a Cauchy sequence in Sfn. For every pair of

multi-indices a and j? the functions xpDaf(x) converge then (uniformly
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on Rn) to a bounded function gaP, as i -? oo. It follows that

9*fk*) = xfiD*g00(x)

and hence that/ -? 0OO in y„. Thus Sf\ is complete.

(b) If fe^n, it is obvious that Dafe^n9 and the Leibniz

formula implies that Pf and #/* are also in Sfn. The continuity of the

three mappings is now an easy consequence of the closed graph
theorem.

(c) If/e ST„ so is P(D)/ by (fc), and

(P(D)/) * et =/* P(D)ef =/* P(t)^ = P(t)[/* ej.

Evaluation of these functions at the origin of Rn gives the first

part of (c), namely,

(p(D)fnt) = p(t)/(t).

If t - (tt, ...,t„) and t' — (tl + e, t2, ?.., t„), e # 0, then

f(t')-ftt) C g-ix^-iJ
.

JU
= *i/(*)

— e—
'

<K(x).

The dominated convergence theorem can be applied, since xlf e L1,
and yields

This is the case P(x) =

xx of the second part of (c); the general case

follows by iteration.

(d) Suppose/e y„ and g(x) = (- lpxaf(x). Then # e £?„; now

(c) implies that g
= Daf and P Daf= P g

= (P(D)g)A, which is a

bounded function, since P(Z))# £ l}(Rn). This proves that feSfn. If

/ -?/ in y„, then / -?/ in L\Rn). Therefore fit) ->/(f) for all t e Rn.

That /-?/ is a continuous mapping of Sf\ into &\ follows now from

the closed graph theorem. ////

7.5 Theorem Iffe L\R% thenfe C0(Rn)9 and \\f\\a < \\f\\v

Here C0(Rn) is the supremum-normed Banach space of all complex
continuous functions on Rn that vanish at infinity.

proof. Since | et(x) | = 1, it is clear that

(1) l/WI< 11/111 (feL\teR»).

Since 3)(Rn) cy„, ^n is dense in l}(Rn). To each fe L\Rn)
correspond functions /e Sfn such that ||/—/Hi-^0. Since / e Sf

n
c



186 PART II: DISTRIBUTIONS AND FOURIER TRANSFORMS

C0(Rn) and since (1) implies that f ->f uniformly on Rn, the proof is

complete. ////

The following lemma will be used in the proof of the inversion

theorem. It depends on the particular normalization that was chosen

for m„.

7.6 Lemma If 4>nis defined on Rn by

(1) <M*) = exp{-i|x|2}

then (t>„ e £fn, <fin = 4>n >
and

(2) <t>M = <Pndmn.

proof. It is clear that 4>n e Zfn. Since 4>i satisfies the differential

equation

(3) / + xy
= 0,

a short computation, or an appeal to (c) of Theorem 7.4, shows that

(/>! also satisfies (3). Hence 4>J4>\ is a constant. Since (^(O) = 1 and

*i(0) = I (t>l dmx = (27c)"1/2 exp {-$x2} dx = 1,
R J-oo

we conclude that ^x = $v Next,

(4) W*) = 0i(*i)"-0i(*J (xeR")

so that

(5) h{t) = 4>1{h)-$1{tn) (teRn).

It follows that 4>n = 4>n f°r aH n- Since <$>n(0) = \ 4>n dmn, by definition,

and since <fin = 4>n, we obtain (2). ////

7.7 The inversion theorem

(a) Ifge¥n,then

(1) <?(*) =

gex dmn (x e Rn).

(b) The Fourier transform is a continuous, linear, one-to-one mapping of' Sfn
onto £f

^ of period 4, whose inverse is also continuous.
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(c) IffeI}(R")JeI}(R"),and

(2) f0(x) = I /«, dm, (x e K"),

thenf(x) =f0(x)for almost every x e Rn.

proof. Iff and g are in l}(Rn), Fubini's theorem can be applied to the

double integral

11JR" JR"

f{x)g(y)e-"
y

dmn(x) dmiy)
? Jr

to yield the identity

(3) k dmn =

R" JR'

fg dmn.

To prove part (a), take g e Sf
n, 4> e ifn, /(x) = (t>(x/X), where

A > 0. By (d) of Theorem 7.2, (3) becomes

[ g(t)X"frXt) dmn(t) = [ ^(jW) dmM

or

(4) J *(l)^W dm»{t) = \Rn *( jj)*00 dm»{y)'

As k -? oo, #(fM) -? #(0) and 0(y/A) -? 0(0), boundedly, so that the

dominated convergence theorem can be applied to the two integrals in

(4). The result is

(5) 0(0) <j> dmn = 4(0)J. 5 <K (^, (/> £ ^„).

If we specialize $ to be the function (f)n of Lemma 7.6, (5) gives the

case x = 0 of the inversion formula (1). The general case follows from

this, since (a) of Theorem 7.2 yields

g(x) = (z.xg)(0)= (z_xg)Admn= gexdmn.
JR" JRn

This completes part (a).
To prove part (fe), we introduce the temporary notation $>g =

g.

The inversion formula (1) shows that O is one-to-one on Sfni since

g
= 0 obviously implies #

= 0. It also shows that

(6) O20 =

g
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where, we recall, g(x) = g(
—

x), and hence that 04g =

g. It follows that

O maps Zfn onto &\. The continuity of O has already been proved in

Theorem 7.4. To prove the continuity of 0~ \ one can now either refer

to the open mapping theorem or to the fact that 0~1 = O3.

To prove (c), we return to the identity (3), with g e ^n. Insert

the inversion formula (1) into (3) and use Fubini's theorem, to obtain

(7) foQdmn =IJR"

fg dmn (g e S?n).
R"

By (fe), the functions g cover all of 9,n. Since 3>(Rn) cz y„, (7) implies
that

f (/o --

JR"

(8) (f0-f)4>dm„ = 0

JR"

for every (f> e @(Rn\ hence (by a uniform approximation described in

Exercise 1 of Chapter 6) for every continuous (f> with compact

support. It follows that/0 —/= 0 a.e. ////

7.8 Theorem ///e ¥n and g e ^n9 then

(a) f*ge^n9and

(b) (fg)A=f*g-

proof. By (c) of Theorem 7.2, (/ * g)A =fg, or

(1) $(/*<?) = <*>/%,

in the notation used in the proof of (b) of Theorem 7.7. With/and g in

place off and g, (1) becomes

(2) <Hf * g) = O2/ • d>2g =fg = (fgy = &(fg).

Now apply O"1 to both sides of (2) to obtain (b). Note that/# e £fn\
hence (b) implies that f*ge£fn9 and this gives (a), since the Fourier

transform maps Sfn onto Sfn. ////

7.9 The Plancherel theorem There is a linear isometry *¥ ofl}(Rn) onto

l}(Rn) which is uniquely determined by the requirement that

*/ = / for every fe&n.

Observe that the equality x¥f = /extends from Sfn to L1 n L2, since y„
is dense in L2 as well as in L1. This gives consistency: The domain of *F is L2,

/was defined in Section 7.1 for all/e L1, and *F/ = /whenever both

definitions are applicable. Thus H* extends the Fourier transform from L1 n L2 to
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L2. This extension *F is still called the Fourier transform (sometimes the

Fourier-Plancherel transform), and the notation/will continue to be used in

place of ¥/ for any/e L2(Rn).

proof. If/and g are in y„, the inversion theorem yields

I f§ dmn = I g(x) dmn(x) | f(t)eixt dmn(t)
JR" JR" JR"

= f f(t)dmn(t) f g(xy*>dmtt(x).
JRn JRn

The last inner integral is the complex conjugate of g(t). We thus get

the Parseval formula

(1) \ fgdmn=\ f$dmn UgeSfj.
JR" JR"

If 0 =/> (1) specializes to

(2) 11/112 =11/112 (/6^J.

Note that yh is dense in L2(K"), for the same reason that if
n

is

dense in l}(Rn). Thus (2) shows that /-?/ is an isometry (relative to

the L2-metric) of the dense subspace Sfn of Il(Rn) onto Sfn. (The

mapping is onto by the inversion theorem.) It follows, by elementary
metric space arguments, that /-?/has a unique continuous extension

*F: ll(Rn) -? ll(Rn) and that this ^ is a linear isometry onto ll(Rn).
Some details of this are given in Exercise 13. ////

It should be noted that the Parseval formula (1) remains true for

arbitrary/and g in ll(Rn).
That the Fourier transform is an L2-isometry is one of the most

important features of the whole subject.

Tempered Distributions

Before we define these, we establish the following relation between if\ and

@{Rn).

7.10 Theorem

(a) 3>(Rn) is dense in <fn.

(b) The identity mapping of<3)(Rn) into Sfn is continuous.

These statements refer, of course, to the usual topologies of Q){Rn) and

y„, as defined in Sections 6.3 and 7.3.
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proof, (a) Choose fe y„, \j/ e <3{Rn) so that \j/ = 1 on the unit ball of

R\ and put

(1) m=f(xW(rx) (xeR\r>0).

Then/r e <2>(Rn). If P is a polynomial and a is a multi-index, then

P{x)D\f-frtx) = P(x) X c^D«-'/X*)rl'lD'[l - *](«).

Our choice of ^ shows that Dfi\_\ —

^](rx) = 0 for every multi-index j?
when |x|.< 1/r. Since /e ^n, we have P • Da~fife C0(Rn) for all

j? < a. It follows that the above sum tends to 0, uniformly on Rn9 when

r -? 0. Thus/r -?/in y„, and (a) is proved.

(fe) If K is a compact set in Rn, the topology induced on <3)K by

y„ is clearly the same as its usual one (as defined in Section 1.46),
since each (1 + \x\2)N is bounded on K. The identity mapping of <2>K
into Sfn is therefore continuous (actually, a homeomorphism), and

now (b) follows from Theorem 6.6. ////

7.11 Definition If i: gj(Rn) -? £fn is the identity mapping, if L is a

continuous linear functional on Zfn, and if

(1) uL
= Loi

then the continuity of i (Theorem 7.10) shows that uL e <3)\Rn)\ the dense-

ness of <3)(Rn) in £fn shows that two distinct L's cannot give rise to the same

u. Thus (1) describes a vector space isomorphism between the dual space iffn
of ifn, on the one hand, and a certain space of distribution on the other.

The distributions that arise in this way are called tempered'.
The tempered distributions are precisely those u e &{Rn) that have

continuous extensions to £fn.
In view of the preceding remarks, it is customary and natural to

identify uL with L. The tempered distributions on Rn are then precisely the

members of &"n.
The following examples will explain the use of the word

"

tempered
"

in this connection; it indicates a growth restriction at infinity. (See also

Exercise 3.)

7.12 Examples (a) Every distribution with compact support is tempered.

Suppose K is the compact support of some u e <3}'(Rn\ fix ^ e <2)(Rn) so that

\l/ = 1 in some open set containing K, and define

(1) "(/) = *#/) (feSTJ.

Iff -? 0 in y„, then all Daf -? 0 uniformly on Rn, hence all D'tyf) -? 0

uniformly on Rn9 so that \j/f -? 0 in <2)(Rn). It follows that u is continuous on

yn. Since u($) = u(0) for $ e 3)(Rn\ u is an extension of u.
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(b) Suppose \i is a positive Borel measure on Rn such that

(2) f (l + |x|2)-fc^(x)<oo
JR"

for some positive integer k. Then \t is a tempered distribution. The assertion

is, more explicitly, that the formula

(3) Af = fd[i
R»

defines a continuous linear functional on ifn.
To see this, suppose f -? 0 in Sf

n.
Then

(4) e,= supO + lxl^iyjWI-O.
xe Rn

Since | A/J | is at most et times the integral in (2), A/J -? 0. This proves the

continuity of A.

(c) Suppose 1 < /? < oo, N > 0, and g is a measurable function on Rn

such that

I"1JR"

(5) |(l+|x|2)-'y0(x)|''dmn(x) = C<oo.

Then g is a tempered distribution.

As in (fe), define

JR'

(6) A/= fgdm„.
JR"

Assume first that p > 1; let q be the conjugate exponent. Then Holder's

inequality gives

(7) | A/1 < C1"jjj (1 + | x \2ff(x) \" dm„(x)}
^

< C1'^1'* sup |(1 + \x\2)Mf{x)\,
xe R"

where M is taken so large that

(1 + |x|2)("-M)* dmn(x) = B < oo.

JR'

The inequality (7) proves that A is continuous on £fn. The case p
= 1 is

even easier.

(d) It follows from (c) that every g e IF(Rn) (1 < p < oo) is a tempered
distribution. So is every polynomial and, more generally, every measurable

function whose absolute value is majorized by some polynomial.
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7.13 Theorem If a is a multi-index, P is a polynomial, g e Sfn9 and u is a

tempered distribution, then the distributions Dau, Pu, and gu are also

tempered.

proof. This follows directly from (b) of Theorem 7.4 and the

definitions

(Z)"u)(/) = (-l)WtW),

(Pu){f) = u(Pf),

igutf) = <af )• ////

7.14 Definition For u e </"n, define

(1) u{4>) = u{4>) (0 € <fn).

Since 0 -? $ is a continuous linear mapping of ifn into ifn [(d) of Theorem

7.4], and since u is continuous on Sfn9 it follows that u e £f'n.
We have thus associated with each tempered distribution u its Fourier

transform u, which is again a tempered distribution. Our next theorem will

show that the formal properties of Fourier transforms of rapidly decreasing
functions are preserved in the larger setting of tempered distributions.

But first there arises a consistency question that ought to be settled. If

fe l}(Rn), then/may also be regarded as a tempered distribution, say uf, so

that two definitions of the Fourier transform are available, namely, (c) of

Section 7.1 and Definition 7.14. The question is whether they agree, i.e.,

whether the distribution (uf)A corresponds to the function/ The answer is

affirmative, because

(M/r(0) = uj($) = f* = f4> = (u/U)

for every (f> e £fn. The third of these equalities is the identity (3) of Section

7.7; the others are definitions.

Since ll(Rn) c <f'n, the same question arises for the Fourier-

Plancherel transform. The answer is again affirmative, by the same proof,
since the identity j" f(f> = J f4> persists for/e l3(Rn) and (/> e Sf

n.

7.15 Theorem

(a) The Fourier transform is a continuous, linear, one-to-one mapping of' £/"n
onto &"n, of period 4, whose inverse is also continuous.

(b) Ifue£f"n and P is a polynomial, then

(P(D)u)A = Pu and (Pm)a = P(-D)u.
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Note that these are the analogues of (b) of Theorem 7.7 and (c) of

Theorem 7.4. The topology to which (a) refers is the weak*-topology that

Sfn induces on £f'n. Note also that the differential operators P(D) and

P(
— D) are defined in terms of Z)a, not Da; see (d) of Section 7.1.

proof. Let W be a neighborhood of 0 in yj,. Then there exist

functions (/>!,..., 0fc £ Sfn such that

(1) {Mey;: \u((/)i)\< 1 for 1 < i < k} c W.

Define

(2) V ={ue^fn:\u(^i)\<l for 1 < i < k}.

Then V is a neighborhood of 0 in £f'n, and since

(3) u{4>) = u{fo (^y„,u€^

we see that u e W whenever u e V. This proves the continuity of <D,

where we write <Du = u. Since <D has period 4 on e9?n, (3) shows that <D

has period 4 on £f'n, that is, that <D4u = u for every u e £f'n. Hence <D is

one-to-one and onto, and since <D-1 = <D3, <D_1 is continuous.

Statement (b) follows from (c) of Theorem 7.4 and from Theorem

7.13, by the computations

(P(D)uy(<t>) = (P(D)uU) = u{P{-D)4>)

= U((Pct>r) = u(p<t>) = (Puu)

and

(P(-D)uU) = u{P{D)4>) = u((P(D)d>r)

= u(P<f>) = (PuU) = (Pn)A(fl,

where (/> is an arbitrary function in Sf\. I HI

7.16 Examples We saw in (d) of Section 7.12 that polynomials are

tempered distributions. Their Fourier transforms are easily computed. We

begin with the polynomial 1; regarded as a distribution on Rn, 1 acts on test

functions $ by the formula

= f 10 dmn = f
JR" JR"

(1) 1(0)= | \4>dmn= | 4>dmn.

Hence

(2) 1(0) = ltf) = I $ dm„ = 0(0) = <5(0),
jRn
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where 3 is the Dirac measure on Rn. Likewise,

(3) k<t>) = m = m =\ 4>dmn= l(fl.

Thus (2) and (3) give the results

(4) 1 = 3 and 3 = 1.

If P is now an arbitrary polynomial on Rn, and if we apply (b) of

Theorem 7.15 with u = 3 and with u = 1, the results in (4) show that

(5) (P(D)3)A = P and P = P(-D)d.

The two formulas in (4) [as well as those in (5)] can also be derived

from each other by the inversion theorem, which may be stated for

tempered distributions in the following way:

lfue^'n, then (u)A =

u, where u is defined by

(6) m = utf) (0 e y±

The proof is trivial, since (c/>)A = $, by (a) of Theorem 7.7:

(syW) = fitf) = M((^)A) = u$) = m-

Note that 1 = 3.

If we combine (5) with Theorem 6.25, we find that a distribution is the

Fourier transform of a polynomial if and only if its support is the origin (or
the empty set).

The following lemma will be used in the proof of Theorem 7.19. Its

analogue, with <3)(Rn) in place of Sf
n,

is much easier and was used without

comment in the proof of Theorem 6.30.

7.17 Lemma Ifw = (1, 0,..., 0) e R\ if<t> e ^n,and if

(b(x + ew) — <b(x)
(1) <t>lx) =

^—-—-——
(x eR\e> 0),

e

then (f)e -? d(t>/dxl in the topology of^n9ase-^ 0.

proof. The conclusion can be obtained by showing that the Fourier

transform of <$>t
— d<\>jdxx tends to 0 in e9?n, that is, by showing that

(2) 4>J-^Oinyn9 ase-+0,

where

(3) ^) = exp(^)-l_t>i {yeR„£>0)
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If P is a polynomial and a is a multi-index, then

(4) P ?

Vtyt^)=E^P' (£>"-'<£) • (DtyJ.

A simple computation shows that

Uy\ if|/M = 0,

(5)
I^VeWI<je|^il if|/»l = l,

U1""1 if |0|> 1.

The left side of (4) tends therefore to 0, uniformly on Rn, as e -? 0. The

definition of the topology of £f
n (Section 7.3) shows now that (2)

holds. ////

7.18 Definition If m e ^ and ^y„, then

(u*(I>)(x) = u(tJ) (xeRn).

Note that this is well defined, since xx $ e if
n

for every x e Rn.

7.19 Theorem Suppose (f> e Sfn and u is a tempered distribution. Then

(a) u* (fre C°°(Kn), and

D\u *(/>) = (Dau) * (f> = u * (Da(t))

for every multi-index a,

(b) u * 4> nas polynomial growth, hence is a tempered distribution,

(c) (ii * (t>y = #,

(d) (u * 0) * \\t = u * ((/> * il/\for every \\t e £fn,

(e) u*<p = ((t>u)\

proof. The second equality in (a) is proved exactly as in Theorem

6.30, since convolution obviously still commutes with translations.

This also shows that

(i) (^^}u * *>=u * i^^y
Lemma 7.17 now gives Da(u *(/>) = u * (Da(f)) if a = (1, 0, ..., 0).
Iteration of this special case gives (a).

Let pN(f) denote the norm (1) of Section 7.3, for/e Zf'„. The

inequality

(2) l+|x + },|2<2(l+|x|2Xl+M2) (x,yeR")
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shows that

(3) PN(rxf) < 2N(1 + | x \2rpN(f) (x eR",fe <?n).

Since u is a continuous linear functional on Sfn and since the norms

pN determine the topology of ¥\, there is an N and a C < oo such

that

(4) \u(f)\<CpN(f) (fe<?n);

see Chapter 1, Exercise 8. By (3) and (4),

(5) | (u * <£)(*) | = | u{xx <£) | < 2NCpN(m + | x |Y,

which proves (b).
Thus u * (/) has a Fourier transform, in Sf'n. If \j/ e Q)(Rn\ with

support K, then

(ii * mfo = (u * (t>\h = f (u * amm-*) dw^x)

m|>(-x)tx£| dm„(x) = m il/(-x)zx<f> dmn(x)
J-K J-K

= M((0 * </0V) = fi((tf> * ^)A) = ft(<M

so that

(6) (u * flA(#) = ($u)(fo

In the preceding calculation, Theorem 3.27 was applied to an

^-valued integral, when u was moved across the integral sign. So far,

(6) has been proved for \\t e 3)(Rn\ Since 3>(Rn) is dense in S?n9 the

Fourier transforms of members of <2>(Rn) are also dense in ¥\, by (b)
of Theorem 7.7. Hence (6) holds for every \j/ e £f

n.
The distributions

(u * (f))A and (j>u are therefore equal. This proves (c).
In the computation that precedes (6), the two end terms are now

seen to be equal for any \jj e ^n. Hence

(7) (u * wfo = «((</> * m,

which is the same as

(8) ((u *(/>)* i/0(0) = (u * ((/> * iA))(0).

If we replace \j/ by tx \j/ in (8), we obtain (d).

Finally, (u * c/>)A = $>u = (c/>u)v, by (c) above and (6) of Section

7.16; this gives {e\ since (#)v = (((/>u)A)A. ////

Paley-Wiener Theorems

One of the classical theorems of Paley and Wiener characterizes the entire

functions of exponential type (of one complex variable), whose restriction to
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the real axis is in L2, as being exactly the Fourier transforms of L2-functions

with compact support; see, for instance, Theorem 19.3 of [23]. We shall

give two analogues of this (in several variables), one for C00-functions with

compact support and one for distributions with compact support.

7.20 Definitions If Q is an open set in <pn9 and if / is a continuous

complex function in Q, then / is said to be holomorphic in Q if it is holo-

morphic in each variable separately. This means that if (al9 ..., an) e Q and

if

0iW = f(ai> • • •

> ai-i> ai + K fl,-+1, • •

•, <0>

each of the functions gl9 ..., gn is to be holomorphic in some neighborhood
of 0 in (p. A function that is holomorphic in all of (p1 is said to be entire.

Points of <pn will be denoted by z = (zl9 ..., zn)9 where zk e (p. If zk
=

xk + iyk9 x = (xl9...9 xn)9 y
= (yl9...9 yn)9 then we write z = x + iy. The

vectors

x = Re z and y
= Im z

are the real and imaginary parts of z, respectively; Rn will be thought of as

the set of all z e (p1 with Im z = 0. The notations

M=(|zil2 +
---

+ |zJ2)1/2

|Imz|=(y2 + ---+};n2)1/2

z —

zl zn

z
•

t = zlt1 +
•••

+z„t„

ez(£) =

exp (iz
•

t)

will be used for any multi-index a and any t e Rn.

7.21 Lemma /// is an entire function in <Pn that vanishes on Rn9 then

f=0.

proof. We consider the case n = 1 as known. Let Pk be the following

property off: If z e (p1 has at least k real coordinates, then/(z) = 0.

Pn is given; P0 is to be proved. Assume 1 < i < n and Pt is true. Take

«!,..., at real. The function gt considered in Section 7.20 is then 0 on

the real axis, hence is 0 for all k e <£. It follows that P;_ 1
is true. ////

In the following two theorems,

rB = {xe Rn:\x\ < r}.
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7.22 Theorem

(a) Ifcfre !3>(Rn) has its support in rB, and if

(1) f(z)= [ <Ht)e-iz'dmn(t) (:en

then f is entire, and there are constants yN < oo such that

(2) | f(z) | < yN(l + | z |)" VIm z'
(z ef-,N = 0, 1,2,...).

(b) Conversely, if an entire function f satisfies the conditions (2), then there

exists (f> £ @(Rn), with support in rB, such that (1) holds.

proof, (a) lit erB then

ey< <e\y\\<\ <e^lmz^

The integrand in (1) is therefore in l}(R% for every z e <pn9 and / is

well defined on <pn. The continuity of/is trivial, and an application of

Morera's theorem, to each variable separately, shows that / is entire.

Integrations by part give

Iz*f(z)= I (D.<Mt)e-"-dmJLt).

Hence

(3) |z"ll/(z)l<ll^ll1er|"nz|,

and (2) follows from the inequalities (3).

(b) Suppose/is an entire function that satisfies (2), and define

= f f(x]e"
JRn

(4) cf>(t)= /(xV'dmJLx) (teR»).
JRn

Note first that (1 + \x\)Nf(x) is in L\Rn) for every JV, by (2). Hence

4> £ Cco{Rn\ by the argument that proved (c) of Theorem 7.4.

Next, we claim that the integral

(5) fit + iri9z29...9 zn) exp {i[t^ + in) + t2 z2 +
• • •

+ tn z J} d£

is independent of rj, for arbitrary real tl9..., tn and complex z2,..., zn.

To see this, let T be a rectangular path in the (f + i>/)-plane, with one

edge on the real axis, one on the line n =

nu whose vertical edges
move off to infinity. By Cauchy's theorem, the integral of the

integrand (5) over T is 0. By (2), the contribution of the vertical edges to

this integral tend to 0. It follows that (5) is the same for rj
= 0 as for

rj
=

nv This establishes our claim.
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The same can be done for the other coordinates. Hence we

conclude from (4) that

f*

(6) 4>{t) = f{x + iy)e"' (*+,»
dm„(x)

for every y e Rn.

Given t e Rn9 t ^ 0, choose y
= fo/\ t |, where X > 0. Then

t-y = X\t\Ay\ = K

\f(x + iy)eitix
+

iy)\ < yN(l + \x\yN^~m9

and therefore

(7) \<Kt)\<yNe'r-m (l + \x\)-»dmn(x),
JR"

where N is chosen so large that the last integral is finite. Now let

X -? oo. If 111 > r, (7) shows that (j>(t) = 0. Thus <$> has its support in rB.

Now (1) follows, for real z, from (4) and the inversion theorem.

Since both sides of (1) are entire functions, they coincide on (p1, by
Lemma 7.21. This completes the proof. ////

The following remarks will motivate the next theorem.

Let u be a distribution in Rn, with compact support. Then u is defined,

as a tempered distribution, by w(c/>) = u(c/>). However, the definition f(x) =

\fe_xdmn, made for fe l}(Rn\ suggests that u ought to be a function,

namely,

u(x) = u(e_x) (x e Rn)9

because e_x e C°°(Kn) and u(0) makes sense for every (j> e C°°(Kn), as shown

by (d) of Theorem 6.24. Moreover, e_z e C°°(Kn) for every z e (p1, and u(e_z)
therefore looks like an entire function, whose restriction to Rn is u.

That all this is correct is part of the content of the next theorem,

which also characterizes the resulting entire functions by certain growth
conditions.

7.23 Theorem

(a) Ifue <3)\Rn) has its support in rB, ifu has order N9 and if

(1) f(z) = u(e_z) (z e n,

then f is entire, the restriction off to Rn is the Fourier transform ofu, and

there is a constant y < oo such that

(2) l/(^)l<y(l+UI)VImz' (zef).
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(b) Conversely, iffis an entire function in (£n which satisfies (2) for some N

and some y9 then there exists u e <3)\Rn\ with support in rB, such that (1)
holds.

Note: The notation it will sometimes be used to denote the extension

to (p1 given by (1). Thus

u(z) = u(e_z)

for z e <pn. This extension is sometimes called the Fourier-Laplace
transform of u.

proof, (a) Suppose u e &(Rn) has its support in rB. Pick \\i e 3)(Rn)
so that \\i = 1 on (r + 1)B. Then u = \\iu, and (e) of Theorem 7.19

shows that

(3) u = (ij/u)A = u * \J/.

Thus u e C°°(Kn). Pick 4> e tfn so that 4> = \\i. Then

(ti * ^) = (fi * ^) = Hrx4) = u((Tx(t>)A)

= u(e.x<p) = u(il/e.x) = u{e_x\

so that (3) gives

(4) u(x) = u(e_x) (xeR»).

Our next aim is to show that the function / defined by (1) is

entire. Choose ae (£n,b e (p1, and put

(5) g(X) =f(a + Xb) = u(e_a_xb) (X e <£).

The continuity of/poses no problem: If w -? z in <£", then e_w -? e_z

in Cco(Rn\ and u is continuous on C°°(Kn). To prove that/is entire it is

therefore enough to show that each of the functions g defined by (5) is

entire.

Let T be a rectangular path in (p. Since X-^e_a_Xh is

continuous, from (p to Cco{Rn\ the C°°(Kn)-valued integral

(6) F = ^e.a.XhdX
is well defined. Evaluation at any t £ Rn is a continuous linear

functional on Cco{Rn). It therefore commutes with the integral sign. Hence

F(t) = \e.a.Xb(t) dk = \e-iate-i{bt)" dk = 0.
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Thus F = 0, and (6) gives

0 = u(F) =

r

3(A) dk.
r

By Morera's theorem, g is entire.

The proof of part (a) will be completed by proving (2). Choose

an auxiliary function h on the real line, infinitely differentiable, such

that h(s) = 1 when 5 < 1 and h(s) = 0 when 5 > 2, and associate with

each zef (z^O) the function

(7) <t>z(t) = e-iz'th(\t\\z\-r\z\) (t e Rn).

Then §z e <3)(Rn). Since the support of u is in rB and

h(\t\\z\-r\z\)=l if \t\<\z\~l +r, comparison of (1) and (7)
shows that

(8) m = u(<t>z).

Since u has order N9 there is a y0 < oo such that | u(4>) | < )>oII0IIn
for all 4> e 3)(Rn\ where ||^||N is as in (1) of Section 6.2; see (d) of

Theorem 6.24. Hence (8) gives

(9) \m\<y0\\ct>z\\N.

On the support of <j>z, 11 \ < r + 2/| z \, so that

(10) k"izr| = ^'r <e2+r|Imz|.

If we now apply the Leibniz formula to the product (7) and use

(10), (9) implies (2).
This completes the proof of part (a),

(b) Since/now satisfies (2), we have

(11) |/(x)|<y(l + |x|)" (xen

The restriction off to Rn is therefore in &"n and is the Fourier

transform of some tempered distribution u.

Pick a function h e <3(Rn\ with support in B, such that J h = 1,

define he(t) = e~nh(t/e\ for e > 0, and put

(i2) m =f(z)fte(z) (z e n,

where fie now denotes the entire function whose restriction to Rn is the

Fourier transform of he. Statement (a) of Theorem 7.22, applied to he,
leads to the conclusion that fe satisfies (2) of Theorem 7.22 with r + e

in place of r. Therefore (b) of Theorem 7.22 implies that fe = (j>E for

some 4>e e g)(Rn) whose support lies in (r + e)B.
Consider some \\t e ifn such that the support of $ does not

intersect rB. Then \j/(f)e = 0 for all sufficiently small e > 0. Since
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f\j/ e l}(Rn) and de(x) = d(ex) -? 1 boundedly on Rn, we conclude that

*#) = «#) = fil*dmn = littk fe*l/ dmn= lim f/>
e^O J

= lim $e^ dmn = lim ^0e dm„ = 0.

e-0 J e-0 J

Hence u has its support in rB.

Now we see that z->u(e_z) is an entire function, and since (1)
holds for z e Rn (by the choice of u), Lemma 7.21 completes the proof

of(fc). ////

Sobolev's Lemma

If Q is a proper open subset of Rn9 no Fourier transform has been defined

for functions whose domain is Q or for distributions in Q. Nevertheless,

Fourier transform techniques can sometimes be used to attack local

problems. Theorem 7.25, known as Sobolev's lemma, is an example of this.

7.24 Definitions A complex measurable function/, defined in an open

set Q c Rn9 is said to be locally L2 in Q if \K \f\2 dmn < oo for every

compact Kcfi.

Similarly, a distribution u e ^'(Q) is locally L2 if there is a function g,

locally L2 in Q, such that u{(f>) = j"n g(f> dmn for every <$> e ^(Q). To say that

a function/has a distribution derivative Daf which is locally L2 refers to the

distribution Daf and means, explicitly, that there is a function g, locally L2,
such that

g(t>dmn = (-lp JD'<l>dml
n Jo.

for every 4> e ^(Q). A priori, this says nothing about the existence of Daf in

the classical sense, in terms of limits of quotients.
On the other hand, the class Cip)(Q) consists, for each nonnegative

integer /?, of those complex functions / in Q whose derivatives Daf exist in

the classical sense, for each multi-index a with | a | < /?, and are continuous

functions in Q.

We shall write D\ for the differential operator (d/dxt)k.

7.25 Theorem Suppose n, /?, r are integers, n > 0, p > 0, and

/n
n

(1) r >/> + -.
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Suppose f is a function in an open set QcR" whose distribution derivatives

Before locally L2 in Q, for 1 < i < n, 0 < k < r.

Then there is a function f0 e C(p)(Q) such that f0(x) = f(x) for almost

every x e Q.

Note that the hypothesis involves no mixed derivatives, i.e., no terms

like DlD2f The conclusion is that / can be "corrected" so as to be in

C(p)(Q), by redefining it on a set of measure 0.

Note also, as a corollary, that if all distribution derivatives of / are

locally L2 in Q, then/0 e C°°(Q).

proof. By hypothesis, there are functions gik9 locally L2 in Q, that

satisfy

(2) Lik<t>dmtt = (-lf\ jDfr dmn [0 e 0(11)],

for 1 < i < n, 0 < k < r.

Let co be an open set whose closure K is a compact subset of Q.

Choose \\t e ^(Q) so that \\t = 1 on K, and define F on Rn by

m. f*Kx)f(x) if x eft

Then F e (13 n l})(Rn).
In Q, the Leibniz formula gives

(3) d;f= x (rWvx^/) = I (rWm-
s = 0 W s

= 0 W

In the complement Q0 of the support of \j/9 D\F = 0. These two

distributions coincide in Q n Q0. Hence Z)[ F, originally defined as a

distribution in Rn9 is actually in L2(K"), for 1 < i < n, because the

functions {D\~s\l/)gis are in L2(Q). [Having compact support, Z)[F is

therefore also in l}(Rn).~]
The Plancherel theorem, applied to F and to D\F9 ..., DrnF9

shows now that

J.(4) | \F\2dmn<K

and

(5) | yfr\F(y)\2dmn(y) <co (l<i^n).

Since

f yf
JR"

(6) (1 + | y | )2' < (2n + 2)'(1 + y\' +
• • •

+ yn2'),
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where | y \ = (y\ +
• • ?

+ y2)1/29 (4) and (5) imply

(7) f (l + \y\)2'\F(y)\2dmn(y)<<x>.
JR"

If J denotes the integral (7), and if on is the (n
— l)-dimensional

volume of the unit sphere in Rn, the Schwarz inequality gives

J [ (1 + I y IYI Hy) I dmm(y)V < J [ (1 + I y \ )2p~2r dmn(y)

= Jon (1 ^t)2p-2rtn~1 dt< oo,

Jo

since 2p — 2r -\- n
— 1<— 1. We have thus proved that

(8)

Define

(l + \y\y\F(y)\dm„(y)<n.
Rn

JR*

(9) FJLx) =

\ F(yW "dmn(y) (x e R").
JR"

By (c) of the inversion theorem 7.7, Fco = F a.e. on Rn. Moreover, (8)

implies that yaF(y) is in L1 whenever | a | < p. Iteration of the proof of

(c) of Theorem 7.4 leads therefore to the conclusion

(10) F„ e C^(Rn).

Our given function / coincides with F in co. Hence /= Fa a.e.

in co.

If co' is another set like co, the preceding proof gives a function

F^ e Cip)(Rn\ which coincides with / a.e. in co'. Hence F^. = Fa in

co' n co. The desired function f0 can therefore be defined in Q by

setting/0(x) = FJx) if x e co. ////

Exercises

1. Suppose A is an invertible linear operator on R",fe !?(/?"), and g(x) =f(Ax).

Express g in terms of/ This generalizes (d) of Theorem 7.2.

2. Is the topology of Sfn induced by some invariant metric which turns the Fourier

transform into an isometry of Sfn onto y„?
3. Suppose/(x) = ex, g(x) = ex cos (ex\ on the real line. Show that g is a tempered

distribution but that/is not.

4. By Exercise 3 there exist distributions in R" which are not tempered. Such

distributions are continuous linear functional on <2)(Rn) which have no continuous
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linear extension to y„. Explain why this does not contradict the Hahn-Banach

theorem.

5. (a) Construct a sequence in <2)(Rn) which converges to 0 in the topology of Sfn
but not in that of @(Rn).

(b) Construct a sequence of polynomials which converges in the topology of

&XR1) but not in that of $f\.

6. Prove that the operations listed in Theorem 7.13 are continuous mappings of Sf'n

into^;.
7. If u e Sf'n, prove that

(txm)a = e.xii and {exu)h =

xxu

for every x e R".

8. Suppose f e I?(Kn),/V 0, X is a complex number, and/= kf. What can you say

about kl

9. Prove (a) of Theorem 7.8 directly (without using Fourier transforms).

10. The Fourier transform of a complex Borel measure \i on R" is customarily
defined to be the function p. given by

fHx)= e~ixt dfi(t) (xeRn).

Of course, \x is also a tempered distribution, and as such its Fourier transform

was defined in Section 7.14. Show that these two definitions are consistent.

Prove that each fi is bounded and uniformly continuous.

11. Suppose A: Sfn-+ C(Rn) is continuous, linear, and txA = Atx for every x e R".

Does it follow that there exists «e^ such that

A(f> = u * <t>

for every <f> e y„?
12. If {hj} is an approximate identity, as in Definition 6.31, and u e &*'„, does it

follow that u * hj, -? u as7 -? 00, in the weak*-topology of 6^fnl
13. Suppose X and Y are complete metric spaces, A is dense in X, /: A -? Y is

uniformly continuous.

(a) Prove that/has a unique continuous extension F: X -? Y.

(b) If/ is an isometry, prove that the same is true of F, and prove that F(X) is

closed in Y.

(This was used in the proof of the Plancherel theorem; see also Exercise 19,

Chapter 1.)

14. Suppose F is an entire function in (pn, and suppose that to each £ > 0 there

correspond an integer N(e) and a constant y(e) < 00 such that

I F(z) I < y(eXl 4- I z )N<V|Im z|
(x e <Fn).

Prove that F is a polynomial.

15. Suppose/is an entire function in (pn, N is a positive integer, r > 0, and

I f(z) I < (1 + I z I)V|Im z| for all z e £",

|/(x)|< 1 for all x e/?".



206 PART II: DISTRIBUTIONS AND FOURIER TRANSFORMS

Prove that then

|/(z)|<er|Imz| for all z e <Fn.

Suggestion: Fixz = x + iy e (pn\ define

for X e (p, s > 0, and apply the maximum modulus theorem to a large
semicircular region in the upper half-plane to deduce that | gs(i) | < 1. Let s -? 0.

16. In (b) of Theorem 7.23 it is not asserted that u has order N. The following

example shows that this is not always true.

Let \x be the Borel probability measure on R3 which is concentrated on

the unit sphere S2 and which is invariant under all rotations of S2. Compute (by

using spherical coordinates) that

m = s^ (xen
|x|

Put u = Dlfi. Then

\u(x)\ = \x1ii(x)\<l (xeR3).

Deduce from Exercise 15 that

|«(e_z)|<ye|Imz| (z e £3)

although u is not a distribution of order 0. (Its order is 1.) Find an explicit
formula for the entire function w(e_z), zef3,

17. Suppose u is a distribution in R", with compact support K, whose Fourier

transform u is a bounded function on R".

(a) Assume n = 1 or n = 2, and prove that ij/u = 0 for every \j/ e C°°(/?n) that

vanishes on K.

(b) Assume n = 2, and assume that there is a real polynomial P, in two

variables, that vanishes on K. Prove that Pu = 0 and that u therefore satisfies

the partial differential equation P( —

D)u = 0. For example, when K is the

unit circle, then

u + Am = 0,

where A = d2/dx\ + d2/dx\ is the Laplacian.

(c) Show, with the aid of Exercise 16 and the polynomial 1 — x\ — x\ — x2,
that (b\ hence also (a\ becomes false with n = 3 in place of n = 2.

(d) Assume n = 1,/e [}(R)9f= 0 on K, and/satisfies a Lipschitz condition of

order \, that is, | f(t) -f(s)\ < C\t - s\1/2. Prove that then

f(x)u(x) dx = 0.

J— oo

Suggestion: For any n, let He be the set of all points outside K whose

distance from K is less than £ > 0. Let {he} be an approximate identity, as in the

proof of (b) of Theorem 7.23, use the Plancherel theorem to obtain

ll«*M2 ^Pll oofi""/2Plll2,
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and show that therefore

|t#)| <||«||0O||/ll||2liminf<;S-" I \<t>\2dm,
'" \ \4>\

for any 4> e @(R") that vanishes on K.

This yields (a). A slight modification yields (d)\ (b) follows from (a).
18. Was it necessary to introduce the function ip into the proof of Theorem 7.25?

Could the proof have been simplified by setting F(x) =f(x) on K, F(x) = 0 off

Kl

19. Show that the hypotheses of Theorem 7.25 imply that Da/is locally L2 for every

multi-index a with | a | < r.

20. Let/e l3(R2) be the continuous function whose Fourier transform is

f(y) = (i + b>ir40°g (2 + M)}"1 (ye R2).

Since \y\*f(y) is in L2(K2), Theorem 7.25 implies that/e C{1\R2). Show that the

stronger conclusion/ e C{2\R2) is false, by proving that

/(/i,0)+/(-/i,0)-2/(0,0)
-;

? — oo as h -? 0.

This shows that > cannot be replaced by > in (1) of Theorem 7.25.

21. Suppose u is a distribution in K" whose first derivatives Dxu, ..., Dnu are

functions in I?(R"). Prove that w is also a function and that u is locally L2. (Show that

"locally" cannot be omitted in the conclusion.) Hint: u is in fact the sum of an

L2-function and an entire function.

When n = 1, show that u is actually a continuous function. Show that this

stronger conclusion is false when n = 2. For example, the gradient of the

function

u(reie) = log log ( 2 +
-

is in l3(R2). See Exercise 11, Chapter 8, for the same result under weaker

hypotheses.

22. Periodic distributions, or distributions on a torus T", have Fourier series whose

theory is somewhat simpler than that of Fourier transforms. This is mainly due

to the compactness of T": Every distribution on T" has compact support. In

particular, tempered distributions are nothing special.
Prove the various assertions made in the following basic outline:

Tn = {(eix\...,eiXn): x, real}.

Functions <f> on T" can be identified with functions <j> on R" that are 27i-periodic
in each variable, by setting

0(x1,...,xn) = </)(^1,...,^").

Z" is the set (or additive group) of n-tuples k = (ku ..., kn) of integers kj. For

k e Z", the function ek is defined on Tn by

ek(eix\ ..., eiXn) = eik
x

=

exp {i(klXl +
• • •

4- knxn)}.
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an is the Haar measure of T". If <f> e l}(crn), the Fourier coefficients of </> are

4>{k)= [ e.k<t>dan (keZn).

@(Tn) is the space of all functions <f> on T" such that 4> e C°°(Kn). If <t> e 3)(Tn)
then

\y (i+fc-/cn«ft/c)i4"2<oo
UeZ" J

for N = 0, 1, 2, .... These norms define a Frechet space topology on <2)(Tn),
which coincides with the one given by the norms

max sup | (Da0Xx) I (N = 0, 1, 2, ...).
|a|<N xeR"

<2)\Tn) is the space of all continuous linear functionals on <2)(Tn)\ its members

are the distributions on T". The Fourier coefficients of any u e <2)\Tn) are defined

by

u(k) = u(e.k) (k e Z").

To each u e <2)\Tn) correspond an N and a C such that

|m(/c)|<C(1 + |/c|)n (keZn).

Conversely, if g is a complex function on Z" that satisfies \g(k)\ < C(l + \k\)N
for some C and N, then g

= u for some m g &(Tn).
There is thus a linear one-to-one correspondence between distributions

on T", on one hand, and functions of polynomial growth on Z", on the other.

If £j c= £2 c= £3 c=
• • •

are finite sets whose union is Z", and if u e ®'{Tn\

the
"

partial sums
"

Z u(k)ek
keEj

converge to u as; -? oo, in the weak*-topology of &(Tn).
The convolution m * v of m g <2)'(Tn) and t; g <2)'(Tn) is most easily defined

as having Fourier coefficients u(k)v(k). The analogues of Theorems 6.30 and 6.37

are true; the proofs are much simpler.

23. Modify the proof of Theorem 7.25 so that Fourier series are used in place of

Fourier transforms, by replacing F by a suitable periodic function.

24. Put c = (2/tt)1/2. For) = 1, 2, 3,..., define gi on the real line by

g(t) = \C/t in/J<\t\<J

|0 otherwise.

Prove that {g-\ is a uniformly bounded sequence of functions which converges

pointwise, as j -> oo. If fe L2^1), it follows that /* #, converges, in the L2-

metric, to a function Hfe 13. This is the Hilbert transform of/; formally,

1 f00 fit)

n J-oo x-t
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(The integral exists, in the principal value sense, for almost every x, but this is

not so easy to prove; if/satisfies a Lipschitz condition of order 1, for instance,

the proof is trivial.) Prove that

\\Hf\\2 = \\f\\2 and H(Hf)= -/

for every/ e ^(R1). Thus H is an L2-isometry, of period 4.

Is it true that Hfe Sf x if/e 5^?



CHAPTER

8

APPLICATIONS TO

DIFFERENTIAL

EQUATIONS

Fundamental Solutions

8.1 Introduction We shall be concerned with linear partial differential

equations with constant coefficients. These are equations of the form

(1) P(D)u = v

where P is a nonconstant polynomial in n variables (with complex

coefficients), P(D) is the corresponding differential operator (see Section 7.1),
v is a given function or distribution, and the function (or distribution) u is a

solution of (1).
A distribution E e <2)'(Rn) is said to be a fundamental solution of the

operator P(D) if it satisfies (1) with.f = S, the Dirac measure:

(2) P(D)E = S.

The basic result (Theorem 8.5, due to Malgrange and Ehrenpreis) that will

be proved here is that such fundamental solutions always exist.

Suppose we have an E that satisfies (2), suppose v has compact

support, and put

(3) u = E * v.

210
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Then u is a solution of (1), because

(4) P(D)(E *v) = (P(D)E) *v = S*v = v,

by Theorems 6.35 and 6.37.

The existence of a fundamental solution thus leads to a general
existence theorem for the equation (1); note also that every solution of (1)
differs from E * v by a solution of the homogeneous equation P(D)u = 0.

Moreover, (3) gives some additional information about u. For instance, if

v e @{Rn\ then u e C°°(Kn).
It may of course happen that the convolution E * v exists for certain v

whose support is not compact. This raises the problem of finding E so that

its behavior at infinity is well under control. The best possible result would

of course be to find an E with compact support. But this can never be done.

If it could, E would be an entire function, and (2) would imply PE = 1. But

the product of an entire function and a polynomial cannot be 1 unless both

are constant.

However, the equation PE = 1 can sometimes be used to find £,

namely, when 1/P is a tempered distribution; in this case, the Fourier

transform of 1/P furnishes a fundamental solution which is a tempered
distribution. For examples of this, see Exercises 5 to 9.

Another related question concerns the existence of solutions of (1)
with compact support if the support of v is compact. The answer (given in

Theorem 8.4) shows very clearly that it is not enough to study P on Rn in

problems of this sort but that the behavior of P in the complex space (p1 is

highly significant.

8.2 Notations Tn is the torus that consists of all points

(1) w = (ew\ ...,eidn)

in <pn, where 0l9 ..., 6n are real; on is the Haar measure of Tn, that is,

Lebesgue measure divided by (2ri)n.
A polynomial in <pn9 of degree N, is a function

(2) P(z) = X c(x)z" (z e £"),

where a ranges over multi-indices and c(a) £ (p. If (2) holds and if c(a) ^ 0

for at least one a with | a | = N9 P is said to have exact degree N.

8.3 Lemma If P is a polynomial in (p1, of exact degree N, then there is a

constant A < oo, depending only on P, such that

(1) \f(z)\<Ar-»

for every entire function fin <£n,for every z e <£", and for every r > 0.

\(fP)(z + rw)\ do„(w)
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proof. Assume first that F is an entire function of one complex
variable and that

(2) Q(X) = c n (A + at) {k e <P).
i=l

Put Q0(X) = c n (1 + M). Then cF(0) = (Fgo)(0). Since | Go I = I GI
on the unit circle, it follows that

(3) |cF(0)|-2^J K*W)l<*0.

The given polynomial P can be written in the form P =

P0 + Px +
• • •

+ PN, where each Pj is a homogeneous polynomial of

degree j. Define A by

H""1(4)
-

=

^\PN\d<jn.
This integral is positive, since P has exact degree N. [See part (b) of

Exercise 1.] If z e (p1 and w e T", define

(5) F(A) =/(z + r^w), G(A) = P(z + r^w) (A e £).

The leading coefficient of Q is r*PN(w). Hence (3) implies

(6) r»\PN(w)\\f(z)\<±-
Z7C

\(fP)(z + reiew)\ dO.

If we integrate (6) with respect to on, we get

(7) | f(z) | < At
~n

• ^ P <*0 [ | (/FX* + reww) | don{w).

The measure an is invariant under the change of variables

w -? eiew. The inner integral in (7) is therefore independent of 0. This

gives (1). ////

8.4 Theorem Suppose P is a polynomial in n variables, v e <2>'(Rn\ and v

has compact support. Then the equation

(1) P(D)u = v

has a solution with compact support if and only if there is an entire function g

in <Pn such that

(2) Pg = v.

When this condition is satisfied, (1) has a unique solution u with compact

support; the support of this u lies in the convex hull of the support of v.
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proof. If (1) has a solution u with compact support, (a) of Theorem

7.23 shows that (2) holds with g
= u.

Conversely, suppose (2) holds for some entire g. Choose r > 0 so

that v has its support in rB = {x e Rn: \x\ < r}. By Lemma 8.3, (2)

implies

(3) I g(z) \<A \v(z + w)\ dan(w) (z e £")•

By (a) of Theorem 7.23, there exist N and y such that

(4) | v(z + w) | < y(l + | z + w | )N exp {r | Im (z + w) |}.

There are constants cl and c2 that satisfy

(5) l + |z + w|^Cl(l + |z|)

and

(6) | Im (z + w) | < c2 + | Im z |

for all z e <pn and all w e T". It follows from these inequalities that

(7) \g(z)\ < B(l + \z\)N exp {r|Im z|} (z e £"),

where B is another constant (depending on y, >4, N, cx, c2, and r). By

(7) and (fe) of Theorem 7.23, g
= it for some distribution u with

support in rB. Hence (2) becomes Pit = v9 which is equivalent to (1).
The uniqueness of u is obvious, since there is at most one entire

function u that satisfies Pit = v.

The preceding argument showed that the support Su of u lies in

every closed ball centered at the origin that contains the support Sv of

v. Since (1) implies

(8) P(D)(txu) =

txv (xeR»l

the same statement is true of x + Su and x + Sv. Consequently, 5U lies

in the intersection of all closed balls (centered anywhere in Rn) that

contain Sv. Since this intersection is the convex hull of Sv, the proof is

complete. ////

8.5 Theorem // P is a polynomial in <£, of exact degree N, and ifr>0,
then the differential operator P(D) has a fundamental solution E that satisfies

(1) \E(ij,)\<Ar-N do„(w) \$(t + rw)\ dm„(t)

for every \p e $(R").
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Here A is the constant that appears in Lemma 8.3. The main point of

the theorem is the existence of a fundamental solution, rather than the

estimate (1) which arises from the proof.

proof. Fix r > 0, and define

(2) ||*|| = dan(w)I- \iKt + rw)\dmJLt).

In preparation for the main part of the proof, let us first show that

(3) lim ||\l/j\\ =0 if \l/j -? 0 in S(R%
j-oo

Note that \j/{t + w) = (e_w \j/Y{t) iiteRn and w e <£n. Hence

Jr« jr>

(4) ||^||= | doJM \\{e_rwx{,y\dmn.

If if/j -? 0 in ^(Kn), all ij/j have their supports in some compact set K.

The functions erw (w e Tn) are uniformly bounded on K. It follows

from the Leibniz formula that

(5) W(e.rw ^)||„ < C(X, a) max \\D^j\\„.

The right side of (5) tends to 0, for every a. Hence, given e > 0, there

exists j0 such that

(6) ||(/
-

A)V-rw^)ll2 < £ (7 > Jo, W £ T"),

where A = Dj +
• • •

+ Z)2 is the Laplacian. By the Plancherel

theorem, (6) is the same as

(7) f \(l + \t\2y$J{t + ™)\2dmn(t)<e\
JRn

from which it follows, by the Schwarz inequality and (2), that

\\il/j\\ < Cs for all; >;0, where

JRt

(8) C2= | (l + \t\2y2ndm„(t)<x>-

This proves (3).

Suppose now that 4> e <3>(Rn) and that

(9) J, = P(D)(/>.

Then $ = P<fi9 <fi and \j/ are entire, hence \\i determines 0. In particular,

(f)(0) is a linear functional of \j/9 defined on the range of P(D). The crux
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of the proof consists in showing that this functional is continuous, i.e.,

that there is a distribution u e &(Rn) that satisfies

(10) u(P(D)(t>) = 0(0) (0 e @(R%

because then the distribution E = u satisfies

(P(D)£)(0) = E{P{-D)4>) = u((P(-DW)

= u(P(D)$) = #0) = #» = 5(cf>),

so that P(D)E = (5, as desired.

Lemma 8.3, applied to P0 = $, yields

-J(11) | flt) | < Ar"w | tfr(t + rw) | d<x„(w) (t e K").

By the inversion theorem, 0(0) = j^ 0 ^/m„. Thus (11), (2), and (9) give

(12) |0(O)| <Ar-N\\P(D)cl>\\ {4>e®{Rn)\

Let Y be the subspace of <3)(Rn) that consists of the functions

P(D)(t>9 0 e 3)(Rn). By (12), the Hahn-Banach theorem 3.3 shows that

the linear functional that is defined on Y by P(D)4> -? 0(0) extends to a

linear functional u on <2)(Rn) that satisfies (10) as well as

(13) \um<Ar-NW\ ^ e 3>(R")).

By (3), u e ®'{R"). This completes the proof. ////

Elliptic Equations

8.6 Introduction If u is a twice continuously differentiable function in

some open set (IcR2 that satisfies the Laplace equation

d2u dhi

dx2
+

dy2
(D 7^ + ^

= 0,

then it is very well known that u is actually in C°°(Q), simply because every

real harmonic function in Q is (locally) the real part of a holomorphic
function. Any theorem of this type—one which asserts that every solution of a

certain differential equation has stronger smoothness properties than is a

priori evident—is called a regularity theorem.

We shall give a proof of a rather general regularity theorem for elliptic

partial differential equations. The term
"

elliptic
"

will be defined presently.
It may be of interest to see, first of all, that the equation

d2u
(2)

^
= °

behaves quite differently from (1), since it is satisfied by every function u of
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the form u(x, y) =f(y)9 where/is any differentiate function. In fact, if (2) is

interpreted to mean

dy

then/can be a perfectly arbitrary function.

-(£)-*

8.7 Definitions Suppose Q is open in Rn, N is a positive integer,

fa e C°°(Q) for every multi-index a with | a | < N, and at least one fa with

| a | = N is not identically 0. These data determine a linear differential

operator

(1)

which acts

(2)

(3)

|«|<N

on distributions u e @\Q) by

L"= Z f.D.u.

The order of L is N. The operator

Z /*£*
l«l=N

is the principal part of L. The characteristic polynomial of L is

(4) p(x, y) = Z f*(x)y" (xeQ9ye Rn).
\a\=N

This is a homogeneous polynomial of degree N in the variables y
=

(yn • • •

> ^n)> w^h coefficients in C°°(Q).
The operator L is said to be elliptic if p(x, y) # 0 for every x e Q and

for every y e Rn, except, of course, for y
= 0. Note that ellipticity is defined

in terms of the principal part of L; the lower-order terms that appear in (1)

play no role.

For example, the characteristic polynomial of the Laplacian

d2 d2
(5) A =

R+-
+

R

is p(x, y) = —()>? +
•??

+ y2\ so that A is elliptic.
On the other hand, if L = d2/dx1 dx2, then p(x, y) = —

yxy2, and L is

not elliptic.
The main result that we are aiming at (Theorem 8.12) involves some

special spaces of tempered distributions, which we now describe.

8.8 Sobolev spaces Associate to each real number 5 a positive measure

/is on Rn by setting

(1) diis(y) = (l + \y\2ydmn(y).
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If fe L2(/is), that is, if J \f\2 dfis < oo, then / is a tempered distribution

[Example (c) of Section 7.12]; hence f is the Fourier transform of a

tempered distribution u. The vector space of all u so obtained will be denoted

by Hs\ equipped with the norm

(2) \\u\\s = ([\u\2 d^

Hs is clearly isometrically isomorphic to L2(/is).
These spaces Hs are called Sobolev spaces. The dimension n will be

fixed throughout, and no reference to it will be made in the notation.

By the Plancherel theorem, H° = L2.

It is obvious that Hs c Hl if t < s. The union X of all spaces Hs is

therefore a vector space. A linear operator A: X -? X is said to have order t

if the restriction of A to each Hs is a continuous mapping of Hs into Hs~f;

note that t need not be an integer and that every operator of order t also

has order t' if f > t.

Here are the properties of the Sobolev spaces that will be needed.

8.9 Theorem

(a) Every distribution with compact support lies in some Hs.

(b) If
—

oo < t < oo, the mapping u^v given by

ity) = (i + \y\2)'l2&(y) (y^R-)

is a linear isometry of Hs onto Hs~l and is therefore an operator of order

t whose inverse has order — t.

(c) If b e n°(Rn), the mapping u-+v given by v = bu is an operator of
order 0.

(d) For every multi-index a, Da is an operator of order | a |.

(e) Iff e Sfn, then u -+fu is an operator of order 0.

proof. If u e Qi\Rn) has compact support, (a) of Theorem 7.23 shows

that

(1) |fi()OI<C(r+|j>|)N (yeR»\

for some constants C and N. Hence u e Hs if s < —N — n/2. This

proves part (a); (b) and (c) are obvious. The relation

i (oa uy (y) i = i r 11 "(>o i < (i +1 y \2P121 m i

implies

(2) \\Dau\\s-w\<\W\\s,

so that (d) holds.

1/2
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The proof of (e) depends on the inequality

(3) (1 + | x + y \2)s < 2|s|(l + | x |2)s(l + | y |2)|s|,

valid for x e Rn, y e Rn9 —

oo < 5 < oo. The case 5 = 1 of (3) is

obvious. From it the case s = — 1 is obtained by replacing x by x
—

y

and then y by —y. The general case of (3) is obtained from these two

by raising everything to the power 151. It follows from (3) that

(4) \h(x-y)\2dns(x)<2M(l + \y\2y> \h\2dns
R"

for every measurable function h on Rn.

Now suppose u e H\ fe £fn9 t > \s\ + n/2. Since fe^n9

U/ll, < oo. Put y
= /i,s|-,(Jr). Then y < oo. Define F = \u\ * |/|. By

Theorem 7.19,

(5) l(MAl = |fi»/l<|fi|»l/l=f.

By the Schwarz inequality,

(6) \F(x)\2< xt{y) \u{x
jRn

\f(y)\2dn,(y) | \u(x-y)\2dn_,(y)
Rn

for every x e Rn. Integrate (6) over Rn, with respect to /is. By (4), the

result is

(7) I |F|2^s<2lsly||/||2||u|
JRn

It follows from (5) and (7) that

(8) IIMI,^(2wy)1/2ll

This proves (e). I HI

8.10 Definition Let Q be open in Rn. A distribution u e 3)\£l) is said to

be locally Hs if there corresponds to each point xefia distribution v e Hs

such that u = v in some neighborhood co of x. (See Section 6.19.)

8.11 Theorem If u e <2)\£l) and —

oo < 5 < oo, the following two

statements are equivalent:

(a) u is locally Hs.

(b) \j/u e Wfor every \j/ e ^(Q).

Moreover, if sis a nonnegative integer, (a) and (b) are equivalent to

(c) Da u is locally 13 for every cc with | a | < 5.
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Statement (b) may need some clarification, since u acts only on test

functions whose supports lie in Q. However, \\iu is the functional that

assigns to each (f> e <3)(Rn) the number

Note that tyrf) e ^(Q), so that u(^(/>) is defined.

proof. Assume u is locally Hs. Let K be the support of some

\l/ e ^(Q). Since K is compact, there are finitely many open sets cot a

Q, whose union covers K, and in which u coincides with some vt e Hs.

There exist functions i/^ e @(cOi) such that Z ^ = 1 on X. If

(t> e ^(Kn) it follows that

*#</>) = Z uWiW) = Z ViWiM)*

since ^ i^(/> £ ^(co£). Thus i^u = Z *Ai *M • By (e) of Theorem 8.9,

ifri ij/Vi £ Hs for each i. Thus ^m £ ifs, and (a) implies (b).
If (b) holds, if x £ Q, and if ^ £ ^(Q) is 1 in a neighborhood co of

x, then m = ^m in co, and \\iu £ ifs by assumption. Thus (b) implies (a).
Assume again that (b) holds. If ^ £ ^(Q), then \j/u e Hs9 hence

DJ^u) £ ifs_|a|, by (d) of Theorem 8.9. If | a | < 5, then

Hs-\a\ ^h0 = L2(Rn).

Thus Da(il/u) £ l3(Rn). Taking \jj = 1 in some neighborhood of a point
x e Q shows that Da u is locally L2 in Q. Thus (fe) implies (c).

Finally, assume Da u is locally L2 for every a with | a | < s. Fix

\\i £ 3>(Q). The Leibniz formula shows that Da{\j/u) £ L2(K") if | a | < s.

Hence

(i) \f\2\{xl>uY{y)\2dmn{y)<K (| a | < s).

If s is a nonnegative integer, (1) holds with the monomials y\,..., ysn in

place of y. It follows, as in the proof of Theorem 7.25, that

1(2) (1 + \y\2ymur(y)\2dm„(y)< oo.

jRn

Thus \\tu £ H\ (c) implies (fe), and the proof is complete. ////

8.12 Theorem Assume Q is an open set in Rn, and

(a) L = Z faDa is a linear elliptic differential operator in Q, of order N > 1,

with coefficients^ e C°°(Q),

(b) for each a with | a | = N,fa is a constant,



220 PART II: DISTRIBUTIONS AND FOURIER TRANSFORMS

(c) u and v are distributions in Q that satisfy

(1) Lu =

v,

and v is locally Hs.

Then u is locally Hs+N.

Corollary. If L satisfies (a) and (b) and ifve C°°(Q), then every solution

u of (I) belongs to C°°(Q). In particular, every solution of the

homogeneous equation Lu = 0 is in C°°(Q).

For if v £ C°°(ft), then \j/v e @(Rn) for every if/ e ^(Q); hence v is

locally Hs for every 5, and the theorem implies that u is locally Hs for every

s; it follows from Theorems 8.11 and 7.25 that u e C°°(Q).

Assumption (b) can be dropped from the theorem, but its presence

makes the proof considerably easier.

proof. Fix a point x e Q, let B0 c Q be a closed ball with center at x,

and let 4>o e ^(^) be 1 on some open set containing B0. By (a) of

Theorem 8.9, 4>Qu e H* for some t. Since H* becomes larger as t

decreases, we may assume that t = s + N — k, where k is a positive

integer. Choose closed balls

Bq Z3 Dj ZD
' ' '

ZD Bk ,

each centered at x, and each properly contained in the preceding one.

Choose (/>!,..., 4>k e ^(H) so that ^ = 1 on some open set containing

Bi9 and (t>i = 0 off Bi_l. Since (t>0u e H\ the following "bootstrap"

proposition implies that

4>iueHt+\...,4>kueHt+k.

It therefore leads to the conclusion that u is locally Hs+N, because

t + k = s + N and ^=lonBk. ////

Proposition. //, in addition to the hypotheses of Theorem 8.12, \\tu e Hl

for some t < s + N — 1 and for some \\i e ^(Q) which is 1 on an open

set containing the support of a function $ e ^(ft), then 4>u e Ht+l.

proof. We begin by showing that

(2) L((t>u)eHt-N+i.

Consider the distribution

(3) A = L((f)u)
—

(f>Lu = L((t>u)
—

(f>v.
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Since its support lies in the support of 0, u can be replaced by \j/u in

(3), without changing A:

(4) A = KWu)
- 0I#n) = £ /«

'

IDJiWu) - (t>DM")l
l«l<N

If the Leibniz formula is applied to Da((j)
•

^m), one sees that the

derivatives of order N of \\iu cancel in (4). Therefore A is a linear

combination [with coefficients in <3)(Rn)~] of derivatives of \\iu, of orders at

most N — 1. Since ij/u e H\ parts (d) and (e) of Theorem 8.9 imply that

A e Hl~N
+

1. By Theorem 8.11, 4>v e H\ and since t - N + 1 < 5, we

have (t>veHt-N+1. Now (2) follows from (3).
Since L is elliptic, its characteristic polynomial

(5) P(y)= Z hf (yeR»)
l«l=N

has no zero in Rn, except at y
= 0. Define functions

(6) q(y) = \y\~ Np(y), «y) = Q + \y \NMy),

for y e Rn, y ^ 0, and define operators g, R, S on the union of the

Sobolev spaces by

(7) (gw)A =

qw, (Rwy = rw

and

(8) S= X W*Dm.
\<z\<N

Since p is a homogeneous polynomial of degree N, q(Ay) = q(y) if

A > 0, and since p vanishes only at the origin, the compactness of the

unit sphere in Rn implies that both q and \jq are bounded functions.

It follows from (c) of Theorem 8.9 that both Q and Q"x are operators

of order 0.

Since both (1 + \y\2)~N/2(l + \y\N) and its reciprocal are

bounded functions on Rn, it follows from the preceding paragraph,
combined with (b) and (c) of Theorem 8.9, that R is an operator of
order N whose inverse R

~1
has order — N.

Since \\tfa £ 3)(Rn) it follows from (d) and (e) of Theorem 8.9 that

S is an operator of order N — 1.

Since p
= r —

q, and since p is assumed to have constant

coefficients/a, we have

(9) ( Z /. Da wV =pw
= (r- q)w = (Rw

- Qwf
\|a|=N /

if w lies in some Sobolev space. Hence

(10) (R
- Q + S)((/>u) = L((t>u).
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By(2),LW>u)e#'~"
+

1-

Since \\iu e H* and <$>\\t = 0, (e) of Theorem 8.9 implies that

(f>u = <$>\\iu e Hl. Hence

(11) (Q-SUu)€H'-N+\

because Q has order 0 and S has order N — 1 > 0. It now follows

from (10) that

(12) R((t>u)eHt-N+\

and since R~1 has order —N9 we finally conclude that (f>u e Ht
+

1. ////

8.13 Example Suppose L is an elliptic differential operator in Rn, with

constant coefficients, and £ is a fundamental solution of L. In the

complement of the origin, the equation LE = S reduces to LE = 0. Theorem

8.12 implies therefore that, except at the origin, E is an infinitely differentia-

ble function. The nature of the singularity of E at the origin depends, of

course, on L.

8.14 Example The origin in R2 is the only zero of the polynomial

P(y) =

yi + ^2 • If H is open in R2, and if u e @'(Q) is a distribution

solution of the Cauchy-Riemann equation

(— + i —X = 0

\dx1 dx2J

Theorem 8.12 implies that u e C°°(Q). It follows that u is a holomorphic
function of z =

xx + ix2 in Q. In other words, every holomorphic distribution

is a holomorphic function.

Exercises

1. The following simple properties of holomorphic functions of several variables

were tacitly used in this chapter. Prove them.

(a) If/is entire in <pn, if w e (pn, and if <f>{X) =f(A.w), then (\> is an entire function

of one complex variable.

(b) If P is a polynomial in <pn and if

f|P| <**„ = <>

JT"

then P is identically 0. Hint: Compute j7„ | P \2 don.

(c) If P is a polynomial (not identically 0) and g is an entire function in <p", then

there is at most one entire function/that satisfies Pf= g.

Find generalizations of these three properties.
2. Prove the statement about convex hulls made in the last sentence of the proof of

Theorem 8.4.
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3. Find a fundamental solution for the operator d2/dx1 dx2 in R2. (There is one

that is the characteristic function of a certain subset of/?2.)

4. Show that the equation

dx\ dx\

is satisfied (in the distribution sense) by every locally integrable function u of the

form

u(xu x2) =f(x1 + x2) or u(xu x2) =f(x1 -

x2)

and that even classical solutions (i.e., twice continuously differentiable functions)
need not be in C00. Note the contrast between this and the Laplace equation.

5. For x e K3, define/(x) = (1 + |x|2)-1. Show that/e l3(R3) and that/is a

fundamental solution of the operator / — A in R3. Find / by direct computation
and also by the following reasoning:

(a) Since/is a radial function (i.e., one that depends only on the distance from

the origin) the same is true of/; see Exercise 1 of Chapter 7.

(b) Away from the origin, (/ - A)/= 0, and/e C00.

(c) If F(|y |) =f{y\ (b) implies that F satisfies an ordinary differential equation
in (0, oo) that can easily be solved explicitly.

Ans.f(y) = (n/2y2\y\-1exp(-\y\).
Do the same with R" in place of K3; you will meet Bessel functions.

6. For 0 < k < n and x e Rn, define

Kx(x) = \x\~\

Show that

(a) Kx(y) = c(n,k)Kn_x(y) (y e R%

where

2"/2-*r[(n-^)/2]

c(M)=—m)—•
Suggestion: If n <2k < In, Kx is the sum of an L1-function and an

L2-function. For these k, Equation (a) can be deduced from the homogeneity

condition

Kx(tx) = t~xKx(x) (x g R\ t > 0).

The case 0 < 2k < n follows from the inversion theorem (for tempered

distributions). A passage to the limit gives the case 2k = n. The constants c(n, k)
can be computed from j f<j> = J /</>, with <t>(x) =

exp (
— | x |2/2).

7. Take n > 3 and k = 2 in Exercise 6, and deduce that — c(n, 2)Kn_2 is a

fundamental solution of the Laplacian A in R". For example, if v has compact support

in R3, show that a solution of Am = v is given by

u(x)= -— \x-y\~lv(y)dy.
4tt Jus
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8. Identify R2 and <P (so that z =

xx + ix2); put

<?- — -'— 5-—
'

—

dxx dx2' dxx dx2

Show that the Fourier transform of 1/z (regarded as a tempered distribution) is

—

i/z. Show that this result is equivalent to the Cauchy formula

#z) = I (#Xw)
^^

[0 e 0(R2)].
w —

z

I = f (50Xw)
J/12

J/12

Since 5 log \w\ = 1/w and A = dd, deduce that

<t>(z) = (A^Xw) log | w -

z | </m2(w) [0 e @(R2)l

Thus log | z | is a fundamental solution of the Laplacian in R2.

9. Use Exercise 6 to compute that

Mm [e-1 - b -

K2_E{y)] = log | y \ {ye R2),

where b is a certain constant. Show that this leads to another proof of the last

statement in Exercise 8.

10. Suppose P(D) = D2 + aD + bl. (We are now in the case n = 1.) Let/and g be

solutions of P(D)u = 0 which satisfy

Define

and put

/(0) = 0(0) and /'(0) - 0'(O) = 1.

f/(x) ifx<0,
G(X)

\g(x) if x > 0,

0(x)G(x;
J— oo

A<t> = -

0(x)G(x) dx [0 e 0(K)].
J— oo

Prove that A is a fundamental solution of P(D).

11. Suppose u is a distribution in K" whose first derivatives Dxu, ..., D„m are locally
L2. Prove that m is then locally L2. //mf: If \j/ e @(Rn) is 1 in a neighborhood of

the origin and if AE = d, then AtyrE) -de 3>(Rn). Hence

ii- i(Dtu)*DM,E)
t= i

is in C°°(Kn). Each D^ipE) is an ^-function with compact support.

12. Suppose u is a distribution in R" whose Laplacian Am is a continuous function.

Prove that u is then a continuous function. Hint: As in Exercise 11,

u
-

(\I/E) * (Am) g C°°(Kn).

13. Prove analogues of Exercises 11 and 12, with R" replaced by an arbitrary open

set Q.
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14. Show, under the hypotheses of Exercise 12, that

(a) d2ujdx\ is locally L2, but

(b) d2u/dx\ need not be a continuous function.

Outline of (b) for periodic distributions in R2 (Exercise 22, Chapter 7): If

g e C(T2) has Fourier coefficients g(m, n) and if/is defined by

/(m, n) = (1 + m2 + n2yly{m, n\

then/e C(T2) and Af=f- g e C(72), since £ |/(m, n)| < oo. The Fourier

coefficients of d2f/dx2 are —m2f(m, n). If d2f/dx\ were continuous for every

g e C(T2\ then (d^dxjXO, 0) would be a continuous linear functional of g.

Hence there would be a complex Borel measure \x on T2, with Fourier

coefficients

£i(m, n) =

2 , M2*1 + m2 + n

The next exercise shows that no such measure exists.

15. If \x is a complex Borel measure on T2, and if

A B

y(A,B) = Y Y £(m, n),

prove that

lim lim y(A, B) = lim lim y(A, B) .

Suggestion: If DA(t) = (2A + l)"1 YS-a **", then DA(x)=l if x = 0,

DA(x) -? 0 otherwise, and

y(A, B) = J D^D^y) d^i(x, y).

Conclude that each of the two iterated limits exists and that both are equal to

M{0,0}).
If \x were as in Exercise 14, one of the iterated limits would be 1, the

other 0.

16. Suppose L is an elliptic linear operator in some open set Q c= Rn, and suppose

that the order of L is odd.

(a) Prove that then n = 1 or n = 2.

(b) If n = 2, prove that the coefficients of the characteristic polynomial of L

cannot all be real.

In view of (a), the Cauchy-Riemann operator is not a very typical example
of an elliptic operator.



CHAPTER

9

TAUBERIAN

THEORY

Wiener's Theorem

9.1 Introduction A tauberian theorem is one in which the asymptotic
behavior of a sequence or of a function is deduced from the behavior of

some of its averages. Tauberian theorems are often converses of fairly
obvious results, but usually these converses depend on some additional

assumption, called a tauberian condition. To see an example of this, consider

the following three properties of a sequence of complex numbers

s„
=

a0 +
'••

+<V

(a) lim s„
= 5.

n-* oo

00

(6) Iff(r) = £ a„ r", 0< r < 1, then lim f(r) = s.

0 r-l

(c) lim nan
= 0.

n-*ao

Since/(r) = (1
-

r) £ snrn and (1
-

r) £ r" = l,/(r) is, for each r e (0, 1), an

average of the sequence {s„}. It is extremely easy to prove that (a) implies

(b). The converse is not true, but (b) and (c) together imply (a); this is also

quite easy and was proved by Tauber. The tauberian condition (c) can be

226
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replaced by the weaker assumption that {nan} is bounded (Littlewood). It is

remarkable how much more difficult this weakening of (c) makes the proof.
Wiener's tauberian theorem deals with bounded measurable functions,

originally on the real line. If $ e H°(R) and if (f)(x) -? 0 as x -? + oo, then it

is almost trivial that (K * (f))(x) -? 0 as x -? + oo for every K e l}(R). The

convolutions K * (f> may be regarded as averages of 0, at least when

J K = 1. Wiener's converse [(a) of Theorem 9.7] states that if (K * (/>)(x) -? 0

for one K e l}(R) and if the Fourier transform of this K vanishes at no

point of R9 then (/* (/>)(x)->0 for every fe l}(R); the stronger conclusion

that (/>(*)..-? 0 need not hold under these hypotheses, but it does hold if a

slight additional condition (slow oscillation) is imposed on (f> 1(b) of

Theorem 9.7].
The unexpected tauberian condition—the nonvanishing of K—enters

the proof in the following manner: If (K * (f))(x) -? 0, the same is true if K is

replaced by any of its translates, hence also if K is replaced by any finite

linear combination g of translates of K. When K has no zero, it turns out

that the set of these functions g is dense in L1 (Theorem 9.5). One is thus led

to the study of translation-invariant subspaces oil}.

9.2 Lemma Suppose f e l}(Rn\ t e Rn, and e > 0. Then there exists

h e L\Rn)9 with || Jil^ < e, such that

(1) d(s)=f(t)-f(s)

for all s in some neighborhood oft.

The lemma states that/is approximated, in the If-norm, by a function

/+ h whose Fourier transform is constant in a neighborhood of the point t.

proof. Choose g e l}(Rn) so that g
= 1 in some neighborhood of the

origin. For X > 0, put

(2) gx(x) = elt xr»g(x/X) (x e R")

and define

(3) h,{x)^f{t)gx(x)-{f*gxtx).

Since gk(s) = 1 in some neighborhood Vx of t, (3) shows that (1) holds

for 5 e Vk, with hk in place of h. Next,

(4) hx(x) = f /(>>)[>-''' >gx(x) -

gk{x
-

jO] dmJLy).
JR"

The absolute value of the expression in brackets is

(5) \l-ng{k-yx)_k-ng{k-l{x_y))l
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It follows that

(6) ||M! < I I f(y) I dmn(y) f | g(£)
-

g(£
- k~ xy) \ dmj&

JRn jRn

by the change of variables x = k£. The inner integral in (6) is at most

2||0||i, and it tends to 0 for every y e Rn, as k -? 00. Hence \\hk\\ x
-? 0,

as k -? 00, by the dominated convergence theorem. ////

9.3 Theorem lf<$> e L°°(Kn), Y is a subspace ofl}{Rn\ and

(1) f*4> = 0 for every fe 7,

then the set

(2) Z(Y) = (Mse R». f(s) = 0}

contains the support of the tempered distribution 4>.

proof. Fix a point t in the complement of Z(Y). Then/(t) = 1 for a

certain/e Y. Lemma 9.2 furnishes h e l}(Rn\ with ||/i||x < 1, such that

fi(s) = 1 —/(s) in some neighborhood V oft.

To prove the theorem, it suffices to show that <fi = 0 in V, or,

equivalently, that <j>(\j/) = 0 for every \jj e £fn whose Fourier transform

\j/ has its support in V. Since

(3) $$) = <t>{fo = (</» * n%

it suffices to show that $ * ^ = 0.

Fix such a ^. Put #0
= *A> Qm

— n * 9m-1 f°r w > 1. Then

ll&Jli < llfclim^lli, and since ||/i||± < 1, the function G = £ 0m is in

l}(Rn). Since /i(s) = 1 —f(s) on the support of \j/9 we have

(4) (1 - #5)tf(s) = ^(S)/(S) (S 6 R"),

or

00

(5) #= Y.Wf=Gf-
m = 0

Thus \f/ = G *f and (1) implies

(6) ll/*(t> = G*f*(t> = 0. HI/

9.4 Wiener's theorem // 7 is a c/os^c/ translation-invariant subspace of

L\Rn) and ifZ(Y) is empty, then Y = L\Rn).

proof. To say that Y is translation-invariant means that xxfe Y if

fe Y and x e Rn. If (/> e L°°(Kn) is such that J /# = 0 for every /e 7,
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the translation-invariance of Y implies that f * (/) = 0 for every feY.

By Theorem 9.3, the support of the distribution $ is therefore empty,

hence <fi = 0 (Theorem 6.24), and since the Fourier transform maps

Sf'n to Sf'n in a one-to-one fashion (Theorem 7.15), it follows that $ = 0

as a distribution. Hence $ is the zero element of L°°(Kn).
Thus 71 = {0}. By the Hahn-Banach theorem, this implies that

Y = L\Rn). /HI

9.5 Theorem Suppose K e l}(Rn) and Y is the smallest closed

translation-invariant subspace of l}(Rn) that contains K. Then Y = l}(Rn) if and

only ifK{t) ± Ofor every t e Rn.

proof. Note that Z(Y) = {t e Rn: K(t) = 0}. The theorem thus asserts

that Y = L\Rn) if and only if Z(Y) is empty. One-half of this is

Theorem 9.4; the other half is trivial. ////

9.6 Definition A function 4> e L°(Rn) is said to be slowly oscillating if to

every e > 0 correspond an A < oo and a S > 0 such that

(1) \<Kx)-<Ky)\<* if|x|>>l,M>yl,|x-;H<*

If n = 1, one can also define what it means for (f> to be slowly

oscillating at + oo: the requirement (1) is replaced by

(2) |0(x) - <Ky)\ <e if x > A, y > A, \x -

y\ < S.

The same definition can of course be made at —

oo.

Note that every uniformly continuous bounded function is slowly

oscillating but that some slowly oscillating functions are not continuous.

We now come to Wiener's tauberian theorem; part (b) was added by
Pitt.

9.7 Theorem

(a) Suppose 4> e L°°(Kn), K e L\Rn)9 K(t) # Ofor every t e R\ and

(1) lim (K * c/))(x) = ak(0).
|x|-oo

Then

(2) lim (/*(/>)(*) = a/(0),
|x|-oo

for every f e L\Rn).

(b) If in addition, (f) is slowly oscillating, then

(3) lim (f)(x) = a.
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proof. Put il/(x) = (t>(x) -

a. Let Y be the set of all fe L\Rn) for

which

(4) lim (/•M*) = 0.

l*|-co

It is clear that Y is a vector space. Also, Y is closed. To see this,

suppose/; e 7, Wf-fh^O. Since

(5) \\f^-fi*noo<\\f-fihw\oo,

ft * *A -?/ * *A uniformly on Rn; hence (4) holds. Since

(6) ((t, /) * ^)(x) = (ry(f * ^)Xx) = (/ * M* -

J*

y is translation-invariant. Finally, X e y, by (1), since K * a = aX(0).
Theorem 9.5 now applies and shows that Y = l}(Rn). Thus every

fe l}(Rn) satisfies (4), which is the same as (2). This proves part (a).
If (t> is slowly oscillating and if e > 0, choose A and S as in

Definition 9.6, and choose fe L\Rn) so that/> 0,/(0) = 1, and/(x) = 0 if

|x|><5.By(2),

(7) lim (/*</>)(*) = a.

1*1-oo

Also,

(8) c/>(x) - (/ * (/>)(*) = f Mx)
-

ftx
- yQf(y) dmn(y).

J\y\<d

If | x | > A + (5, our choice of A, d, and/shows that

(9) I#*)-(/* AMI <*

Now (3) follows from (7) and (9).
This completes the proof. ////

9.8 Remark If n = 1, Theorem 9.7 can be modified in an obvious

fashion, by writing x -? + oo in place of | x | -? oo wherever the latter occurs

and by assuming in (b) that $ is slowly oscillating at +oo. The proof
remains unchanged.

The Prime Number Theorem

9.9 Introduction For any positive number x, 7c(x) denotes the number

of primes p that satisfy p < x. The prime number theorem is the statement

that

(i) lim?Mj£££=1.
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We shall prove this by means of a tauberian theorem due to Ingham, based

on that of Wiener. The idea is to replace the rather irregular function n by a

function F whose asymptotic behavior is very easily established and to use

the tauberian theorem to draw a conclusion about n from knowledge of F.

9.10 Preparation The letter p will now always denote a prime; m and n

will be positive integers; x will be a positive number; [x] is the integer that

satisfies x
— 1 < [x] < x; the symbol d\ n means that d and n/d are positive

integers. Define

(1) A(«) = {l0gP
*» = *?.?-•>

(0 otherwise,

(2) +(x) = £ A(n),

(3) F(x)=ZM-\.

The following properties of \\t and F will be used:

(4)
^W

<
rcM lQg x

<

l
+

*A(*) lQg x

x

~

x log x x log (x/log2 x)

if x > e, and

(5) F(x) = x log x —

x + b(x) log x,

where b(x) remains bounded as x -? oo.

By (4), the prime number theorem is a consequence of the relation

(6) lim ^
= 1,

x-»oo
X

which will be proved from (3) and (5) by a tauberian theorem.

proof of (4). [log x/log p] is the number of powers of p that do not

exceed x. Hence

[log
x I

; log P < Z lQg x = n(x) lQg x-

log PA vtx

This gives the first inequality in (4). If 1 < y < x, then

tc(x)
-

tc(>;) =

2, 1< 2, r-—;
<

y<p<x y<p<x log y log y

Hence 7c(x) < y + ^(x)/log y. With y
= x/log2 x, this gives the second

half of (4). ////
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proof of (5). If n > 1, then

The mth summand is 0 except when n/m is an integer, in which case it

is A(n/m). Hence

F(n)
-

F(n - 1) = £a(-) = £ A(<0 = log n.

m\n \m/ d\n

The last equality depends on the factorization of n into a product of

powers of distinct primes. Since F(l) = 0, we have computed that

(7) F(n) = £ log m = log (n!) (n = 1, 2, 3, ...),
m=l

which suggests comparison of F(x) with the integral

(8) J(x) = log £ dt = x log x
- x + 1.

Ifn<x<n+1 then

(9) J(n) < F(n) < F(x) < F(n + 1) < J(n + 2)

so that

(10) | F(x)
-

J(x) | < 2 log (x + 2).

Now (5) follows from (8) and (10). ////

9.11 The Riemann zeta function As is the custom in analytic number

theory, complex variables will now be written in the form 5 = a + it. In the

half-plane a > 1, the zeta function is defined by the series

00

(1) C(s) = Z »"*

Since |n~s| = n~a, the series converges uniformly on every compact subset

of this half-plane, and C is holomorphic there.

A simple computation gives

J'N+l
N rn+1 N

[x]x-1_s dx = s X« *"1-s dx = X w_s -

W(N + l)"s.
1 n=ljn n=l

When a > 1, JV(AT + l)"s -? 0 as N -> oo. Hence

(2) C(s) = s [x]x-1_sdx (<t>1).
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(3)

If b(x) = [x] -

x, it follows from (2) that

5

C(s) =

s- 1
+ 5 b(x)x" dx {a > 1).

Since b is bounded, the last integral defines a holomorphic function in the

half-plane a > 0. Thus (3) furnishes an analytic continuation of £ to a > 0,

which is holomorphic except for a simple pole at 5 = 1, with residue 1. The

most important property we shall need is that £ has no zeros on the line

<j = 1:

(4) C(l+if)#0 (-oo<r<oo).

The proof of (4) depends on the identity

(5) c(5)=rKi-p"s)_i (*>!)•
p

Since (1
- p'*)'1 = 1 + p~s + p~2s +

• •

•, the fact that the product (5)

equals the series (1) is an immediate consequence of the fact that every

positive integer has a unique factorization into a product of powers of

primes. Since £ p~° < oo if a > 1, (5) shows that C(s) t* 0 if a > 1 and that

(6) log«s) = Z Z m-V"s (a > 1).
p m= 1

Fix a real £ ^ 0. If a > 1, (6) implies that

(7) log|CV)CV + *0C(tf + 2ir)|

= Z ro~Vw* Re {3 + 4/?-*"" + p-2*""} > 0,
p, m

because Re (6 + Seie + 2e2ie) = (c'e/2 + e~iei2f > 0 for all real 6. Hence

(8) l(*-l)C(ff)|
C(<7 + it)

1
K(<T + 2if)|>-

1

If £(1 + it) were 0, the left side of (8) would converge to a limit,

namely, |£'(1 + 'OflCO + 2if) |, as <r decreases to 1. Since the right side of

(8) tends to infinity, this is impossible, and (4) is proved.

9.12 Ingham's tauberian theorem Suppose g is a real nondecreasing

function on (0, oo), g(x) = 0 ifx < 1,

(1)

and

(2)

G(x) = Z d-J (0 < x < co),

G(x) = ax log x + bx + xe(x),
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where a, b are constants and e(x) -? 0 as x -? oo. Then

(3) limx_1^(x) = a.

If g is the function \\t defined in Section 9.10, Ingham's theorem

implies, in view of Equations (3) and (5) of Section 9.10, that (6) of Section

9.10 holds, and this, as we saw there, gives the prime number theorem.

proof. We first show that x~1g(x) is bounded. Since g is nonde-

creasing,

= x< a log 2 + e(x)
— e( - I > < Ax,

where A is some constant. Since

**) = **)-^§) + «(§)-«(f) + -",

it follows that

(4) g(x) < a(x + ^ + ^ +
• • •

J
= 2Ax.

We now make a change of variables that will enable us to use

Fourier transforms in a familiar setting. For — oo < x < oo, define

00

(5) h(x) = g(e*\ H(x) = £ h(x - log n).
n=l

Then h(x) = 0 if x < 0, H(x) = G(ex); hence (2) becomes

(6) H(x) = ^x(ax + b + £l(x))

where ex(x) -? 0 as x -? oo. If

(7) (f)(x) = e~xh(x) (- oo < x < oo),

then 0 is bounded, by (4). We have to prove that

(8) lim (f>(x) = a.

x-*ao

Put k(x) = [ex]e~x, let k be a positive irrational number, and

define

(9) K(x) = 2k(x) -k(x-l)-k(x-k) (- oo < x < oo).
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Then K e l}(— oo, oo); in fact, exK(x) is bounded. (See Exercise 8.) If

5 = a + it, a > 0, then formula (2) of Section 9.11 shows that

/*00 /*00 /*00

k(x)e~xsdx = [ex]e"x(s+1)dx= iy]y~2~s dy
J-oo Jo Jl 1 +S

'

Repeat this with k(x —

1) and /c(x — A) in place of /c(x), use (9), and

then let a -> 0. The result is

J- oo

(10) I K(x)e~itx dx = (2- e~u - e~Ut) ^
+ U\

Since C(l + it) ^ 0 and since k is irrational, X(t) # 0 if t # 0. Since (

has a pole with residue 1 at s = 1, the right side of (10) tends to 1 + A

as t -? 0. Thus K(0) ^ 0.

To apply Wiener's theorem, we have to estimate K * (f). To

do this, put u(x) = [e*], let v be the characteristic function of [0, oo),
and let \i be the measure that assigns mass 1 to each point of the set

{logn: n = 1, 2, 3, ...} and whose support is this set. By (5),
H = h * \i. Also, u = v * [i. Hence

(11) (h * u){x) = (h*v* fi)(x) = (H * v)(x) = H(y) dy.

(Note that we now take convolutions with respect to Lebesgue

measure, not with respect to the normalized measure mv) Since

((/> * k)(x) = ey~xh(x - y)[ey]e~y dy = e~x(h * u)(x),
J- oo

(6) and (11) imply that

(12) ((/> * k)(x) = e~x //(y) dy = ax + fe -

a + e2(x),

where e2(x) -? 0 as x -? oo. By (12) and (9),

K(y) dy.(13) lim (K * (/>)(*) = (1 + X)a = a

x->oo

Therefore Wiener's theorem 9.7 (see also Remark 9.8) implies that

(14) lim(/*fl(*) = fl p/GOdy
x-*oo J- oo

for every fe l}(— oo, oo).
Let /i and /2 t>e nonnegative functions whose integral is 1 and

whose supports lie in [0, e] and [ —e, 0], respectively. By (7), ex(f)(x) is
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nondecreasing. Thus (f>(y) < eE4>{x) if x
—

e < y < x, and (/)(y) >

e~e(t>(x) if x < y < x + e. Consequently,

(15) e-«(/i * Mx) < <Kx) < e\f2 * c/>)(x).

It follows from (14) and (15) that the upper and lower limits of (/>(x), as

x -? oo, lie between ae~e and aee. Since e > 0 was arbitrary, (8) holds,

and the proof is complete. ////

The Renewal Equation

As another application of Wiener's tauberian theorem we shall now give a

brief discussion of the behavior of bounded solutions (f> of the integral
equation

4tx) - [°° 4>{x -1) dn(t) =/(*)
J- oo

which occurs in probability theory. Here \i is a given Borel probability

measure, / is a given function, and <$> is assumed to be a bounded Borel

function, so that the integral exists for every x e R. The equation can be

written in the form

for brevity.
We begin with a uniqueness theorem.

9.13 Theorem // \i is a Borel probability measure on R whose support

does not lie in any cyclic subgroup of R, and if 4> is a bounded Borel function
that satisfies the homogeneous equation

(1) <Kx) -

(ct> * |iXx) = 0

for every x e R, then there is a constant A such that (f)(x) = A except possibly
in a set ofLebesgue measure 0.

proof. Since \i is a probability measure, £(0) = 1. Suppose that fl(t) =

1 for some t # 0. Since

(2) m= h_tew
J- oo

it follows that \i must be concentrated on the set of all x at which

e~ixt = 1, that is, on the set of all integral multiples of 2n/t. But this is

ruled out by the hypothesis of the theorem.

If a = S —

\i, where b is the Dirac measure, then a = 1 —

jx.
Hence o(t) = 0 if and only if t = 0, and (1) can be written in the form

(3) $ * a = 0.
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Put g(x) =

exp (-x2); put K =

g * a. Then K e L1, K(t) = 0

only if £ = 0, and (3) shows that K * 0 = 0. By Theorem 9.3 (with the

one-dimensional space generated by K in place of Y) the distribution

4> has its support in {0}. Hence q> is a finite linear combination of (5

and its derivatives (Theorem 6.25), so that (j> is a polynomial, in the

distribution sense. Since nonconstant polynomials are not bounded

on R, and since (f> is assumed to be bounded, we have reached the

desired conclusion. ////

9.14 Convolutions of measures If \i and k are complex Borel measures

on Rn, then

(1) /- "IRn jRn

f(x + y) dfi(x) dk(y)

is a bounded linear functional on C0(Rn), the space of all continuous

functions on Rn that vanish at infinity. By the Riesz representation theorem,

there is a unique Borel measure \i * k on Rn that satisfies

(2) f fd(fi * A) = f f f{x + y) dn(x) dl(y) [/6 C0(R")].
JR" JR" JR"

A standard approximation argument shows that (2) then holds also for

every bounded Borel function/ In particular, we see that

(3) (p, * ky = /U.

Two other consequences of (2) will be used in the next theorem. One

is the almost obvious inequality

(4) ||/i * k\\ < H/ill \\kl

where the norm denotes total variation. The other is the fact that \i * k is

absolutely continuous (relative to Lebesgue measure mn) if this is true of /i;

for in that case,

JR"

(5) f(x + y)dn{x) = 0

JR"

for every y e Rn, if / is the characteristic function of a Borel set E with

mn(E) = 0, and (2) shows that (/i * k\E) = 0.

Recall that every complex Borel measure \i has a unique Lebesgue

decomposition

where \ia is absolutely continuous relative to m„ and /is is singular.
The next theorem is due to Karlin.
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9.15 Theorem Suppose pis a Borel probability measure on R, such that

(i) n.*o,

(2) | x | dfi(x) < oo,

?r(3) M= xdn{x)*0.
J— 00

Suppose that fe l}(R\ that /(x)->0 as x-> ±oo, and that $ is a

bounded function that satisfies

(4) 4>{x) -((/>* pt\x) = /(x) (- oo < x < oo).

Then the limits

(5) (f)(co) = \im (f)(x\ (f)(—co)= lim 0(x)
JC-» 00 X-*

—

00

exist, and

(6) *(oo)-^(-oo) = -J- f°°/(y)^.

proof. Put a = (5 —

/i, as in the proof of Theorem 9.13. Define

/i((—oo, x)) ifx < 0,
(7) K(x) = a((-^x)) =

L/i([x, oo)) if x > 0.

The assumption (2) guarantees that K e l}(R). A straightforward

computation, whose details we omit, shows that

and that

(9) /(x) dx = (X * 4>)(s) -

(K * c/>Xr) (- oo < r < 5 < oo),

since/+ <$> * a.

By (1), \i is not singular. The argument used at the beginning of

the proof of Theorem 9.13 shows therefore that a(t) # 0 if £ # 0.

Hence (8) and (3) imply that K has no zero in R.

Since fe L\R\ (9) implies that K * <\> has limits at ±oo, whose

difference is ]""„ /
We shall show that 4> is slowly oscillating. Once this is done, (5)

and (6) follow from the properties of K and K * (f> that we just

proved, by Pitt's theorem (b) of 9.7.
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Repeated substitution of $ =f+ (f> * ^ into its right-hand side

gives

(10) </> =/ + /* ii +
• • •

+/* /i""1 + <f> * iin

= fn + Qn + K (n = 2,3,4,...),

where / =

/i, \in =

/i * ixn~lJn=f+ •••+/* /in~\ and

(H) &,
= * *(/*")«, K = <t>*W)s.

For each n, /„(x) -? 0 as x -? ±00, and #„ is uniformly
continuous. Hence fn + gn is slowly oscillating. Since the total variations

satisfy

(12) ||(/i")J < IIWII < llnX,

we have

(13) I^MI<II^II
'

llji.ll" (-oo<x<ooX

where ||0|| is the supremum oi \(f>\ on R. By (1), ||/jj < 1. Hence

/z„ -? 0, uniformly on R. Consequently, 4> *s tne uniform limit of the

slowly oscillating functions fn + gn. This implies that <$> is slowly

oscillating, and completes the proof. ////

Exercises

1. Prove the theorem of Tauber stated in Section 9.1.

2. Suppose <f> e L°°(Kn) and the support of the distribution $ consists of k distinct

points Sj,..., sk. Construct suitable functions ip^ ..., ipk such that (<f) * ipy has

the singleton (Sj} as support, and conclude that 0 is a trigonometric polynomial,

namely,

(f>(x) = axeisx
•x

+
• • •

4- ak eiSk'x (a.e.).

(The case k = 1 is done in the proof of Theorem 9.13.)

3. Suppose Y is a closed translation-invariant subspace of l}(Rn) such that Z(Y)
consists of k distinct points. (The notation is as in Theorem 9.3.) Use Exercise 2

to prove that Y has codimension k in l}(R"\ and conclude from this that Y

consists of exactly those/ e l}(Rn) whose Fourier transforms are 0 at every point

ofZ(7).

4. Prove the following analogue of (a) of Theorem 9.7: If 0 e L°°(Kn), and if

to every t e R" corresponds a function Kt e l}(Rn) such that Kt(t) ^ 0 and

(Kt * <t>)(x) -> 0 as I x I -> 00, then (/ * <t>)(x) -> 0 as | x | -> 00, for every/ e L\Rn).
5. Assume K e l}(R") and X has at least one zero in R". Show that then there

exists <f> e L°°(Kn) such that (K * <f))(x) = 0 for every x e R", although <f> does not

satisfy the conclusion of (a) of Theorem 9.7.

6. If <f)(x) = sin (x2), —

00 < x < 00, show that

lim(/*(/>Xx) = 0

W-00
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for every/ e l}(R\ although the conclusion of (b) of Theorem 9.7 does not hold.

7. For a > 0, let/a be the characteristic function of the interval [0, a]. Define/^ in

the same way; put g=fa+fp. Prove that the set of all finite linear

combinations of translates of g is dense in l}(R) if and only if P/tx is irrational.

8. If a > 0 and ax = 1, prove that

1 - a < a[x] < 1,

and deduce from this that exK(x) is bounded, as asserted in the proof of

Theorem 9.12.

9. Let Q denote the set of all rational numbers. Let \i be a probability measure on

R that is concentrated on g, and let (\> be the characteristic function of Q. Show

that <f)(x) = ((/>* fi)(x) for every x e R, although <f> is not constant. (Compare
with Theorem 9.13.) What other sets could be used in place of Q to achieve the

same effect?

10. Special cases of the following facts were used in Theorem 9.15. Prove them.

(a) If 0 e n°{Rn) and k e l}{Rn), then k * (\> is uniformly continuous.

(b) If {<f)j} is a sequence of slowly oscillating functions on Rn that converges

uniformly to a function 0, then <f> is slowly oscillating.

(c) If \x and X are complex Borel measures on Rn, then

no* * ay < \m

will. Put ip(x) = cos (I x |1/3) and define

1 f1
/(x) = ij/(x) - -

$(x-y)dy (- oo < x < oo).

Prove that/e (L1 n C0\R) but that no bounded solution of the equation

</>(*)-- flx-jO *>=/(*)

has limits at + oo or at —

oo. (This illustrates the relevance of the condition

M 7*0 in Theorem 9.15.)

12. Let \x be a probability measure concentrated on the integers. Prove that every

function <f> on R which is periodic with period 1 satisfies 4>
—

<t> * A*
= 0. (This is

relevant to Theorems 9.13 and 9.15.)

13. Assume (f> e £°(0, oo),

dx
< oo,

Jo *

and

r°° dx r°° </>

|K(x)|-<oo, |tf(x)|-
Jo x Jo x

r°° dx

K(x)x~lt
— 9*0 for-oo<t<oo,

f00 /x\ dw
lim K -</>(")

—

= 0.

x-oo Jo W U
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Prove that

lim ffl°|/5W)- = 0L

x-oo Jo W "

This is an analogue of (a) of Theorem 9.7. How would "slowly

oscillating" have to be defined to obtain the corresponding analog of (b) of

Theorem 9.7?

14. Complete the details in the following outline of Wiener's proof of Littlewood's

theorem. Assume |waj<l, f(r) = Y,o an r"> an<^ f(r) ~* 0 as r-+1. If

sn
=

ao +
" '

+ tf„, it is to be proved that s„ -> 0 as n -> oo.

(a) |s„ -/(l -

l/w)| < 2. Hence {s„} is bounded,

(fr) If <f)(x) =

sn on [w, n + 1) and 0 < x < y, then

10(y)-</)(x)l<>;+1~X.

(c) xe~xt4>{t) dt =f(e~x) -> 0 as x -> 0. Hence

lim fy^W)--o
x-oo Jo W "

K(x) = (
i

J exp f -
i

Jo ^

if (1 + f

J pl+e)x
lim —

<

*-»oo
£-* Jx

(J) I K(x)x-£t — = T(H-it) ^ 0 if Ms real.

(e) Put H(x) = l/(ex) if (1 H- e)"1 < x < 1, //(x) = 0 otherwise. Conclude that

lim —

| 4>(y) dy = 0.

x-»(

(/) By (b) and (e), lim(/>(x) = 0.

x-»oo

Note: If ra*n
-> 0 is assumed to hold, then a modification of step (a) is all that is

needed for the proof.

15. Let Y be a closed subspace of l}(Rn). Prove that Y is translation-invariant if and

only if/* g e Y whenever/e 7 and # e l}(Rn).
The closed translation invariant subspaces of L1^") are thus exactly the

same as the closed ideals in the convolution algebra l}(Rn).
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BANACH

ALGEBRAS

Introduction

10.1 Definition A complex algebra is a vector space A over the complex
field (p in which a multiplication is defined that satisfies

(1) x(yz) = (xy)z,

(2) (x + y)z = xz + yz9 x(y + z) =

xy + xz,

and

(3) a(xy) = (ux)y = x(ay)

for all x, y9 and z in 4 and for all scalars a.

If, in addition, A is a Banach space with respect to a norm that

satisfies the multiplicative inequality

(4) ||xj>||£||x||||y|| (xeA,yeA)

and if 4 contains a unit element e such that

(5) xe = ex = x (x e ,4)

and

(6) ||e|| = 1,

then A is called a Banach algebra.
Note that we have not required that A be commutative, i.e., that

245
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xy
=

yx for all x and y in A, and we shall not do so except when explicitly
stated.

It is clear that there is at most one e e A that satisfies (5), for if e' also

satisfies (5), then e' = e'e = e.

The presence of a unit is very often omitted from the definition of a

Banach algebra. However, when there is a unit it makes sense to talk about

inverses, so that the spectrum of an element of A can be defined in a more

natural way than is otherwise possible. This leads to a more intuitive

development of the basic theory. Moreover, the resulting loss of generality is

small, because many naturally occurring Banach algebras have a unit, and

because the others can be supplied with one in the following canonical

fashion.

Suppose A satisfies conditions (1) to (4), but A has no unit element.

Let A1 consist of all ordered pairs (x, a), where x e A and a e (£. Define the

vector space operations in A1 componentwise, define multiplication in A1

by

(7) (x, aX)>, P) = (xy + ay + jSx, ajS),

and define

(8) ll(x,a)|| = ||x||+|a|, e = (0, 1).

Then A1 satisfies properties (1) to (6), and the mapping x->(x, 0) is an

isometric isomorphism of A onto a subspace of Al (in fact, onto a closed

two-sided ideal of Ax) whose codimension is 1. If x is identified with (x, 0),
then Al is simply A plus the one-dimensional vector space generated by e.

See Examples 10.3(d) and 11.13(4
The inequality (4) makes multiplication a continuous operation in A.

This means that if xn -? x and yn-> y then xn yn -? xy, which follows from

the identity

(9) xn yn-xy
= (x„ -

x)yn + x(yn - y).

In particular, multiplication is left-continuous and right-continuous:

(10) xn y -? xy and xyn -? xy

\ixn^x2indyn^y.
It is interesting that (4) can be replaced by the (apparently) weaker

requirement (10) and that (6) can be dropped without enlarging the class of

algebras under consideration.

10.2 Theorem Assume that A is a Banach space as well as a complex

algebra with unit element e ^ 0, in which multiplication is left-continuous and

right-continuous. Then there is a norm on A which induces the same topology
as the given one and which makes A into a Banach algebra.

(The assumption e ^ 0 rules out the uninteresting case A = {0}.)
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proof. Assign to each x e A the left-multiplication operator Mx
defined by

(1) Mx(z) = xz (z e A).

Let A be the set of all Mx. Since right multiplication is assumed to be

continuous, A c 08(A\ the Banach space of all bounded linear

operators on A.

It is clear that x -? Mx is linear. The associative law implies that

Mxy = Mx My. If x e A, then

(2) \\x\\ = \\xe\\ = \\Mxe\\<\\Mx\\\\e\\.

These facts can be summarized by saying that x -? Mx is an

isomorphism of A onto the algebra A, whose inverse is continuous. Since

(3) \\MxMy\\ < \\MX\\ \\My\\ and ||MJ = ||/|| = 1,

A is a Banach algebra, provided it is complete, i.e., provided it is a

closed subspace of &(A\ relative to the topology given by the operator

norm. (See Theorem 4.1.) Once this is done, the open mapping
theorem implies that x -? Mx is also continuous. Hence ||x|| and ||MX||
are equivalent norms on A.

Suppose T £ @{A\ T( £ A, and 7] -? T in the topology of @(A).
If 7] is left multiplication by xt e A, then

(4) Ti{y) =

xiy
= {xie)y=Ti{e)y.

As i -? oo, the first term in (4) tends to T{y\ and T^e)^ T(e). Since

multiplication is assumed to be left-continuous in A, it follows that

the last term of (4) tends to T(e)y. Put x = T(e). Then

(5) T(jO = T(e)y =

xy
= Mx(y) (y e A),

so that T = Mx £ A, and A is closed. ////

The theorem says, in particular, that, in the presence of completeness,
left continuity plus right continuity implies "joint" continuity. Exercise 6

shows that this may fail in normed linear algebras that are not complete.

10.3 Examples (a) Let C(K) be the Banach space of all complex
continuous functions on a nonempty compact Hausdorff space K9 with the

supremum norm. Define multiplication in the usual way: (fg)(p) =f(p)g{p)>
This makes C(K) into a commutative Banach algebra; the constant function

1 is the unit element.

If K is a finite set, consisting of, say, n points, then C(K) is simply <pn,
with coordinatewise multiplication.
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In particular, when n = 1, we obtain the simplest Banach algebra,

namely (£9 with the absolute value as norm.

(b) Let AT be a Banach space. Then jpT), the algebra of all bounded

linear operators on X, is a Banach algebra, with respect to the usual

operator norm. The identity operator / is its unit element. If dim X = n < oo,

then 38(X) is (isomorphic to) the algebra of all complex n-by-n matrices. If

dim X > 1, then 08(X) is not commutative. (The trivial space X = {0} must

be excluded.)

Every closed subalgebra of 0&{X) that contains / is also a Banach

algebra. The proof of Theorem 10.2 shows, in fact, that every Banach

algebra is isomorphic to one of these.

(c) If K is a nonempty compact subset of <£, or of <pn, and if A is the

subalgebra of C(K) that consists of those / e C(K) that are holomorphic in

the interior of K, then A is complete (relative to the supremum norm) and is

therefore a Banach algebra.
When K is the closed unit disc in <£, then A is called the disc algebra.

(d) l}(Rn), with convolution as multiplication, satisfies all requirements
of Definition 10.1, except that it lacks a unit. One can adjoin one by the

abstract procedure outlined in Section 10.1 or one can do it more

concretely by enlarging l}(Rn) to the algebra of all complex Borel measures \i

on Rn of the form

dfi =fdmn + X dS

where/e l}(R% S is the Dirac measure on Rn, and k is a scalar.

(e) Let M(Rn) be the algebra of all complex Borel measures on Rn, with

convolution as multiplication, normed by the total variation. This is a

commutative Banach algebra, with unit d, which contains (d) as a closed

subalgebra.

10.4 Remarks There are several reasons for restricting our attention to

Banach algebras over the complex field, although real Banach algebras

(whose definition should be obvious) have also been studied.

One reason is that certain elementary facts about holomorphic
functions play an important role in the foundations of the subject. This may be

observed in Theorems 10.9 and 10.13 and becomes even more obvious in

the symbolic calculus.

Another reason—one whose implications are not quite so obvious—is

that <£ has a natural nontrivial involution (see Definition 11.14), namely,

conjugation, and that many of the deeper properties of certain types of

Banach algebras depend on the presence of an involution. (For the same

reason, the theory of complex Hilbert spaces is richer than that of real

ones.)
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At one point (Theorem 10.34) a topological difference between <£ and

R will even play a role.

Among the important mappings from one Banach algebra into

another are the homomorphisms. These are linear mappings h that are also

multiplicative:

h(xy) = h(x)h(y).

Of particular interest is the case in which the range is the simplest of all

Banach algebras, namely, (£ itself. Many of the significant features of the

commutative theory depend crucially on a sufficient supply of

homomorphisms onto <p.

Complex Homomorphisms

10.5 Definition Suppose A is a complex algebra and § is a linear

functional on A which is not identically 0. If

(1) 4>(xy) = ^x)cf>(y)

for all x e A and y e A, then $ is galled a complex homomorphism on A.

(The exclusion of 0 = 0 is, of course, just a matter of convenience.)
An element x e A is said to be invertible if it has an inverse in A, that

is, if there exists an element x~l e A such that

(2) x~lx = xx'1 = e,

where e is the unit element of A.

Note that no x e A has more than one inverse, for if yx
= e = xz then

y
=

ye
= y(xz) = (yx)z = ez = z.

10.6 Proposition // 4> is a complex homomorphism on a complex algebra
A with unit e, then (f>{e) = 1, and (f)(x) ^ Ofor every invertible x e A.

proof. For some y e A, (f)(y) ^ 0. Since

(t>(y) = (t>(ye) = (t>(y)(t>(el

it follows that (j>(e) = 1. If x is invertible, then

c^xM*-1) = (ftxx-1) = 4>{e) = 1,

so that (f)(x) # 0. ////

Parts (a) and (c) of the following theorem are perhaps the most widely
used facts in the theory of Banach algebras; in particular, (c) implies that all

complex homomorphisms of Banach algebras are continuous.

10.7 Theorem Suppose A is a Banach algebra, x e A, \\x\\ < i. Then
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llxll2

(a) e — x is invertible,

(b) iKe-xr-e-xll*-^,
(c) I (f)(x) I < 1 for every complex homomorphism (f> on A.

proof. Since \\xn\\ < ||x||n and ||x|| < 1, the elements

(1) sn
= e + x + x2 +

• • •

+ xn

form a Cauchy sequence in A. Since A is complete, there exists s e A

such that sn -? 5. Since xn -? 0 and

(2) sn
•

(e
-

x) = e
- xn+1 = (e -

x)
•

sH9

the continuity of multiplication implies that 5 is the inverse of e
—

x.

Next, (1) shows that

?*? + *? +-I sZM-T^fci
Finally, suppose k e <£, \k\ > 1. By (a), e

— k xx is invertible. By

Proposition 10.6,

1 - k~l4>{x) = 4>{e - k~xx) ^ 0.

Hence <$>(x) ^ k. This completes the proof. ////

We now interrupt the main line of development and insert a theorem

which shows, for Banach algebras, that Proposition 10.6 actually
characterizes the complex homomorphisms among the linear functionals. This

striking result has apparently found no interesting applications as yet.

10.8 Lemma Suppose f is an entire function of one complex variable,

/(0) = l,/'(0) = 0, and

(1) 0<\f(k)\<e^ (ke<P).

Thenf(k) = 1 for alike <£.

proof. Since / has no zero, there is an entire function g such that

/=exp{0}, g(0) = g'(0) = 0, and Re lg(kj] <\k\. This inequality

implies

(2) \g(m<\2r-g(l)\ (|A|<r).

The function

r2g(V
(3) hJLX) =

k\2r - 0(A)]
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is holomorphic in {A: |A| < 2r}, and \hr(k)\ < 1 if |A| = r. By the

maximum modulus theorem,

(4) 1^)1 <1 (Ul<r).

Fix k and let r -? oo. Then (3) and (4) imply that g(k) = 0. ////

10.9 Theorem (Gleason, Kahane, Zelazko) If 4> is a linear functional
on a Banach algebra A, such that (f>(e) = 1 and (f)(x) ^ 0 for every invertible

x e A, then

(1) cf>(xy) = <Kx)<Ky) (xeA,ye A).

Note that the continuity of <j> is not part of the hypothesis.

proof. Let N be the null space of 0. If x e A and y e A, the

assumption (f)(e) = 1 shows that

(2) x = a + (/)(x)e9 y + b + (/>(y)e9

where a e N, b e N. If (f> is applied to the product of the equations (2),
one obtains

(3) fay) = <Kab) + <Kx)<Ky).

The desired conclusion (1) is therefore equivalent to the assertion that

(4) abe N if a e N and b e N.

Suppose we had proved a special case of (4), namely,

(5) a2 e N ifaeN.

Then (3), with x =

y, implies

(6) <A(x2) = [<A(x)]2 (x € A).

Replacement of x by x + y in (6) results in

(7) (t>(xy + yx) = 2(t>(x)(t>(y) (x e A, y e A).

Hence

(8) xy + yx e N if x e N9 y e A.

Consider the identity

(9) (xy
- yx)2 + (xy + yx)2 = 2lx(yxy) + (yxy)xl

If x £ N, the right side of (9) is in N, by (8), and so is (xy + yx)2, by (8)
and (6). Hence (xy

— yx)2 is in N, and another application of (6) yields

(10) xy
—

yz £ N if x e N, y e A.

Addition of (8) and (10) gives (4), hence (1).
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Thus (5) implies (1), for purely algebraic reasons. The proof of (5)
uses analytic methods.

By hypothesis, N contains no invertible element of A. Thus

\\e
— x\\ > 1 for every x e N, by (a) of Theorem 10.7. Hence

(11) \\Xe-x\\ >\X\ = \(f>(Xe-x)\ (xeN9Xe<P).

We conclude that 0 is a continuous linear functional on A, of norm 1.

To prove (5), fix a e N, assume ||a|| = 1 without loss of

generality, and define

(12) f(X) = Yj^X» (Xe <P\
n\

Since \(f){an)\ < \\an\\ < \\a\\n = 1, / is entire and satisfies \f(X)\ <

exp \X\ for all X e <£. Also,/(0) = <t>(e) = 1, and/'(0) = 4>(a) = 0.

If we can prove that/(^) ^ 0 for every X e <£, Lemma 10.8 will

imply that/"(0) = 0; hence (/)(a2) = 0, which proves (5).
The series

(13) E(X) = £ — a"

converges in the norm of A, for every X e <£. The continuity of <f>
shows that

(14) /(!) = <£(£(!)) (left.

The functional equation E(X + /i) = E(X)E(ii) follows from (13) exactly
as in the scalar case. In particular,

(15) E(X)E( -X) = £(0) = e (X e <P).

Hence E(X) is an invertible element of A, for every X e <£. This implies,

by hypothesis, that 4>{E{X)) # 0, and therefore f(X) # 0, by (14). This

completes the proof. ////

Basic Properties of Spectra

10.10 Definitions Let A be a Banach algebra; let G = G(A) be the set

of all invertible elements of A. If x e G and y e G, then y~lx is the inverse

of x~1y; thus x~ly e G, and G is a group.

If x e A, the spectrum a(x) of x is the set of all complex numbers X

such that Xe —

x is not invertible. The complement of a(x) is the resolvent

set of x; it consists of all X e <£ for which (Xe — x)~1 exists.

The spectral radius of x is the number

(1) p(x) =

sup {\X\: X £ (t(x)}.
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It is the radius of the smallest closed circular disc in <£, with center at 0,

which contains a(x). Of course, (1) makes no sense if a(x) is empty. But this

never happens, as we shall see.

10.11 Theorem Suppose A is a Banach algebra, x e G(A), h e A, and

11*11 < ill*"1 II"1- Then * + he G(A), and

(1) ||(x + hy1 - x-1 + x^ftx"1!! < IWx-'fWhW2.

proof. Since x + h = x(e + x_1/z) and ||x_1/z||<^, Theorem 10.7

implies that x + he G(A) and that the norm of the right member of

the identity

(x + hy1 -x-1 +x-1/zx"1 = [(e + x-1hy1 -e + x-^x-1

isatmost2||x-1ft||2||x-1||. ////

10.12 Theorem If A is a Banach algebra, then G(A) is an open subset of

A, and the mapping x -? x
"*

is a homeomorphism of G(A) onto G(A).

proof. That G(A) is open and that x->x_1 is continuous follows

from Theorem 10.11. Since x ->x-1 maps G(A) onto G(A) and since it

is its own inverse, it is a homeomorphism. ////

10.13 Theorem If A is a Banach algebra and x e A, then

(a) the spectrum <r(x) ofx is compact and nonempty, and

(b) the spectral radius p(x) ofx satisfies

(1) p(x) = lim ||xn||1/n = inf ||xn||1/n.
n-* oo n> 1

Note that the existence of the limit in (1) is part of the conclusion and

that the inequality

(2) p(x) < ||x||

is contained in the spectral radius formula (1).

proof. If |A| > ||x|| then e
— l~xx lies in G(A), by Theorem 10.7, and

so does Xe —

x. Thus k $ a(x). This proves (2). In particular, a(x) is a

bounded set.

To prove that a(x) is closed, define g: <£ -? A by g(k) = ke —

x.

Then g is continuous, and the complement Q of a(x) is g~1(G(A)),
which is open, by Theorem 10.12. Thus a(x) is compact.

Now define/: Q -? G(A) by

(3) f(k) = (ke-xy1 (ke£l).
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Replace x by ke —

x and h by (/i
— k)e in Theorem 10.11. If k e Q and

\i is sufficiently close to k, the result of this substitution is

(4) ||/Oi) -/(I) + Qt - A)/2(A)|| < 2||/(1)||3-|/z - X\\

so that

(5) lim m^m=_P{X) iX 6 Q).

Thus/is a strongly holomorphic ,4-valued function in Q.

If \k\ > ||x||, the argument used in Theorem 10.7 shows that

00

(6) f(k) = X^"n_1^ = ^"^ + ^"2^ + ---

n
= 0

This series converges uniformly on every circle Tr with center at 0 and

radius r > ||x||. By Theorem 3.29, term-by-term integration is

therefore legitimate. Hence

(7) x" =
—

knf(k) dk (r > ||x||, n = 0, 1, 2, ...).

If a(x) were empty, Q would be <P, and the Cauchy theorem 3.31

would imply that all integrals in (7) are 0. But when n = 0, the left-

hand side of (7) is e ^ 0. This contradiction shows that a(x) is not

empty.

Since Q contains all k with \k\> p(x), an application of (3) of

the Cauchy theorem 3.31 shows that the condition r> ||x|| can be

replaced in (7) by r > p(x). If

(8) Af(r) = max||/(re*)|| (r > p(x)),
e

the continuity off implies that M(r) < oo. Since (7) now gives

(9) ||xn|| <rn+1M(r)9

we obtain

(10) lim sup ||xn||1/n <r (r > p(x))
n-*ao

so that

(11) lim sup \\xn\\1,n < p(x).
n-* oo

On the other hand, if k e <j(x), the factorization

(12) kne -xn = (ke
- x\kn~le +

• • •

+ x""1)
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shows that X"e - x" is not invertible. Thus A" e <r(x"). By (2),

I A" I < ||x"|| for n = 1, 2, 3,... . Hence

(13) p(x) < m( Wx^i",

and (1) is an immediate consequence of (11) and (13). ////

The nonemptiness of a(x) leads to an easy characterization of those

Banach algebras that are division algebras.

10.14 Theorem (Gelfand-Mazur) // A is a Banach algebra in which

every nonzero element is invertible, then A is (isometrically isomorphic to) the

complex field.

proof. If x e A and Ax ^ X2, then at most one of the elements

X^e —

x and l2e — x is 0; hence at least one of them is invertible.

Since a(x) is not empty, it follows that a(x) consists of exactly one

point, say ^(x), for each x e A. Since X(x)e
—

x is not invertible, it is 0.

Hence x = X(x)e. The mapping x -? A.(x) is therefore an isomorphism
of A onto (£, which is also an isometry, since |^(x)| = m(x)e|| = 11*11
for every x e A. ////

Theorems 10.13 and 10.14 are among the key results of this chapter.
Much of the content of Chapters 11 to 13 is independent of the remainder

of Chapter 10.

10.15 Remarks (a) Whether an element of A is or is not invertible in A

is a purely algebraic property. The spectrum and the spectral radius of an

x e A are thus defined in terms of the algebraic structure of A, regardless of

any metric (or topological) considerations. On the other hand, lim ||xn||1/n

depends obviously on metric properties of A. This is one of the remarkable

features of the spectral radius formula: It asserts the equality of certain

quantities which arise in entirely different ways.

(b) Our algebra A may be a subalgebra of a larger Banach algebra B,

and it may then very well happen that some x e A is not invertible in A but

is invertible in B. The spectrum of x depends therefore on the algebra. The

inclusion <ja(x) zd aB(x) holds (the notation is self-explanatory); the two

spectra can be different. The spectral radius is, however, unaffected by the

passage from A to B, since the spectral radius formula expresses it in terms

of metric properties of powers of x, and these are independent of anything
that happens outside A.

Theorem 10.18 will describe the relation between <ja{x) and oB{x) in

greater detail.
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10.16 Lemma Suppose V and W are open sets in some topological space

X, V cz W, and W contains no boundary point of V. Then V is a union of

components of W.

Recall that a component of W is, by definition, a maximal connected

subset of W.

proof. Let Q be a component of W that intersects V. Let U be the

complement of V. Since W contains no boundary point of V, Q is the

union of the two disjoint open sets Q n V and Q n U. Since Q is

connected, Q n U is empty. Thus Q cz V. ////

10.17 Lemma Suppose A is a Banach algebra, xn e G(A)for n = 1, 2, 3,

...,
x is a boundary point ofG(A), and xn -? x as n -? oo.

Then flx"1!! -? oo as n-? oo.

proof. If the conclusion is false, there exists M < oo such that

Hx"1!! < M for infinitely many n. For one of these, ||x„
— x|| < 1/M.

For this n,

Ik-x^^H^llx^^-x)!^!,

so that x„-1x e G(A). Since x = xn(xn_1x) and G(A) is a group, it follows

that x e G(A). This contradicts the hypothesis, since G(A) is open. ////

10.18 Theorem

(a) If A is a closed subalgebra of a Banach algebra B, and if A contains the

unit element ofB, then G(A) is a union of components of'A n G(B).

(b) Under these conditions, if x e A, then oA{x) is the union of <jb{x) and a

(possibly empty) collection of bounded components of the complement of

gb(x). In particular, the boundary ofaA(x) lies in (tb(x).

proof, (a) Every member of A that has an inverse in A has the same

inverse in B. Thus G(A) cz G(B). Both G(A) and A n G(B) are open

subsets of A. By Lemma 10.16, it is sufficient to prove that G(B)
contains no boundary point y of G(A).

Any such y is the limit of a sequence {x„} in G(A). By Lemma

10.17, Hx"1!! -? oo. If y were in G(B), the continuity of inversion in

G(B) (Theorem 10.12) would force x"1 to converge to y~l. In

particular {|| x ~11|} would be bounded. Hence y $ G(B), and (a) is proved.

(b) Let QA and QB be the complements of o^(x) and of o^x),
relative to (£. The inclusion QA cz QB is obvious, since X e QA if and

only if le —

x £ G(A). Let X0 be a boundary point of QA. Then
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k0 e
—

x is a boundary point of G(A). By (a), k0 e
—

x $ G(B). Hence

A0 $ QB. Lemma 10.16 implies now that QA is the union of certain

components of QB. The other components of QB are therefore subsets

of <ja{x). This proves (b). ////

Corollaries. Suppose x e A cz B.

(a) IfaB(x) does not separate <P, i.e., if its complement QB is connected,

then (TA(x) = (TB(x).

(b) If (TA(x) is larger than gb(x), then <ja(x) is obtained from oB{x) by

"filling in some holes
"

in <JB{x).

(c) If(jA(x) has empty interior, then <ja(x) = <rB(x).

The most important application of this corollary occurs when

<jb{x) contains only real numbers.

As another application of Lemma 10.17 we now prove a theorem

whose conclusion is the same as that of the Gelfand-Mazur theorem,

although its consequences are not nearly so important.

10.19 Theorem If A is a Banach algebra and if there exists M < oo such

that

(1) \\x\\\\y\\<M\\xy\\ (x e A, y e A),

then A is (isometrically isomorphic to) (p.

proof. Let y be a boundary point of G(A). Then y
= lim yn for some

sequence {yn} in G(A). By Lemma 10.17, Wy'1]] -? oo. By hypothesis,

(2) IWII^II^MH (n= 1,2,3,...).

Hence \\yn\\ -? 0 and therefore y
= 0.

If x e A, each boundary point k of o(x) gives rise to a boundary

point le —

x of G(A). Thus x = le. In other words, A = {ke\ I £ <P).

Illl

It is natural to ask whether the spectra of two elements x and y of A

are close together, in some suitably defined sense, if x and y are close to

each other. The next theorem gives a very simple answer.

10.20 Theorem Suppose A is a Banach algebra, x e A, Q is an open set

in <P, and a(x) cz Q. Then there exists S > 0 such that a(x + y) cz Qfor every

y £ A with \\y\\ < S.
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proof. Since \\(ke
— x)_1|| is a continuous function of k in the

complement of g(x)9 and since this norm tends to 0 as k -? oo, there is a

number M < oo such that

\\(ke-x)-l\\<M

for all k outside Q. If y e A, \\y\\ < 1/M, and k £ Q, it follows that

Ae —

(x + y) = (ke —

x)[e
—

(ke
— x)~1y]

is invertible in A, since \\(ke — x)~1y\\ < 1; hence k $ o(x + y). This

gives the desired conclusion, with S = 1/M. ////

Symbolic Calculus

10.21 Introduction If x is an element of a Banach algebra A and if

f(k) =

a0 +
• • •

+ a„ A" is a polynomial with complex coefficients cct, there

can be no doubt about the meaning of the symbol/(x); it obviously denotes

the element of A defined by

f(x) =

a0 e + axx +
• • •

+ a„ xn.

The question arises whether/(x) can be defined in a meaningful way for

other functions/. We have already encountered some examples of this. For

instance, during the proof of Theorem 10.9 we came very close to defining
the exponential function in A. In fact, if/(A) = £ cckkk is any entire function

in <£, it is natural to define f(x) e A by f(x) = £ ctkxk; this series always

converges. Another example is given by the meromorphic functions

m) = -L-ycc
— k

In this case, the natural definition of/(x) is

f(x) = (cce- x)'1

which makes sense for all x whose spectrum does not contain a.

One is thus led to the conjecture that/(x) should be definable, within

A, whenever / is holomorphic in an open set that contains a(x). This turns

out to be correct and can be accomplished by a version of the Cauchy
formula that converts complex functions defined in open subsets of <£ to

,4-valued ones defined in certain open subsets of A. (Just as in classical

analysis, the Cauchy formula is a much more adaptable tool than the power

series representation.) Moreover, the entities/(x) so defined (see Definition

10.26) turn out to have interesting properties. The most important of these

are summarized in Theorems 10.27 to 10.29.

In certain algebras one can go further. For instance, if x is a bounded

normal operator on a Hilbert space if, the symbol f(x) can be interpreted
as a bounded normal operator on H when / is any continuous complex
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function on <j(x)9 and even when / is any complex bounded Borel function

on g(x). In Chapter 12 we shall see how this leads to an efficient proof of a

very general form of the spectral theorem.

10.22 Integration of A -valued functions If A is a Banach algebra and

/is a continuous ,4-valued function on some compact Hausdorff space Q on

which a complex Borel measure \i is defined, then j" / d\t exists and has all

the properties that were discussed in Chapter 3, simply because A is a

Banach space. However, an additional property can be added to these and

will be used in the sequel, namely: lfx e A, then

(i)

and

(2)

fdfi= \ xf(p)dfi(p)
Q JQ

fdn 'X = f{p)x df4p)

To prove (1), let Mx be left multiplication by x, as in the proof of

Theorem 10.2, and let A be a bounded linear functional on A. Then AMX is

a bounded linear functional. Definition 3.26 implies therefore that

AMX

for every A, so that

fdn = (\Mxf) dfi = A (Mxf) dfi,

M,

JQ JQ

(Mxf) dp,

which is just another way of writing (1). To prove (2), interpret Mx to be

right multiplication by x.

10.23 Contours Suppose K is a compact subset of an open Q cz (£9 and

T is a collection of finitely many oriented line intervals yl9 ...,yn in Q, none

of which intersects K. In this situation, integration over T is defined by

a)

(2)

1 M) dX = X
j

= i

4>(X) dX.

It is well known that r can be so chosen that

Indr (0 =

2ni

dX

X-C

1 if C £ K

0 if C4 O
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and that the Cauchy formula

(3) /(o-jbjV-crvwA
then holds for every holomorphic function fin Q and for every £ e K. See,

for instance, Theorem 13.5 of [23].
We shall describe the situation (2) briefly by saying that the contour V

surrounds K in Q.

Note that neither K nor Q nor the union of the intervals yt has been

assumed to be connected.

10.24 Lemma Suppose A is a Banach algebra, x e A, a e <£, a £ a(x)9 Q

is the complement of a in <£, and T surrounds a(x) in Q. Then

2ni
(a

-

X)n(Xe - X)'1 dX = (ae
- x)n (n = 0, ±1, ±2, ...).

proof. Denote the integral by yn. When X $ a(x)9 then

(Xe — x)'1 = (cce
— x)'1 + (a

— X)(cce — x)~1(Xe — x)"1.

By Section 10.22, yn is therefore the sum of

2ni Jr
(2) (<xe

- x)"1
• —

| (a
- X)n dX = 0,

since Indr (a) = 0, and

(3) («e
_ X)-1 . J_

(a
_ X)n+\Xe -x)~l dX.

2ni Jr

Hence

(4) (cce
-

x)yn =

yn + 1 (n = 0, ± 1, ± 2, ...).

This recursion formula shows that (1) follows from the case

n = 0. We thus have to prove that

(5) f2ni
(Xe — x)

1
dX = e.

Let Tr be a positively oriented circle, centered at 0, with radius

r > ||x||. On Tr, (Xe — x)_1 = J] X~n~1xn. Term wise integration of this

series gives (5), with Vr in place of T. Since the integrand in (5) is a

holomorphic ,4-valued function in the complement of <j(x) (see the

proof of Theorem 10.13), and since

(6) Indrr (0=1= Indr (C)
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for every £ e a(x), the Cauchy theorem 3.31 shows that the integral (5)
is unaffected if T is replaced by Vr. This completes the proof. ////

10.25 Theorem Suppose

m% k

is a rational function with poles at the points am. [P is a polynomial, and the

sum in (1) has only finitely many terms.] IfxeA and if <j{x) contains no pole

ofR, define

(2) R(x) = P(x) + ZcM(x-ame)-k
m% k

IfQ is an open set in <£ that contains a(x) and in which R is holomorphic, and

ifT surrounds o(x) in Q, then

(3) R(x) = ^-.2m
R{Xike-xYl dk.

proof. Apply Lemma 10.24. ////

Note that (2) is certainly the most natural definition of a rational

function of x e A. The conclusion (3) shows that the Cauchy formula achieves

the same result. This motivates the following definition.

10.26 Definition Suppose A is a Banach algebra, Q is an open set in <p,
and H(Q) is the algebra of all complex holomorphic functions in Q. By
Theorem 10.20,

(1) An = {xe A: a(x) c Q}

is an open subset of A.

We define H(A^) to be the set of all ,4-valued functions/ with domain

An, that arise from an/e H(Q) by the formula

2ni Jr
(2) f(x) =

—

^fme-xy1dX9
where V is any contour that surrounds a(x) in Q.

This definition calls for some comments.

(a) Since V stays away from a(x) and since inversion is continuous in

A, the integrand is continuous in (2), so that the integral exists and defines

f(x) as an element of A.

(b) The integrand is actually a holomorphic ,4-valued function in the

complement of a(x). (This was observed in the proof of Theorem 10.13. See
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Exercise 3.) The Cauchy theorem 3.31 implies therefore that/(x) is

independent of the choice ofT, provided only that T surrounds a(x) in Q.

(c) If x = cue and a e Q, (2) becomes

(3) f(*e) =f(*)e.

Note that cue e An if and only if a e Q. If we identity k e <£ with ke e A,

every / e H(Q) may be regarded as mapping a certain subset of An (namely,
the intersection of An with the one-dimensional subspace of A generated by

e) into A, and then (3) shows that/may be regarded as an extension of/
In most treatments of this topic, f(x) is written in place of our f(x).

The notation/is used here because it avoids certain ambiguities that might
cause misunderstandings.

(d) If S is any set and A is any algebra, the collection of all ,4-valued

functions on S is an algebra, if scalar multiplication, addition, and

multiplication are defined pointwise. For instance, if u and v map S into A, then

(uv)(s) = u(s)v(s) (s e S).

This will be applied to ,4-valued functions defined in An.

10.27 Theorem Suppose A, H(Q), and H(An) are as in Definition 10.26.

Then H(An) is a complex algebra. The mapping f->f is an algebra

isomorphism ofH(Q) onto H{Aq) which is continuous in the following sense:

If fn e H(Q) (n = 1, 2, 3, ...) andfn ->f uniformly on compact subsets of

Q, then

(1) f(x) = lim /„(*) (x £ An).
n-* oo

// u(X) = I and v(X) = 1 in Q, then u(x) = x and v(x) = e for every

x £ An.

proof. The last sentence follows from Theorem 10.25. The integral

representation (2) in Section 10.26 makes it obvious that/-?/is linear.

If/=0, then

(2) f(*)e=f(ae) = 0 (a £ Q),

so that/= 0. Thus/->/is one-to-one.

The asserted continuity follows directly from the integral (2) in

Section 10.26, since \\(Xe — x)_1|| is bounded on T. (Use the same T

for all/,, and apply Theorem 3.29.)
It remains to be proved that/-?/is multiplicative. Explicitly, if

fe H(Q% g e H(Q), and h(X) =f(X)g(X) for all k e Q, it has to be shown

that

(3) h(x) =f(x)g(x) (x £ An).
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Iff and g are rational functions without poles in Q, and if h =fg9
then h(x) =f(x)g(x), and since Theorem 10.25 asserts that R(x) = R(x),

(3) holds. In the general case, Runge's theorem (Th. 13.9 of [23])
allows us to approximate / and g by rational functions /„ and gn,

uniformly on compact subsets of Q. Then /„ gn converges to h in the

same manner, and (3) follows from the continuity of the mapping

/-/ ////

Since H(Q) is obviously a commutative algebra, Theorem 10.27

implies that H(A^) is also commutative. This may be surprising, because

f(x) and/()>) need not commute. However,/(x) and g(x) do commute in A,

for every x e An. Hencefg = gf by Definition 10.26 (d).

10.28 Theorem Suppose x e An andfe H(Q).

(a) f(x) is invertible in A if and only iff(X) # Ofor every X e a(x).

(b) <j(f(x))=f(<j(x)).

Part (b) is called the spectral mapping theorem.

proof, (a) Iff has no zero on a(x)9 then g
= l//is holomorphic in an

open set Qx such that a(x) czQ1 cz Q. Since fg=l in Ql9 Theorem

10.27 (with Qx in place of Q) shows that/(x)§(x) =

e, and thus/(x) is

invertible. Conversely, if /(a) = 0 for some a e a(x) then there exists

h £ H(Q) such that

(1) (X-a)h(X)=f(X) (leO),

which implies

(2) (x
—

cce)h(x) =/(x) = h(x)(x
—

ae),

by Theorem 10.27. Since x
—

cue is not invertible in A, neither is/(x),
by (2).

(b) Fix p e (p. By definition, p e <j(f(x)) if and only if f(x) - pe is

not invertible in A. By (a), applied to/— P is place off this happens if

and only iff — P has a zero in a(x)9 that is, if and only if P e f((r(x)).

mi

The spectral mapping theorem makes it possible to include

composition of functions among the operations of the symbolic calculus.

10.29 Theorem Suppose x e An,fe H(Q)9 Q1 is an open set containing

f((r(x)l geH^), and h(X) = g(f(X)) in Q0, the set of all XeQ with

f(X) £ Qv
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Thenf(x) e A^ and h(x) = g(f(x)).

Briefly, h =

g
° /if h =

g
o f.

proof. By (b) of Theorem 10.28, (j(f(x)) cz nl9 and therefore g(f(x)) is

defined.

Fix a contour Tx that surrounds f((r(x)) in Qx. There is an open

set W, with g(x) cz W cz Q0, so small that

(1) Indri (f(A)) = 1 (A 6 W).

Fix a contour T0 that surrounds a(x) in W. If £ e rl9 then l/(£ — /) e

/f(W^). Hence Theorem 10.27, with W in place of Q, shows that

(2) He -/(x)]"1 = z^ | [f -/W]_1(^ " *)_1 dX (C e rj.

Since T1 surrounds cr(f(x)) in Qx, (1) and (2) imply

§(/(*)) = ^-. f rtOK* -/Ml"1 <*C
2tti Jr,

= 2b f h \gm ~fm'ldC{le -x^'ldX
•/To jri

=

T-: I flt/W* -xy1dl = ^-.\ h{X\le -x)~ldX = h(x).
2>" Jro 2tti Jro

////

We shall now give some applications of this symbolic calculus. The

first one deals with the existence of roots and logarithms. To say that an

element x e A has an nth root in A means that x = yn for some y e A. If

x =

exp (y) for some y e A, then y is a logarithm of x.

Note that exp (y) = Y*o yn/n*- ^>ut tnat tne exponential function can

also be defined by contour integration, as in Definition 10.26. The

continuity assertion of Theorem 10.27 shows that these definitions coincide (as

they do for every entire function).

10.30 Theorem Suppose A is a Banach algebra, x e A, and the spectrum

g(x) ofx does not separate Ofrom oo. Then

(a) x has roots of all orders in A,

(b) x has a logarithm in A, and

(c) ife > 0, there is a polynomial P such that ||x_1 —

P(x)\\ < e.
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Moreover, if a(x) lies in the positive real axis, the roots in (a) can be

chosen so as to satisfy the same condition.

proof. By hypothesis, 0 lies in the unbounded component of the

complement of g(x). Hence there is a function /, holomorphic in a simply
connected open set Q zd a(x)9 which satisfies

exp (f(k)) = k.

It follows from Theorem 10.29 that

exp (/(*)) =

x9

so that y =f(x) is a logarithm of x. If 0 < k < 00 for every k e o(x\f
can be chosen so as to be real on a(x), so that o(y) lies in the real axis,

by the spectral mapping theorem. If z =

exp (y/ri), then zn = x, and

another application of the spectral mapping theorem shows that

a(z) cz (0, 00) if o(y) cz (— 00, 00). This proves (a) and (b); of course (a)
could have been proved directly, without passing through (b).

To prove (c), note that l/k can be approximated by polynomials,

uniformly on some open set containing a(x) (Runge's theorem), and

use the continuity assertion of Theorem 10.27. ////

These results are not quite trivial even when A is a finite-dimensional

algebra. For example, it is a special case of (b) that a complex n-by-n matrix

M is the exponential of some matrix if and only if 0 is not an eigenvalue of

M, that is, if and only if M is invertible. To deduce this from (fe), let A be the

algebra of all complex n-by-n matrices (or the algebra of all bounded linear

operators on <pn).
If some x e A satisfies a polynomial identity, i.e., if P(x) = 0 for some

polynomial P, then f(x) can always be calculated as a polynomial in x,

without using the Cauchy integral as in Definition 10.26. If A is finite-

dimensional, then this remark applies to every x e A. Here are the details:

10.31 Theorem Let P(k) = (k- aj^1
• • •

(k
-

as)Ws be a polynomial of

degree n =

mx +
• • •

+ ms and let Q be an open set in <£ which contains the

zeros <xl9..., ccsofP.

If A is a Banach algebra, x e A, and P(x) = 0, then

(a) g(x) cz {<xu ..., as} and

(b) to every fe H(Q) corresponds a polynomial Q, of degree < n, and a

function g e H(Q), 50 that

(1) f(k)
-

Q(k) = P(k)g(k) (k £ Q)
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and

(2) f(x) = Q(x).

proof. By the spectral mapping theorem,

(3) P(a(x)) = a(P(x)) = <r(0) = {0}.

This proves (a).
If all multiplicities mt are 1, Q can be obtained with the aid of

the Lagrange interpolation formula

i = i P(ctiM-cti)

This gives g(ai) = /(a£) (1 < i < n); hence (/— Q)/P is holomorphic
inQ.

In the general case, the Laurent series of//P about the points

ctu ..., as give constants cik so that

(5) «W = St! - I I
Cik

P(l) fr ^ (1
- a/

is holomorphic in Q.

This proves (1), and now (2) is a consequence of Theorem 10.27,

because (1) implies

(6) f(x) = Q(x) + P(x)g(x%

and P(x) = 0. ////

10.32 Definition Let &(X) be the Banach algebra of all bounded linear

operators on the Banach space X. The point spectrum <JP{T) of an operator

T e 08(X) is the set of all eigenvalues of T. Thus k e oP{T) if and only if the

null space ^T(T
— kl) of T — kl has positive dimension.

When A = 0&(X\ the spectral mapping theorem can be refined in the

following way.

10.33 Theorem Suppose T e @(X\ Q is open in <£, a(T) cz Q, and

fe H(Q).

(a) Ifx e X, a e Q, and Tx =

ax, thenf(T)x =f(cc)x.

(b) f{ap{T)) ^ap(/(D).
(c) Ifcce ap(f(T)) andf— a does not vanish identically in any component of

Q,thenaef(<jp(T)).

(d) Iff is not constant in any component ofQ, thenf(ap(T)) = <Jp(f(T)).
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Part (a) states that every eigenvector of T, with eigenvalue a, is also

an eigenvector of/(T), with eigenvalue/(a).

proof, (a) If x = 0 there is nothing to be proved. Assume x ^ 0 and

Tx = ax. Then a e o(T\ and there exists g e H(Q) such that

(1) f(X)-f(*) = g(XXl-*)-

By Theorem 10.27, (1) implies

(2) f(T)-f(a)I = g(T)(T-aI).

Since (T
-

a/)x = 0, (2) proves (a).

Thus/(a) is an eigenvalue of f(T) whenever a is an eigenvalue of

T. It follows that (a) implies (fe).
Under the hypotheses of (c),

(3) a e ap(/(T)) <= a(/(T)) = /(a(T)),

so that

(4) f-\a)n(T(T)*0.

Moreover, the set (4) is finite, because o(T) is a compact subset of Q

and f—oc does not vanish identically in any component of Q. Let

Ci, ..., Cn be the zeros of/— a in a(T), counted according to their

multiplicities. Then

(5) m-a = g(X)(X-Cl)"(X-Cnl

where g e H(Q) and g has no zero on a(T)9 so that

(6) f(T)
- a/ = g(7XT

-

Ci/)
'''

(T
-

C„/).

By (a) of Theorem 10.28, g(T) is invertible in 08(X). Since a is an

eigenvalue of/(T),/(T) — ccl is not one-to-one on X. Hence (6) implies that

at least one of the operators T —

Ctl must fail to be one-to-one. The

corresponding Ci is in o>(T), and since f(d) = a the proof of (c) is

complete.

Finally, (d) is an immediate consequence of (b) and (c). ////

The Group of Invertible Elements

We shall now take a closer look at the structure of G = G(A\ the

multiplicative group of all invertible elements of a Banach algebra A.

Gx will denote the component of G that contains e, the identity
element of G. Sometimes Gx is called the principal component of G. By the

definition of component, Gx is the union of all connected subsets of G that

contain e.
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The group G contains the set

exp (4) = {exp (x): x e A},

the range of the exponential function in A, simply because exp (
— x) is the

inverse of exp (x). In fact, the power series definition of exp (x) yields the

functional equation

exp (x + y) =

exp (x) exp (y),

provided that xy
=

yx; also, exp (0) = e.

Note also that G is a topological group (see Section 5.12) since

multiplication and inversion are continuous in G.

10.34 Theorem

(a) Gx is an open normal subgroup ofG.

(b) Gx is the group generated by exp (4).

(c) If A is commutative, then Gx =

exp (4).

(d) If A is commutative, the quotient group G/G^ contains no element of

finite order {except for the identity).

proof, (a) Theorem 10.11 shows that every x e Gx is the center of an

open ball U a G. Since U intersects Gx and U is connected, U cz Gv
Therefore Gx is open.

If x e Gx then x~1G1 is a connected subset of G which contains

x~lx = e. Hence x~1Gl cz Gl9 for every x e Gv This proves that Gx is

a subgroup of G. Also, y~1G1y is homeomorphic to Gl9 hence

connected, for every y e G, and contains e. Thus y~1Gly cz Gv By

definition, this says that Gx is a normal subgroup of G.

(b) Let T be the group generated by exp (4). For n— 1, 2, 3, ...,

let En be the set of all products of n members of exp (A). Since

y'1 e exp (4) whenever y e exp (4), T is the union of the sets En.
Since the product of any two connected sets is connected, induction

shows that each En is connected. Each En contains e, and so En cz Gv
Hence Y is a subgroup of Gv

Next, exp (4) has nonempty interior, relative to G (see Theorem

10.30); hence so has T. Since T is a group and since multiplication by

any x e G is a homeomorphism of G onto G, T is open.

Each coset of T in Gx is therefore open, and so is any union of

these cosets. Since T is the complement of a union of its cosets, T is

closed, relative to Gv
Thus r is an open and closed subset of Gv Since Gx is

connected, r = gv
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(c) If A is commutative, the functional equation satisfied by exp

shows that exp (4) is a group. Hence (b) implies (c).

(d) We have to prove the following proposition:

If A is commutative, ifxeG, and ifxn e Gxfor some positive integer n,

then x e Gv

Under these conditions, xn =

exp (a) for some a e A, by (c). Put

y
=

exp (n~1a) and z = xy'1. Since y e Gl9 it suffices to prove that

ze Gv
The commutativity of A shows that

zn = x">;~n =

exp (a) exp (
—

a) = e.

Therefore o(z) does not separate 0 from oo (it consists of at most n

points, lying on the unit circle), and this implies, by Theorem 10.30,

that z =

exp (w) for some we A Put

f{X) =

exp (Aw).

Then/: £-? G is continuous,/(0) = e e Gl9 hence f((£) c Gj. In

particular, z =/(l) e Gx. ////

Theorem 12.38 will show that exp (4) is not always a group.

Lomonosov's Invariant Subspace Theorem

An invariant subspace of an operator T e &(X) is, by definition, a closed

subspace M of X such that M # {0}, M ^ X, and Tx e M for every x e M;

or, briefly, T(M) cz M.

The question arises (and was asked more than half a century ago)
whether it is true, for every complex Banach space X, that every T e &(X)
has an invariant subspace. In recent years some counterexamples have been

constructed in some nonreflexive spaces, and even in *fx. (References are

given in Appendix B.) Positive results have been found for certain classes of

operators on a Hilbert space (in particular, for normal operators; see

Chapter 12), but even there the general question is still open.

Lomonosov's proof of the following striking theorem used Schauder's

fixed point theorem to produce an eigenvalue (namely, 1). T. M. Hilden

observed that this could also be done by an appeal to the spectral radius

formula; the resulting proof is a slight simplification of the original one.

10.35 Theorem Suppose that X is an infinite-dimensional complex

Banach space and that T e &(X) is compact, T # 0.
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Then there is a closed subspace M of X such that M ^ {0}, M ^ X,

and

(1) S(M) a M

for every S e &(X) that commutes with T.

Observe, as a corollary, that every S e 08(X) which commutes with

some nonzero compact operator has an invariant subspace!

proof. Let us introduce the notations

(2) r = {Se@(X):ST= TS}

and, for each y e X,

(3) r(y) = {Sy:Se T}.

It is easy to see that T is a closed subalgebra of 08(X) and that T(y) is

therefore a closed subspace of X which contains y. Thus T(y) ^ {0} if

y t* 0. Moreover,

(4) S(r(y)) cz r(y)

for all y e X and S e T, simply because V is closed under

multiplication. Thus (1) holds for every T(y).
If the conclusion of the theorem is false, it follows that V(y) = X

for every y ^ 0.

Let us assume this.

Pick x0 e X so that Tx0 ^ 0. Then x0 ^ 0, and the continuity of

T shows that there is an open ball B, centered at x0, so small that

(5) l|Tx||>i||Tx0|| and ||x|| > ±||x0||

for every x e B. Our assumption about V(y) implies that every y ^ 0

has a neighborhood W which is mapped into the open set B by some

S e T. Since T is a compact operator, K = T(B) is a compact set. By

(5), 0 £ K. Therefore there are open sets Wl9 ..., Wn9 whose union

covers K9 such that S^W?) cz B for some St e T, 1 < i < n. Put

(6) |i
= max{||S1||,...,||SJ}.

Starting with x0, Tx0 lies in K, hence in some Wil9 and ShTx0 e

B. Therefore TShTx0 lies in K9 hence in some Wh9 and S^TS^TXo is

back in B. Continuing this ping-pong game, we obtain vectors

\i) xn
— SiN T '''

SflTx0 = SiN
'''

StlT x0

in B. Hence

(8) illxoll < ||xN|| < ^IIT^H UxoII (N = 1, 2, 3, ...),
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and this gives information about the spectral radius of T, namely,

(9) p(T)= \im\\TN\\1/N>->0.
tf-00 M

We now invoke Theorem 4.25. Since p(T) > 0, T has an

eigenvalue X 7* 0. The corresponding eigenspace

(10) MA = {xeX: Tx = Xx]

is finite-dimensional; hence MA ^ X. If S e V and x e MA, then

(11) T(Sx) = S(Tx) = S(Ax) = /ISx,

so that Sx e MA. This says that S(MA) cz MA.
Thus MA satisfies the conclusion of the theorem, even though we

assumed that this conclusion failed. ////

Exercises

Throughout this set of exercises, A denotes a Banach algebra and x, y, ... denote

elements of A, unless the contrary is stated.

1. Use the identity (xy)n = x(yx)"~ 1y to prove that xy and yx always have the same

spectral radius.

2. (a) If x and xy are invertible in A, prove that y is invertible.

(b) If xy and yx are invertible in A, prove that x and y are invertible. (The
commutative case of this was tacitly used in the proofs of Theorems 10.13

and 10.28.)

(c) Show that it is possible to have xy
= e but yx ^ e. For example, consider the

right and left shifts SR and SL, defined on some Banach space of functions /
on the nonnegative integers by

(SRfM =f(n-l) ifn>l,

(S*/X0) = 0,

(SLf\n) =f(n + 1) for all n > 0.

(d) If xy
= e and yx

= z ^ e, show that z is a nontrivial idempotent. (This
means that z2 =

z, z ^ 0, z ^ e)

3. Prove that every finite-dimensional A is isomorphic to an algebra of matrices.

Hint: The proof of Theorem 10.2 shows that every A is isomorphic to a sub-

algebra of@(A). Conclude that xy
= e implies yx

= e if dim A < oo.

4. (a) Prove that e
—

yx is invertible in A if e
—

xy is invertible. Suggestion: Put

z = (e — xy)'1, write z as a geometric series (assume ||x|| < 1, \\y\\ < 1), and

use the identity stated in Exercise 1 to obtain a finite formula for (e
— yx)'1

in terms of x, y, z. Then show that this formula works without any

restrictions on ||x|| or \\y\\.

(b) If X e <p, X t* 0, and X e o{xy\ prove that X e a(yx). Thus o(xy) u {0} =

c{yx) u {0}. Show, however, that o(xy) is not always equal to o(yx).
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5. Let A0 and A1 be the algebras of all complex 2-by-2 matrices of the form

G» (-)
Prove that every two-dimensional complex algebra A with unit e is isomorphic
to one of these and that A0 is not isomorphic to Av Hint: Show that A has a

basis {e, a} in which a2 = Xe for some X e (p. Distinguish between the cases

X = 0, X t* 0. Show that there exists a three-dimensional noncommutative

Banach algebra.

6. Let A be the algebra of all complex functions / on {1, 2, 3, ...} which are 0

except at finitely many points, with pointwise addition and multiplication and

norm

11/11= I*-2I/(*)|.
fc=l

Show that multiplication is left-continuous (hence also right-continuous, since A

is commutative) but not jointly continuous. (Adjunction of a unit element, as

suggested in Section 10.1, would make no difference.) Show, in fact, that there is

a sequence {/„} in A so that ||/„|| -> 0 but ||/2|| -> oo, as n -> oo.

7. Let C2 = C2([0, 1]) be the space of all complex functions on [0, 1] whose

second derivative is continuous. Choose a > 0, b > 0, and define

11/11 = ll/IL+flll/'IL + Hf'W oo-

Show that this makes C2 into a Banach space, for every choice of a, b, but that

the Banach algebra axioms hold if and only if 2b < a2. (For necessity, consider x

and x2.)
8. What happens if the process of adjoining a unit (described in Section 10.1) is

applied to an algebra A which already has a unit? Clearly, the result cannot be

an algebra Ax with two units. Explain.

9. Suppose that Q is open in <p and that /: Q -> A and (p: Q -> (p are holomorphic.
Prove that ^/: Q -> /I is holomorphic. [This was used in the proof of Theorem

10.13, with (p(X) = Xnl

10. Another proof that a(x) ^ 0 can be based on Liouville's theorem 3.32 and the

fact that (Xe — x)~1 -> 0 as X -> oo. Complete the details.

11. Call x e A 3. topological divisor of zero if there is a sequence {>>„} in A, with

||yj = l, such that

lim xyn
= 0 = lim >>„ x.

n-* oo n~* oo

(a) Prove that every boundary point x of the set of all invertible elements of A is

a topological divisor of zero. Hint: Take yn
= x~ 1/\\x~11|, where x„ -> x.

(fr) In which Banach algebras is 0 the only topological divisor of 0?

12. Find the spectrum of the operator T e &(t2) given by

T(x1? x2, x3, x4, ...) = (
—

x2, xl5 —x4, x3, ...).

13. Suppose K = {X e <£: 1 < \X\ < 2}. Put/M = 1 Let ^ be the smallest closed

subalgebra of C(K) that contains 1 and /. Let B be the smallest closed sub-

algebra of C(K) that contains/and 1/f Describe the spectra oA{f) and aB(f).
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14. (a) Fubini's theorem was applied to vector-valued integrals in the proof of

Theorem 10.29. Justify this.

(b) Construct a proof of Theorem 10.29 that uses no contour integrals, as

follows: Prove the theorem first for polynomials g, then for rational

functions g with no poles in Ql5 and obtain the general case from Runge's
theorem.

15. Suppose X is a Banach space, T e @(X) is compact, and || T"\\ > 1 for all n > 1.

Prove that the point spectrum of T is not empty.

16. Let X = C([0, 1]) and define T e <%(X) by

(Tx){s) = x(u) du (0 < s < 1).

Show that ap(T) = 0. Hence f(op(T)) = 0 for every/, but if/ = 0, then/(T) =

0; hence

°P(f(T)) = aJLO) = {0} # 0.

The extra hypotheses in (c) and (d) of Theorem 10.33 are thus needed.

17. Suppose that the spectrum of some x e A is not connected. Prove that A

contains a nontrivial idempotent z. (This is defined in Exercise 2.)
Prove also that A = A0 © Al9 where

A0 = {x: zx = 0}, A1 = {x: zx = x}.

18. Suppose Q is open in <p, a is an isolated boundary point of Q, /: Q -> X is a

holomorphic X-valued function (where X is some complex Banach space), and

there is a smallest nonnegative integer n such that

U-all/WII

is bounded as X -> a. If n > 0, then/is said to have a pole of order n at a.

(a) Suppose x e A and (>te — x)"1 has a pole at every point of a(x). [Note that

this can happen only when a(x) is a finite set.] Prove that there is a non-

trivial polynomial P such that P(x) = 0.

(b) As a special case of (a), assume a(x) = {0} and (Xe — x)~1 has a pole of order

n at 0. Prove that x" = 0.

19. Let SR be the right shift, acting on *f2, as in Exercise 2. Let {cn} be a sequence of

complex numbers such that cn ^ 0 but c„
-> 0 as n -> oo. Define M e ^?(*f2) by

(M/Xn) = c„/(n) (n>0),

and define T e @(t2) by T = MSR.

(a) Compute || Tm||, for m = 1, 2, 3,... .

(b) Show that g(T) = {0}.
(c) Show that T has no eigenvalue. (Its point spectrum is therefore empty,

although its spectrum consists of a single point!)

(d) Show that (XI -T)'1 does not have a pole at 0.

(e) Show that T is a compact operator.

20. Suppose x e A, xne A, and lim x„
= x. Suppose Q is an open set in <p that

contains a component of o-(x). Prove that a(xn) intersects Q for all sufficiently
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large n. (This strengthens Theorem 10.20.) Hint: If a(x) c= Q u Q0, where Q0 is

an open set disjoint from Q, consider the function/that is 1 in Q, 0 in Q0.
21. Let CR be the algebra of all real continuous functions on [0, 1], with the

supremum norm. This satisfies all requirements of a Banach algebra, except that

the scalars are now real.

(a) If <t>(f) = JJ f{t) dt, then 0(1) = 1, and <t>(f) * 0 if/is invertible in CR, but </>
is not multiplicative.

(b) If G and G1 are defined in CR as in Theorem 10.34, show that G/G1 is a

group of order 2.

The analogues of Theorem 10.9 and (d) of Theorem 10.34 are thus false

for real scalars. Exactly where would the proof of (d) of Theorem 10.34 break

down?

22. Suppose A = C(T), the algebra of all continuous complex functions on the unit

circle T, with the supremum norm. Show that two invertible members of C(T)
are in the same coset of G1 if and only if they are homotopic mappings of T into

the set of all nonzero complex numbers. Deduce from this that G/Gx is

isomorphic to the additive group of the integers. (The notation is as in Theorem

10.34.)

23. Suppose A = M(R), the convolution algebra of all complex Borel measures on

the real line; see (e) of Example 10.3. Supply the details in the following proof
that G/Gt is uncountable: If a e R, let 3a be the unit mass concentrated at a.

Assume 8ae Gv Then Sa =

exp (pa) for some pa e M(R); hence, for

—

OO < t < 00,

— itxt = fia(t) + 2kni,

where k is an integer. Since £a is a bounded function, a = 0. Thus S0 is the only

Sa in Gv No coset of G1 in G contains therefore more than one da.
24. (a) Prove that A is commutative if there is a constant M < oo such that

\\xy\\ < M\\yx\\ for all x and y in A. Hint: ||w_1yw|| < M||y|| if w is invertible

in A. Replace w by exp (Ax), where x e A and X e (p. Continue as in

Theorem 12.16.

(b) Prove that A is commutative if ||x2|| = ||x||2 for every x e A. Hint: Show

that ||x|| = p(x). Use Exercise 1 to deduce that ||w_1)w|| = ll^ll- Continue as in

(a).

25. As regards the invariant subspace problem, described in the introduction to

Theorem 10.35, explain why the problem is

(a) trivial in £",

(b) different in Rn,

(c) uninteresting if X is not separable.
How should Lomonosov's theorem be reformulated when X = (pnl

26. Let SR be the right shift on *f2, as in Exercise 2. Prove that 0 is the only compact

T e @(t2) that commutes with SR. Hint: If T * 0 then

\\T{SNRx) ~ T{S»x)\\

does not tend to 0 when N — M -> oo.



CHAPTER

11
COMMUTATIVE

BANACH

ALGEBRAS

This chapter deals primarily with the Gelfand theory of commutative

Banach algebras, although some of the results of this theory will be applied
to noncommutative situations. The terminology of the preceding chapter
will be used without change. In particular, Banach algebras will not be

assumed to be commutative unless this is explicitly stated, but the presence

of a unit will be assumed without special mention, as will the fact that the

scalar field is <£.

Ideals and Homomorphisms

11.1 Definition A subset J of a commutative complex algebra A is said

to be an ideal if

(a) J is a subspace of A (in the vector space sense), and

(b) xy e J whenever x e A and y e J.

If J 7* A, J is a proper ideal. Maximal ideals are proper ideals which

are not contained in any larger proper ideal.

11.2 Proposition

(a) No proper ideal of A contains any invertible element of A.

(b) If J is an ideal in a commutative Banach algebra A, then its closure J is

also an ideal.

The proofs are so simple that they are left as an exercise.

275



276 PART III. BANACH ALGEBRAS AND SPECTRAL THEORY

11.3 Theorem

(a) If A is a commutative complex algebra with unit, then every proper ideal

of A is contained in a maximal ideal of A.

(b) If A is a commutative Banach algebra, then every maximal idea of A is

closed.

proof, (a) Let J be a proper ideal of A. Let & be the collection of all

proper ideals of A that contain J. Partially order & by set inclusion,

let 2L be a maximal totally ordered subcollection of & (the existence of

2L is assured by Hausdorff's maximality theorem), and let M be the

union of all members of St. Being the union of a totally ordered

collection of ideals, M is an ideal. Obviously J a M, and M # A since no

member of & contains the unit of A, The maximality of SL implies that

M is a maximal ideal of A.

(b) Suppose M is a maximal ideal in A. Since M contains no

invertible element of A and since the set of all invertible elements is

open, M contains no invertible element either. Thus M is a proper

ideal of A, and the maximality of M shows therefore that M = M. ////

11.4 Homomorphisms and quotient algebras If A and B are

commutative Banach algebras and (f) is a homomorphism of A into B (see Section

10.4) then the null space or kernel of (f> is obviously an ideal in A, which is

closed if (f> is continuous.

Conversely, suppose J is a proper closed ideal in A and n: A-> A/J is

the quotient map, as in Definition 1.40. Then A /J is a Banach space, with

respect to the quotient norm (Theorem 1.41). We will show that A/J is

actually a Banach algebra and that n is a homomorphism.
If x' —

x e J and y' —

y e J, the identity

(1) x'y'
—

xy
= (xf

-

x)y' + x(yf - y)

shows that x'y' —

xy e J; hence n(x'y') = n(xy). Multiplication can therefore

be unambiguously defined in A/J by

(2) 7i(x)n(y) = n(xy) (x e A, y e A).

It is then easily verified that A/J is a complex algebra and that n is a

homomorphism. Since ||7c(x)|| < ||x||, by the definition of the quotient norm,

7c is continuous.

Suppose xt e A (i = 1, 2) and S > 0. Then

(3) Wxt + ytW^MxdW+S (i=l,2)

for some y{ e J, by the definition of the quotient norm. Since
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(*1 + yi)(*2 + y2) E *1*2 + J>

we have

(4) Wxxx2)\\ < IK*! + yi)(x2 + y2)\\ < \\xx + yi||||x2 + y2\\,

so that (3) implies the multiplicative inequality

(5) M*iW*2)ll < IW*i)ll \\n(x2)\\.

Finally, if e is the unit element of A, then (2) shows that n(e) is the

unit of A/J, and since n(e) ^ 0, (5) shows that ||7c(e)|| > 1 = \\e\\. Since

Wx)|| < ||x|| for every x eA, \\n(e)\\ = 1. This completes the proof.
Part (a) of the next theorem is one of the key facts of the whole theory.

The set A that appears in it will later be given a compact Hausdorff

topology (Theorem 11.9). The study of commutative Banach algebras will then to

a large extent be reduced to the study of more familiar (and more special)

objects, namely, algebras of continuous complex functions on A, with point-
wise addition and multiplication. However, Theorem 11.5 has interesting
concrete consequences even without the introduction of this topology.
Sections 11.6 and 11.7 illustrate this point.

11.5 Theorem Let A be a commutative Banach algebra, and let A be the

set of all complex homomorphisms of A.

(a) Every maximal ideal of A is the kernel of some h e A.

(b) //ft e A, the kernel ofh is a maximal ideal of A.

(c) An element x e A is invertible in A if and only ifh(x) ^ Ofor every h e A.

(d) An element x e A is invertible in A if and only ifx lies in no proper ideal

of A.

(e) X e a(x) if and only ifh(x) = Xfor some h e A.

proof, (a) Let M be a maximal ideal of A. Then M is closed

(Theorem 11.3) and A/M is therefore a Banach algebra. Choose x e A,

x $ M, and put

(1) J = {ax + y: a e A, y e M}.

Then J is an ideal in A which is larger than M, since x e J. (Take
a = e, y

= 0.) Thus J = A, and ax + y
= e for some a e A, y e M. If

n: A-> A/M is the quotient map, it follows that n(a)n(x) = n(e). Every
nonzero element 7c(x) of the Banach algebra A/M is therefore

invertible in A/M. By the Gelfand-Mazur theorem, there is an isomorphism

j of A/M onto (p. Put h =j o n. Then h e A, and M is the null space

of ft.
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(b) If h g A, then h *(()) is an ideal in A which is maximal

because it has codimension 1.

(c) If x is invertible in A and h g A, then

/iM/ifx"1) = fc(xx_1) = fc(<?) = 1,

so that h(x) ^ 0. If x is not invertible, then the set {ax: a g A} does

not contain e, hence is a proper ideal which lies in a maximal one

(Theorem 11.3) and which is therefore annihilated by some h g A,

because of (a).

(d) No invertible element lies in any proper ideal. The converse

was proved in the proof of (c).

(e) Apply (c) to ke — x in place of x. ////

Our first application concerns functions on Rn that are sums of

absolutely convergent trigonometric series. The notation is as in Exercise 22 of

Chapter 7.

11.6 Wiener's lemma Suppose/is a function on Rn, and

(1) f(x) = Zameim"9 5>J<oo,

where both sums are extended over all m g Zn. Iff(x) ^ 0 for every x g Rn,

then

(2)
J^)

= Y,Keimx with £|fcJ<oo.

proof. Let A be the set of functions of the form (1), normed by

11/11 =Z \am\- One checks easily that A is a commutative Banach

algebra, with respect to pointwise multiplication. Its unit is the

constant function 1. For each x, the evaluation f^f(x) is a complex

homomorphism of A. The assumption about the given function / is

that no evaluation annihilates it. If we can prove that A has no other

complex homomorphisms, (c) of Theorem 11.5 will imply that / is

invertible in A, which is exactly the desired conclusion.

For r = 1, ..., n, put gr(x) =

exp (ixr), where xr is the rth

coordinate of x. Then gr and l/gr are in A and have norm 1. If h g A, it

follows from (c) of Theorem 10.7 that

!%,)!< 1 and
1

St.\K9r)\

Hence there are real numbers yr such that

(3) h(gr) =

exp (iyr) = gr(y) (1 < r < n),

< 1.
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where y
= (y^ ..., yn). If P is a trigonometric polynomial (which

means, by definition, that P is a finite linear combination of products
of integral powers of the functions gr and l/gr), then (3) implies

(4) h(P) = P(y),

because h is linear and multiplicative. Since h is continuous on A

(Theorem 10.7) and since the set of all trigonometric polynomials is

dense in A (as is obvious from the definition of the norm), (4) implies
that h(f) =f(y) for every fe A. Thus h is evaluation at y, and the

proof is complete. ////

This lemma was used (with n = 1) in the original proof of the tau-

berian theorem 9.7. To see the connection, let us reinterpret the lemma.

Regard Zn as being embedded in R" in the obvious way. The given
coefficients am define then a measure [i on Rn, concentrated on Z", which assigns
mass am to each m g Z". Consider the problem of finding a complex
measure <x, concentrated on Z", such that the convolution \i * o is the Dirac

measure 3. Wiener's lemma states that this problem can be solved if (and

trivially only if) the Fourier transform of \i has no zero on Rn\ this is

precisely the tauberian hypothesis in Theorem 9.7.

For our next application, let Un be the set of all points z = (z1? ..., z„)
in (pn such that |zi,\ < 1 for 1 < i < n. In other words, this polydisc Un is the

cartesian product of n copies of the open unit disc U in (p. We define A(Un)
to be the set of all functions / that are holomorphic in Un (see Definition

7.20) and that are continuous on its closure Un.

11.7 Theorem Suppose fu ...,fkeA(Un% and suppose that to each

z g Un there corresponds at least one i such that f{(z) ^ 0. Then there exist

functions </>!,..., (f)k e A(Un) such that

(i) hiz)4>&) +
• • •

+ m<l>&) = i (* e uny

proof. A = A(Un) is a commutative Banach algebra, with point wise

multiplication and the supremum norm. Let J be the set of all sums

X ft 4>i> with 4>i G A. Then J is an ideal. If the conclusion is false, then

J ^ A; hence J lies in some maximal ideal of A (Theorem 11.3), and

some h e A annihilates J, by (a) of Theorem 11.5.

For 1 < r < n, put gr(z) =

zr. Then ||^J = 1; hence h(gr) =

wr,

with | wr | < 1. Put w = (w1,..., w„). Then w g Un, and h(gr) = gr(w). It

follows that h(P) = P(w) for every polynomial P, since h is a homo-

morphism. The polynomials are dense in A(Un) (Exercise 4). Hence

h(f) =/(w) for every fe A, by essentially the same argument that was

used in the proof of Theorem 11.6.

Since h annihilates J,fi(w) = 0 for 1 < i < k. This contradicts the

hypothesis. ////
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Gelfand Transforms

11.8 Definitions Let A be the set of all complex homomorphisms of a

commutative Banach algebra A. The formula

(1) x(h) = h(x) (h g A)

assigns to each x e A a. function x: A -? (p\ we call x the Gelfand transform
of x.

Let A be the set of all x, for x g A. The Gelfand topology of A is the

weak topology induced by A, that is, the weakest topology that makes

every x continuous. Then obviously A c C(A), the algebra of all complex
continuous functions on A.

Since there is a one-to-one correspondence between the maximal

ideals of A and the members of A (Theorem 11.5), A, equipped with its

Gelfand topology, is usually called the maximal ideal space of A.

The term
"

Gelfand transform
"

is also applied to the mapping x -? x of

A onto A.

The radical of A, denoted by rad A, is the intersection of all maximal

ideals of A. If rad A = {0}, A is called semisimple.

11.9 Theorem Let A be the maximal ideal space of a commutative

Banach algebra A.

(a) A is a compact Hausdorff space.

(b) The Gelfand transform is a homomorphism of A onto a subalgebra A of

C(A), whose kernel is rad A. The Gelfand transform is therefore on

isomorphism if and only if A is semisimple.

(c) For each x g A, the range ofx is the spectrum a(x). Hence

\m^ = p(x)< iixii,

where \\x\\^ is the maximum of\ x(h)\ on A, and x g rad A if and only if

p(x) = 0.

proof. We first prove (b) and (c). Suppose x g A, y g A, a g ^, h g A.

Then

(ax)A(/i) = h((xx) = (xh(x) = (ax)(/i),

(x + yWh) = h(x + y) = h(x) + h(y) = x(h) + ftfc) = (x + y)(h),

and

(xy)A(fc) = h(xy) = h(x)h(y) = x(h)y(h) = (xy)(h).

Thus x -? x is a homomorphism. Its kernel consists of those x g A

which satisfy h(x) = 0 for every h g A; by Theorem 11.5, this is the

intersection of all maximal ideals of A, that is, rad A.
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To say that k is in the range of x means that k = x(h) = h(x) for

some h e A. By (e) of Theorem 11.5, this happens if and only if

k e a(x). This proves (b) and (c).
To prove (a), let A* be the dual space of A (regarded as a

Banach space), and let K be the norm-closed unit ball of A*. By the

Banach-Alaoglu theorem, K is weak*-compact. By (c) of Theorem

10.7, AcK. The Gelfand topology of A is evidently the restriction to

A of the weak*-topology of A*. It is therefore enough to show that A

is a weak*-closed subset of A*.

Let A0 be in the weak*-closure of A. We have to show that

(1) A0(xy) = Ao *A0 y (xe A,ye A)

and

(2) A0e=l.

[Note that (2) is necessary; otherwise A0 would be the zero

homomorphism, which is not in A.]
Fix x g A, y g A, e > 0. Put

(3) W = {A e A*: \Az{- A0z{\ < e for 1 < i < 4},

where zt
=

e, z2
=

x, z3
=

y, z4
=

xy. Then W is a weak*-

neighborhood of A0 which therefore contains an h e A. For this h,

(4) \1-A0e\ = \h(e)-A0e\<e,

which gives (2), and

A0(xy) - A0xA0y = [A0(xy)
-

h(xyy\ + [h(x)h(y) - A0xA0};]

= [Ao(x30 - fctoO] + Wy) - A0 y]h(x)

+ [fc(x) - A0 x]A0 y,

which gives

(5) |Ao(x)0- A0xA0);| < (1 + ||x|| +\A0y\)e.

Since (5) implies (1), the proof is complete. ////

Semisimple algebras have an important property which was earlier

proved for <p:

11.10 Theorem // \//: A -? B is a homomorphism of a Banach algebra A

into a semisimple commutative Banach algebra B, then \j/ is continuous.

proof. Suppose xn -? x in A and ij/(xn) -? y in B. By the closed graph

theorem, it is enough to show that y
= ij/(x).
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Pick some homomorphism h: B^><£. Then (p
= h o \j/ is a

homomorphism of A into C. Theorem 10.7 shows that h and (p are

continuous. Hence

h(y) = lim /#(**)) = Hm <?(**) = cp(x) = /#(*))>

for every h e AB. Thus y
— i/^x) g rad B. Since rad B = {0},y = \j/(x).

mi

Corollary. Every isomorphism between two semisimple commutative

Banach algebras is a homeomorphism.

In particular, this is true of every automorphism of a semisimple
commutative Banach algebra. The topology of such an algebra is therefore

completely determined by its algebraic structure.

In Theorem 11.9, the algebra A may or may not be closed in C(A),
with respect to the supremum norm. Which of these cases occurs can

be decided by comparing ||x2|| with ||x||2, for all x e A. Recall that

||x2|| < || x ||2 is always true.

11.11 Lemma If A is a commutative Banach algebra and

(1) r = infill s = infJlk (xg^x/0),
11*11 11*11

then s2 <r < s.

proof. Since pH^ > s||x||,

(2) l|x2||>P2IL = P||i>s2||x||2

for every x e A. Thus s2 < r.

Since ||x2|| > r||x||2 for every x e A, induction on n shows that

(3) ||xm|| > r-^lxir (m = 2", n = 1, 2, 3, ...).

Take mth roots in (3) and let m-> oo. By the spectral radius formula

and (c) of Theorem 11.9,

(4) \\x\\^=p(x)>r\\x\\ (xeA).

Hence r < s. ////

11.12 Theorem Suppose A is a commutative Banach algebra.

(a) The Gelfand transform is an isometry (that is, ||x|| = pH^ for every

x g A) if and only if\\x2\\ = \\x\\2 for every x e A.

(b) A is semisimple and A is closed in C(A) if and only if there exists K < oo

such that || x ||2 < K \\ x2 \\ for every xeA
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proof, (a) In the terminology of Lemma 11.11, the Gelfand transform

is an isometry if and only if s = 1, which happens (by the lemma) if

and only if r = 1.

(b) The existence of K is equivalent to r > 0, hence to s > 0, by
the lemma. If s > 0, then x -? x is one-to-one and has a continuous

inverse, so that A is complete (hence closed) in C(A). Conversely, if

x -? x is one-to-one and if A is closed in C(A), the open mapping
theorem implies that s > 0. ////

11.13 Examples In some cases, the maximal ideal space of a given
commutative Banach algebra can easily be described explicitly. In others,

extreme pathologies occur. We shall now give some examples to illustrate

this.

(a) Let X be a compact Hausdorff space, put A = C(X\ with the

supremum norm. For each x g X,f^f(x) is a complex homomorphism hx.
Since C(X) separates points on X (Urysohn's lemma), x ^ y implies

hx^hy. Thus x^hx embeds X in A.

We claim that each h g A is an hx. If this is false, there is a maximal

ideal M in C(X) which contains, for each p g X, a function/with f(p) ^ 0.

The compactness of X implies then that M contains finitely many functions

/i,... ,/„ such that at least one of them is ^0 at each point of X. Put

G=fifi +
'" +fnL-

Then g g M, since M is an ideal; g > 0 at every point of X; hence g is

invertible in C(X). But proper ideals contain no invertible elements.

Thus x <-? hx is one-to-one correspondence between X and A and can

be used to identify A with X. This identification is also correct in terms of

the two topologies that are involved: The Gelfand topology y of X is the

weak topology induced by C(X) and is therefore weaker than t, the original

one, but y is a Hausdorff topology; hence y
= t. [See (a) of Section 3.8.]

Summing up, X "is" the maximal ideal space of C(X% and the

Gelfand transform is the identity mapping on C(X).

(b) Let A be the algebra of all absolutely convergent trigonometric

series, as in Section 11.6. We found there that the complex homomorphisms
are the evaluations at points of Rn. Since the members of A are 27c-periodic
in each variable, A is the torus Tn obtained from Rn by the mapping

(xl9 ...,xn)^(eix\ ...,eiXn).

This is an example in which A is dense in C(A), although A ^ C(A).

(c) In the same way, the proof of Theorem 11.7 contains the result

that Un is the maximal ideal space of A(Un). The argument used at the end

of (a) shows that the natural topology of Un is the same as the Gelfand

topology induced by A(Un); the same remark applies to (b).
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(d) The preceding example has interesting generalizations. Let A now

be a commutative Banach algebra with a finite set of generators, say xl9 ...,

xn. This means that x(e A(l <i <n) and that the set of all polynomials in

xl9...9xn is dense in A. Define

(1) <Mh) = (*M..-,*Jih)) (he A).

Then <j> is a homeomorphism of A onto a compact set K c (pn. Indeed, <f> is

continuous since A c C(A). If <j>(h^) = <j>(h2), then M*;) = fe2(xi) f°r &M *5

hence h^x) = h2(x) whenever x is a polynomial in xl9 ..., xn9 and since

these polynomials are dense in A9hl = h2. Thus </> is one-to-one.

We can now transfer A from A to K and may thus regard K as the

maximal ideal space of A. To make this precise, define

(2) \j/(x) = xo (/>-! (xe4

Then ^ is a homomorphism (an isomorphism if A is semisimple) of A onto

a subalgebra i/^(v4) of C(K). One verifies easily that

(3) Hxi)(z) =

zi if z = (z1,...,z„)gK,

and therefore

(4) ij,(P(xl9...9xn))(z) = P(z) izsK)

for every polynomial P in n variables.

It follows that every member of ij/(A) is a uniform limit of polynomials,
onK.

The sets K c (pn which arise in this fashion as maximal ideal spaces

have a property known as polynomial convexity:

If w g (p1 and w $ K9 there exists a polynomial P such that \ P(z) \ < 1

for every z g K9 but | P(w) | > 1.

To prove this, assume there is no such polynomial. The norm-

decreasing property of the Gelfand transform implies then that

(5) |P(w)| < ||P(xl5 ...?x„)||

for every polynomial P; the norm is that of A. Since {xl9 ..., xn} is a set of

generators of A9 it follows from (5) that there is an h g A such that <t>{h) = w.

But then w g K9 and we have a contradiction.

The compact polynomially convex subsets of <p are simply those

whose complement is connected; this is an easy consequence of Runge's
theorem. In <pn9 the structure of the polynomially convex sets is by no

means fully understood.

(e) Our next example shows that the Gelfand transform is a

generalization of the Fourier transform, at least in the //-context.
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Let A be l}(Rn) with a unit attached, as described in (d) of Section

10.3. The members of A are of the form/+ ad, where fe l}(Rn), cc g <p, and

S is the Dirac measure on Rn; multiplication in A is convolution:

(/+ oiS) *(g + pd) = (f*g + pf + ag) + afiS.

For each t e R", the formula

(6) hAf+*5)=f(t) + *

defines a complex homomorphism of A; here/is the Fourier transform off
In addition,

(7) M/+a«) = a

also defines a complex homomorphism. There are no others. (A proof will

be sketched presently.) Thus A, as a set, is Rn u {oo}. Give A the topology
of the one-point compactification of Rn. Since/(t) -? 0 as 111 -? oo, for every

fe l}(Rn), it follows from (6) and (7) that A c C(A). Since A separates points
on A, the weak topology induced on A by A is the same as the one that we

just chose.

It remains to be proved that every h g A is of the form (6) or (7). If

h(f) = 0 for every /e L1^"), then h = hao. Assume h(f) # 0 for some

fel}(Rn). Then h(f) = J fp dmni for some p e n°(Rn). Since

M/ * 9) = Kf)Kg\ one can prove that P coincides almost everywhere with

a continuous function b which satisfies

(8) b(x + y) = b(x)b(y) (x, y g Rn).

Finally, every bounded solution of (8) is of the form

(9) b(x) = e-ixt (xeRn)

for some t g Rn. Thus h(f) =f(t)9 and h has the form (6).
For n = 1, the details that complete the preceding sketch may be

found in Sec. 9.22 of [23]. The case n > 1 is quite similar.

(/) Our final example is L°(m). Here m is Lebesgue measure on the

unit interval [0, 1], and L°(m) is the usual Banach space of equivalence
classes (modulo sets of measure 0) of complex bounded measurable

functions on [0, 1], normed by the essential supremum. Under pointwise

multiplication, this is obviously a commutative Banach algebra.
If / g L?(m) and Gf is the union of all open sets G c (p with

m(/_1(G)) = 0, then the complement of Gf (called the essential range off) is

easily seen to coincide with the spectrum a(f) off hence with the range of

its Gelfand transform/ It follows that/is real iff is real. Hence n°(m)A is

closed under complex conjugation. By the Stone-Weierstrass theorem,

W{m)h is therefore dense in C(A), where A is the maximal ideal space of

L°(m). It also follows that/-?/is an isometry, so that n°(m)A is closed in

C(A).
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We conclude thatf^fis an isometry ofL?(m) onto C(A).

Next, /-? J / dm is a bounded linear functional on C(A). By the Riesz

representation theorem, there is therefore a regular Borel probability
measure [i on A that satisfies

(10) I fdfi= \fdm
Ja Jo

for every / g n°(m). This measure is related to the topology of A in the

following way:

(i) n(V)>0ifV is open and nonempty.

(ii) To every bounded Borel function cp on A corresponds anfe C(A) such

thatf= cp a.e. \jf\.

(Hi) If V is open, so is V.

(iv) lfE is a Borel set in A, then

(ii) KE°) = m = tiE).

If V is as in (i), Urysohn's lemma implies that there is an / e C(A),

/> 0, such that/ = 0 outside V and f(p) = 1 at some p e V. Hence/is not

the zero element of L°°(m), and the integrals (10) are positive. This gives (i).
In (ii), assume | cp | < 1. Since C(A) is dense in L2(/z) (recall that \i is a

regular Borel probability measure), there are functions fn g C(A) such that

J \fn~ <P\2 dii->0, and which can be so adjusted that |/j < 1. Then

||/„|| oo
< 1, and (10) implies that {/,} is a Cauchy sequence in l}(m). Hence

there is an/G n°(m) such that

(12) \\fn-f\2dfi= Pi/.-/I2 dm-.0

Ja Jo

as n -? oo. Thus cp =/a.e. [//].

Next, let V be open and let W be the complement of V. By (ii) there is

an/G C(A) such that/= 1 a.e. [//] off F. The set on which/is neither 1 nor

0 is open and has //-measure 0, hence is empty, by (/). The same reasoning
shows that the sets V n {/V 1} and W n {/V 0} are empty. Hence /= 1

onK/=0onW.
This proves (Hi), and shows also that fi(V) = fi(V). Taking

complements, we see that n(K°) = n(K) for every compact KcA.

If £ is a Borel set in A, and e > 0, then there is a compact K and an

open V such that K c E c V and n(V) < fi(K) + e. Hence

fi(E) < fi(V) = fi(V) < fi(K) + e = fi(K°) + e < |i(£0) + e,

and this proves (iv).
It is an easy consequence of (Hi) that disjoint open sets have disjoint

closures.
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If we define two bounded Borel functions cp and \jf to be equivalent,

provided fi{cp ^ \j/} = 0, then (ii) asserts that every equivalence class

contains one continuous function—and only one, by (i). Hence (with an

obvious interpretation) L°°(/z) = C(A).

Property (iv) asserts, among other things, that of two disjoint Borel

sets in A, at most one can be dense in A, even though no point of A is

isolated (Exercise 18).
We conclude with an application to measure theory. If E and F are

measurable sets, let us say that F almost contains E if F contains E except

for a set of measure 0, that is, if m(E
— F) = 0.

The union of an uncountable collection of measurable sets is not

always measurable. However, the following is true:

If {Ea} is an arbitrary collection of measurable sets in [0, 1], there is a

measurable set E a [0, 1] with the following two properties:

(i) E almost contains every Ea.

(ii) If F is measurable and F almost contains every Ea, then F almost

contains E.

Thus E is the least upper bound of {Ea}. The existence of E implies
that the Boolean algebra of measurable sets (modulo sets of measure 0) is

complete.
With the machinery now at our disposal, the proof is very simple.
Let fa be the characteristic function of Ea. Its Gelfand transform fa is

then the characteristic function of an open (and closed) set Qa c A. Let Q be

the union of all these Qa. Then Q is open, so is its closure Q, and there

exists / g L?(m) such that / is the characteristic function of Q. The desired

set E is the set of all x e [0, 1] at which/(x) = 1.

Involutions

11.14 Definition A mapping x->x* of a complex (not necessarily

commutative) algebra A into A is called an involution on A if it has the

following four properties, for all x e A, y e A, and X e <p:

(1) (x + y)* = x* + y*.

(2) (/U)* = he*.

(3) (*y)* = y*x*.

(4) x** = x.

In other words, an involution is a conjugate-linear antiautomorphism
of period 2.
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Any x g A for which x* = x is called hermitian, or self-adjoint.
For example,/-?/is an involution on C(X). The one that we will be

most concerned with later is the passage from an operator on a Hilbert

space to its adjoint.

11.15 Theorem If A is a Banach algebra with an involution, and ifxeA,
then

(a) x + x*, i(x — x*), and xx* are hermitian,

(b) x has a unique representation x = u + iv, with u g A, v g A, and both u

and v hermitian,

(c) the unit e is hermitian,

(d) x is invertible in A if and only if x* is invertible, in which case

(x*)"1 =(x~1)*, and

(e) X g <x(x) if and only ifle a(x*).

proof. Statement (a) is obvious. If 2m = x + x*, 2v = i(x* — x), then

x = u + iv is a representation as in (b). Suppose x = u' + iv' is another

one. Put w = v' —

v. Then both w and iw are hermitian, so that

iw = (iw)* = — iw* = — iw.

Hence w = 0, and the uniqueness follows.

Since e* = ee*, (a) implies (c); (d) follows from (c) and (xy)* =

y*x*. Finally, (e) follows if (d) is applied to Xe — x in place of x. ////

11.16 Theorem If the Banach algebra A is commutative and semisimple,
then every involution on A is continuous.

proof. Let /ibea complex homomorphism of A, and define </>(x) =

h(x*). Properties (1) to (3) of Definition 11.14 show that 4> is a complex

homomorphism. Hence <j> is continuous. Suppose xn -? x and x* -? y

in A. Then

h(x*) = <t>{x) = lim 4>{xn) = lim h(x*) = h(y).

Since A is semisimple, y
= x*. Hence x -? x* is continuous, by the

closed graph theorem. ////

11.17 Definition A Banach algebra A with an involution x->x* that

satisfies

(1) ||xx*|| = ||x||2

for every x e A is called a B*-algebra.
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Note that ||x||2 = ||xx*|| < ||x||||x*|| implies ||x|| < ||x*||, hence also

||x*|| < ||x**|| = ||x||.

Thus

(2) ||x*|| = ||x||

in every £*-algebra. It also follows that

(3) ||xx*|| = ||x||||x*||.

Conversely, (2) and (3) obviously imply (1).
The following theorem is the key to the proof of the spectral theorem

that will be given in Chapter 12.

11.18 Theorem (Gelfand-Naimark) Suppose A is a commutative B*-

algebra, with maximal ideal space A. The Gelfand transform is then an

isometric isomorphism of A onto C(A), which has the additional property that

(1) h(x*) = ~hjx) (xe^lieA),

or, equivalently, that

(2) (x*)A = * (x g A).

In particular, x is hermitian if and only ifx is a real-valued function.

The interpretation of (2) is that the Gelfand transform carries the

given involution on A to the natural involution on C(A), which is

conjugation. Isomorphisms that preserve involutions in this manner are often called

?-isomorphisms.

proof. Assume first that u g A, u = u*, h g A. We have to prove that

h(u) is real. Put z = u + ite, for real t. If h(u) = cc + iff, with a and /?

real, then

h(z) = a + i(p + t), zz* = u2 + t2e,

so that

0L2+(p+t)2 = \h(z)\2< \\Z\\2= \\ZZ*\\ < ||M||2 + t2,

or

(3) a2 + p2 + 2pt < \\u\\2 (-oo<t<oo).

By (3), j8 = 0; hence h(u) is real.

If x g A, then x = u + iv, with u = u*, v = v*. Hence x* =

u
— iv. Since u and v are real, (2) is proved.

Thus A is closed under complex conjugation. By the Stone-

Weierstrass theorem, A is therefore dense in C(A).
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If xeA and y
= xx*, then y

= y* so that \\y2\\ = \\y\\2. It

follows, by induction on n, that \\ym\\ = \\y\\m for m = 2". Hence

IIPII oo

= II^IIj by the spectral radius formula and (c) of Theorem 11.9.

Since y
= xx*, (2) implies that y

= | x |2. Hence

\mi = \\n„ = \\y\\ = \\xx*w = \\x\\\

or || x || ^

= ||x||. Thus x -? 3c is an isometry. Hence A is closed in C(A).
Since A is also dense in C(A), we conclude that A = C(A). This

completes the proof. ////

The next theorem is a special case of the one just proved. We shall

state it in a form that involves the inverse of the Gelfand transform, in order

to make contact with the symbolic calculus.

11.19 Theorem // A is a commutative B*-algebra which contains an

element x such that the polynomials in x and x* are dense in A, then the

formula

(1) («P/)A=/oi

defines an isometric isomorphism *¥ of C(a(x)) onto A which satisfies

(2) ¥/=(¥/)*

for every fe C(ct(x)). Moreover, iff(X) = kon o(x), then x¥f= x.

proof. Let A be the maximal ideal space of A. Then x is a continuous

function on A whose range is <j(x). Suppose hx e A, h2 e A, and

^(/ij = x(h2), that is, hx(x) = h2(x). Theorem 11.18 implies then that

hx(x*) = h2(x*). If P is any polynomial in two variables, it follows that

h^Pix, x*)) = h2(P(x, x*)),

since h1 and h2 are homomorphisms. By hypothesis, elements of the

form P(x, x*) are dense in A. The continuity of h1 and h2 implies
therefore that hx(y) = h2(y) for every y e A. Hence h1 = h2. We have

proved that x is one-to-one. Since A is compact, it follows that x is a

homeomorphism of A onto a(x).
The mapping/-?/o x is therefore an isometric isomorphism of

C(a(xj) onto C(A) which also preserves complex conjugation.

Each/o x is thus (by Theorem 11.18) the Gelfand transform of a

unique element of A which we denote by *¥f and which satisfies

11^/11 = ll/lloo- Assertion (2) comes from (2) of Theorem 11.18. If

f{X) = I, then/ o x =

x, so that (1) gives ¥/ = x. ////

Remark. In the situation described by Theorem 11.19, it makes

perfectly good sense to write f(x) for the element of A whose Gelfand
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transform is / o x. This notation is indeed frequently used. It extends

the symbolic calculus (for these particular algebras) to arbitrary
continuous functions on the spectrum of x, whether they are holomorphic
or not.

The existence of square roots is often of special interest, and in

algebras with involution one may ask under what conditions hermitian

elements have hermitian square roots.

11.20 Theorem Suppose A is a commutative Banach algebra with an

involution, x g A, x = x*, and a(x) contains no real X with X < 0. Then there

exists y g A with y
= y* and y2 = x.

Note that the given involution is not assumed to be continuous. This

will give us an opportunity to use the radical of A. We shall see later, in

Theorem 11.26, that commutativity can be dropped from the hypotheses.
This will be used in the proof of Theorem 11.31.

proof. Let Q be the complement (in <p) of the set of all nonpositive
real numbers. There exists /e H(Q) such that/2(/l) = X, and/(l) = 1.

Since <j(x) c Q, we can define y g A by

(l) y =/M,

as in Definition 10.26. Then y2 = x, by Theorem 10.27. We will prove

that y* =

y.

Since Q is simply connected, Runge's theorem furnishes

polynomials Pn that converge to /, uniformly on compact subsets of Q.

Define Qn by

(2) 2Qn(X) = Pn(X) + Pn(X).

Since f(X) =f(X), the polynomials Qn converge to / in the same

manner. Define

(3) yn
= Qn(x) (n= 1,2,3,...).

By (2), the polynomials Qn have real coefficients. Since x = x*, it

follows that yn
= y*. By Theorem 10.27,

(4) y=\imyn,
n->ao

since Qn ->f, so that Qn(x) -+f(x). If the involution were assumed to be

continuous, the set of hermitian elements would be closed, and y* =

y

would follow directly from (4).
Let R be the radical of A. Let n: A -? A/R be the quotient map.
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If n(x) = n(y) and z = x —

y, then z e R\ hence z* e R because

p(z*) = p(z) = 0 (see Theorem 11.15), and therefore n(x*) = n(y*). This

shows that the formula

(5) Wfl)]* = *(«*) (a e A)

defines an involution in A/R. If a e A is hermitian, so is n(a). Since rc is

continuous, n(yn) -? 71(3;). Since A/R is isomorphic to v4 (Theorem

11.9), A/R is semisimple, and therefore every involution in A/R is

continuous (Theorem 11.16). It follows that n(y) is hermitian. Hence

n(y) = n(y*).
We conclude that y* —

y lies in the radical of A.

By Theorem 11.15, y
= u + iv, where u = u* and v = v*. We just

proved that v e R. Since x = y2, we have

(6) x = u2 - v2 + 2iuv.

Let /i be any complex homomorphism of A. Since v e R, h(v) = 0.

Hence h(x) = [h{u)~\2. By hypothesis, 0 £ (x(x). Thus h(x) ^ 0; hence

/i(m) ^ 0. By Theorem 11.5, u is invertible in A. Since x = x*, (6)

implies that ui; = 0. Since i; = u-1(ui;), we conclude that v = 0. This

completes the proof. ////

Remark. If a(x) c (0, oo), then also o(y) c (0, oo). This follows from

(1) (the definition of y) and the spectral mapping theorem.

Applications to Noncommutative Algebras

Noncommutative algebras always contain commutative ones. Their

presence can sometimes be exploited to extend certain theorems from the

commutative situation to the noncommutative one. On a trivial level, we have

already done this: In the elementary discussion of spectra, our attention

was usually fixed on one element x g A; the (closed) subalgebra A0 of A

that x generates is commutative, and much of the discussion took place
within A0. One possible difficulty was that x might have different spectra

with respect to A and A0. There is a simple construction (Theorem 11.22)
that circumvents this. Another device (Theorem 11.25) can be used when A

has an involution.

11.21 Centralizers If S is a subset of a Banach algebra A, the central-

izer of S is the set

T(5) = {x g A: xs = sx for every s g 5}.

We say that S commutes if any two elements of S commute with each other.

We shall use the following simple properties of centralizers.
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(a) T(S) is a closed subalgebra of A.

(b) scrro

(c) IfS commutes, then r(r(5)) commutes.

Indeed, if x and y commute with every s g S, so do kx, x + y, and xy,

since multiplication is continuous in A, V(S) is closed. This proves (a). Since

every s g S commutes with every x g V(S), (b) holds. If S commutes, then

S c T(5), hence V(S) ==> T(r(5)), which proves (c), since V(E) obviously
commutes whenever T(E) c E.

11.22 Theorem Suppose A is a Banach algebra, S a A, S commutes, and

B = r(r(5)). Then B is a commutative Banach algebra, S a B, and oB(x) =

aA(x)for every x g B.

proof. Since e g B, Section 11.21 shows that B is a commutative

Banach algebra that contains S. Suppose x e B and x is invertible

in A. We have to show that x_1gB. Since x g B, xy
=

yx for

every y g T(S); hence y
= x~*yx, yx~1=x~1y. This says that

x-16r(r(S)) = B. ////

11.23 Theorem Suppose A is a Banach algebra, x g A, y e A, and

xy
=

yx. Then

o(x + y) c a(x) + a(y) and &(xy) c (j(x)(j(y).

proof. Put S = {x, y}; put B = T(T(S)). Then x + y g B, xy g B, and

Theorem 11.22 shows that we have to prove that

aB(x + y) c aB(x) + aB{y) and o^xy) c cx^x)^);).

Since £ is commutative, aB(z) is the range of the Gelfand

transform z, for every z g B. (The Gelfand transforms are now functions on

the maximal ideal space of B.) Since

(x + y)A = x + y and (xy)A =

xy,

we have the desired conclusion. ////

11.24 Definition Let A be an algebra with an involution. If x g A and

xx* = x*x, then x is said to be normal. A set S a A is said to be normal if S

commutes and if x* e S whenever x g S.

11.25 Theorem Suppose A is a Banach algebra with an involution, and B

is a normal subset of A that is maximal with respect to being normal. Then
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(a) B is a closed commutative subalgebra of A, and

(b) aB(x) = (TA(x)for every x g B.

Note that the involution is not assumed to be continuous but that B

nevertheless turns out to be closed.

proof. We begin with a simple criterion for membership in B: If
x g A, if xx* = x*x, and if xy

= yxfor every y g B, then x g B.

For if x satisfies these conditions, we also have xy* = y*x for all

y g B, since B is normal, and therefore x*y = yx*. It follows that

B u {x, x*} is normal. Hence x g B, since B is maximal.

This criterion makes it clear that sums and products of members

of B are in B. Thus B is a commutative algebra.

Suppose xn g B and xn -? x. Since xny
=

yxn for all y g B, and

multiplication is continuous, we have xy
=

yx and therefore also

x*y = (y*x)* = (xy*)* = yx*.

In particular, x*xn = xnx* for all n, which leads to x*x = xx*. Hence

x g B, by the above criterion. This proves that B is closed and

completes (a).
Note also that e g B. To prove (b), assume x g B, x~

1
g A. Since

x is normal, so is x~ \ and since x commutes with every y g B, so does

x~\ Hence x"1 g B. ////

Our first application of this is a generalization of Theorem 11.20:

11.26 Theorem The word "commutative" may be dropped from the

hypothesis of Theorem 11.20.

proof. By HausdorfFs maximality theorem, the given hermitian

(hence normal) x g A lies in some maximal normal set B. By Theorem

11.25 we can apply Theorem 11.20 with B in place of A. ////

Our next application of Theorem 11.25 will extend some

consequences of Theorem 11.18 to arbitrary (not necessarily commutative) B*-

algebras.

11.27 Definition In a Banach algebra with involution, the statement

"x > 0" means that x = x* and that a(x) c [0, oo).

11.28 Theorem Every B*-algebra A has the following properties:



CHAPTER 11: COMMUTATIVE BANACH ALGEBRAS 295

(a) Hermitian elements have real spectra.

(b) Ifx g A is normal, then p(x) = \\x\\.

(c) Ify e A, then p(yy*) = \\y\\2.

(d) Ifu g A, v g A, u > 0, and v > 0, then u + v > 0.

(e) IfyeA, then yy* > 0.

(/) lfy G ^>tnen e + yy* *s invertible in A.

proof. Every normal x g A lies in a maximal normal set B a A. By
Theorems 11.18 and 11.25, B is a commutative £*-algebra which is

isometrically isomorphic to its Gelfand transform B = C(A) and which

has the property that

(1) <x(z) = 2(A) (z g B).

Here a(z) is the spectrum of z relative to v4, A is the maximal ideal

space of B, and z(A) is the range of the Gelfand transform of z,

regarded as an element of B.

If x = x*, Theorem 11.18 shows that x is a real-valued function

on A. Hence (1) implies (a).
For any normal x, (1) implies p(x) = HxH^. Also, HxH^ = ||x||,

since B and B are isometric. This proves (b).
If y g A, then yy* is hermitian. Hence (c) follows from (fr), since

p(yy*)=\\yy*\\ = \\y\\2.

Suppose now that u and v are as in (d). Put a = ||m||, /? = ||t;||,
w = M + t;, y

= a + j8. Then <x(u) c [0, a], so that

(2) a((xe -

u) c [0, a]

and (b) implies therefore that \\oce — u\\ < a. For the same reason,

lljfe - v\\ < p. Hence

(3) Hye- w|| <y.

Since w = w*, (a) implies that a(ye — w) is real. Thus

(4) a(ye-w)c: [-y, y],

because of (3). But (4) implies that <x(w) c [0, 2y]. Thus w > 0, and (J)
is proved.

We turn to the proof of (e). Put x = yy*. Then x is hermitian,

and if B is chosen as in the first paragraph of this proof, then x is a

real-valued function on A. By (1), we have to show that x > 0 on A.

Since B = C(A), there exists z g B such that

(5) z = | x | —

x on A.
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Then z = z*, because z is real (Theorem 11.18). Put

(6) zy
= w = u + iv,

where u and v are hermitian elements of A. Then

(7) ww* = zyy*z* = zxz = z2x

and therefore

(8) w*w = 2u2 + 2v2 - ww* = 2u2 + 2v2 - z2x.

Since u = u*, <x(u) is real, by (a), hence u2 > 0, by the spectral mapping
theorem. Likewise v2 > 0. By (5), z2x < 0 on A. Since z2x g B, it

follows from (1) that — z2x > 0. Now (8) and (d) imply that w*w > 0.

But o{ww*) c a(w*w) u {0} (Exercise 4, Chapter 10). Hence

ww* > 0. By (7), this means that z25c > 0 on A. By (5), this last

inequality holds only when x = \ x \. Thus x > 0, and (e) is proved.

Finally, (/) is a corollary of (e). ////

Equality of spectra can now be proved in yet another situation, in

which commutativity plays no role.

11.29 Theorem Suppose A is a B*-algebra, B is a closed suhalgehra of

A,e g B, and x* g Bfor every x g B. Then oA(x) = aB(x)for every x g B.

proof. Suppose x e B and x has an inverse in A. We have to show

that x_1 g B. Since x is invertible in A, so is x*, hence also xx*, and

therefore 0 £ aA(xx*). By (a) of Theorem 11.28, aA(xx*) c (—oo, oo),
so that aA(xx*) has a connected complement in (p. Theorem 10.18

shows now that aB(xx*) = aA(xx*). Hence (xx*)-1 g B, and finally
x"1 =x*(xxT1 gB. ////

Positive Functionals

11.30 Definition A positive functional is a linear functional F on a

Banach algebra A with an involution, that satisfies

F(xx*) > 0

for every x g A. Note that A is not assumed to be commutative and that

continuity of F is not postulated. (The meaning of the term "positive"

depends of course on the particular involution that is under consideration.)

11.31 Theorem Every positive functional F on a Banach algebra A with

involution has the following properties:
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(a) F(x*)=~F&).

(b) \F(xy*)\2<F(xx*)F(yy*).

(c) | F(x) |2 < F(e)F(xx*) < F(e)2p(xx*).

(d) | F(x) | < F(e)p(x)for every normal x e A.

(e) F is a bounded linear functional on A. Moreover, \\F\\ = F(e) if A is

commutative, and \\F\\ < (l1/2F(e) if the involution satisfies ||x*|| < /?||x||

for every x e A.

proof. If x g A and y g A, put

(1) p
= F(xx*), q

= F(yy*), r = F(xy*), s = F(yx*).

Since F[(x + (xy)(x* + ay*)] > 0 for every aef,

(2) p + ar + as + \oc\2q > 0.

With a = 1 and a = i, (2) shows that s = r and i(s — r) are real. Hence

s = r. With y
=

e, this gives (a).
If r = 0, (b) is obvious. If r ^ 0, take a = tr/1 r \ in (2), where t is

real. Then (2) becomes

(3) p + 2|r|t + qt2 > 0 (-oo<t<oo),

so that | r |2 < pg. This proves (b).
Since ee* =

e, the first half of (c) is a special case of (b). For the

second half, pick t > p(xx*). Then a(te
— xx*) lies in the open right

half-plane. By Theorem 11.26, there exists u g A, with u = u*, such

that u2 = te — xx*. Hence

(4) tF(e) - F(xx*) = F(u2) > 0.

It follows that

(5) F(xx*) < F(e)p(xx*).

This completes part (c).
If x is normal, i.e., if xx* = x*x, Theorem 11.23 implies that

a(xx*) c a(x)a(x*), so that

(6) p(xx*) < p(x)p(x*) = p(x)2.

Clearly, (d) follows from (6) and (c).
If A is commutative, then (d) holds for every x e A, so that

\\F\\=F(e). If ||x*|| <j8||x||, (c) implies \F(x)\ < F(e)p1/2\\x\\, since

p(xx*) < ||x|| ||x*||. This disposes of the special cases of part (e).

Before turning to the general case, we observe that F(e) > 0 and

that F(x) = 0 for every x g A if F(e) = 0; this follows from (c). In the
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remainder of this proof we shall therefore assume, without loss of

generality, that

(7) F(e)=\.

Let H be the closure of H, the set of all hermitian elements of A.

Note that H and iH are real vector spaces and that A = H + iH, by
Theorem 11.15. By (d), the restriction of F to H is a real-linear

functional of norm 1, which therefore extends to a real-linear functional O

on H, also of norm 1. We claim that

(8) <&(y) = 0 if y e H n iH,

for if y = lim un
= lim (ivn), where un e H and vn g H, then u2 -? y2,

v\ -? - y2, so that (c) and (d) imply

(9) | F(uJ |2 < F(u2) < F(u2 + i£) < ||u2 + i£|| - 0.

Since O(y) = lim F(un), (8) is proved.

By Theorem 5.20, there is a constant y < oo such that every

x g v4 has a representation

(10) e H, x2 eH, HxJ + ||x2|| <y||x||.

If x = u + w, with u g //, v e H, then xx
—

u and x2
—

u lie in

H n iH. Hence (8) yields

(11) F(x) = F(m) + iF(v) = fl^Xi) + *<D(x2),

so that

(12) |F(x)| < IOCxJI + |(D(x2)| < HxJI + ||x2|| < y||x||.

This completes the proof. ////

Exercise 13 contains further information about part (e).

Examples of positive functional—and a relation between them and

positive measures—are furnished by the next theorem. It contains

Bochner's classical theorem about positive-definite functions as a very

special case. The identifications that lead from one to the other are

indicated in Exercise 14.

11.32 Theorem Suppose A is a commutative Banach algebra, with

maximal ideal space A, and with an involution that is symmetric in the sense

that

(1) h(x*) = ~hjx] (xeA,heA).

Let K be the set of all positive Junctionals F on A that satisfy F(e) < 1.
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Let M be the set of all positive regular Borel measures \i on A that satisfy

//(A) < 1. Then the formula

= i*'(2) F(x) = \x dfi (x e A)

establishes a one-to-one correspondence between the convex sets K and M,

which carries extreme points to extreme points.

Consequently, the multiplicative linear functionals on A are precisely the

extreme points of K.

proof. If fi g M and F is defined by (2), then F is obviously linear,

and F(xx*) = J |3c|2 d[i > 0, because (1) implies that (xx*)A = |x|2.
Since F(e) = //(A), F g K.

If F g K, then F vanishes on the radical of A, by (d) of Theorem

11.31. Hence there is a functional F on A that satisfies F(x) = F(x) for

all x g A. In fact,

(3) | F(x)| = | F(x)| < F(e)p(x) = F(e)\\x\\„ (x g A).

by (d) of Theorem 11.31. It follows that F is a linear functional of

norm F(e) on the subspace A of C(A). This extends to a functional on

C(A), with the same norm, and now the Riesz representation theorem

furnishes a regular Borel measure //, with ||/x|| = F(e), that satisfies (2).
Since

-!•(4) /z(A) =

J
2 i/x = F(g) =

we see that \i > 0. Thus n e M.

By (1), v4 satisfies the hypotheses of the Stone-Weierstrass

theorem and is therefore dense in C(A). This implies that \i is uniquely
determined by F.

One extreme point of M is 0; the others are unit masses

concentrated at points h e A. Since every complex homomorphism of A has

the form x -? x(h% for some h e A, the proof is complete. ////

We conclude by showing that the extreme points of K are

multiplicative even if (1) is not satisfied.

11.33 Theorem Let K be the set of all positive functionals F on a

commutative Banach algebra A with an involution that satisfy F(e) < 1. // F g K,

then each of the following three properties implies the other two:

(a) F(xy) = F(x)F(y)for all x and y e A.
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F(xx*) = F(x)F(x*)for every x e A.

F is an extreme point of K.

proof. It is trivial that (a) implies (b). Suppose (b) holds. With x = e,

(b) shows that F(e) = F(e)2, and so F(e) = 0 or F(e) = 1. When

F(e) = 0, then F = 0, by (c) of Theorem 11.31, and so F is an extreme

point of K. Assume F(e) = 1, and 2F = F1+F2,F1e K, F2 g K. We

have to show that F1 = F. Clearly, Fx(e) = 1 = F(e). If x g A is such

that F(x) = 0, then

(1) | Fx(x) |2 < F^xx*) < 2F(xx*) = 2F(x)F(x*) = 0,

by (b) and Theorem 11.31. Thus F1 coincides with F on the null space

of F and at e. It follows that F1 = F. Hence (b) implies (c).
To show that (c) implies (a), let F be an extreme point of K.

Either F(e) = 0, in which case there is nothing to prove, or F(e) = 1.

We shall first prove a special case of (a), namely,

(2) F(xx*y) = F(xx*)F(y) (x g A, y g A).

Choose x so that ||xx*|| < 1. By Theorem 11.20, there exists z g A,

z = z*, such that z2 = e
— xx*. Define

(3) OM = F(xx*y) (y g A).

Then

(4) ®(yy*) = F(xx*yy*) = F[(xy)(xy)*] > 0,

and also

(5) (F
-

OXyy*) = F[(<?
-

xx*)yy*] = F(z2yy*) = F\_(yziyzf\ > 0.

Since

(6) 0 < <b(e) = F(xx*) < F(e)||xx*|| < 1,

(4) and (5) show that both O and F - O are in K. If O(e) = 0, then

O = 0. If O(e) > 0, (6) shows that

<7> ' = «*)•^ + (F-*xe> -l&E^y
a convex combination of members of K. Since F is extreme, we

conclude that

(8) O = 0>(e)F.

Now (2) follows from (8) and (3).

Finally, the passage from (2) to (a) is accomplished by any of the

following identities, which are satisfied by every involution:
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// n = 3, 4, 5, ..., if co =

exp (2ni/n), if x e A, and if zp
=

e + co~px, then

(9) x =
- t upzpz*.
"

P=i

The proof of (9) is a straightforward computation which uses the

fact that

(10) t ™p = t ™2P = 0. ////
P=i P=i

Exercises

1. Prove Proposition 11.2.

2. State and prove an analogue of Wiener's lemma 11.6 for power series that

converge absolutely on the closed unit disc.

3. If X is a compact Hausdorff space, show that there is a natural one-to-one

correspondence between closed subsets of X and closed ideals of C(X).

4. Prove that the polynomials are dense in the polydisc algebra A(Un). (See
Theorem 11.7.) Suggestion: If/e A(Un), 0 < r < 1, and/r is defined by/r(z) =

f(rz\ then fr is the sum of an absolutely (hence uniformly) convergent multiple

power series on Un.

5. Suppose A is a commutative Banach algebra, x e A, and / is holomorphic in

some open set Q cz (p that contains the range of x. Prove that there exists y e A

such that y =fo x, that is, such that h(y) =f(h(x)) for every complex homo-

morphism h of A. Prove that y is uniquely determined by x and / if A is semi-

simple.

6. Suppose A and B are commutative Banach algebras, B is semisimple, \j/\ A-* B

is a homomorphism whose range is dense in B, and a: AB -? A^ is defined by

(a/iXx) = f#M) (xeA,he AB).

Prove that a is a homeomorphism of AB onto a compact subset of A^. [The fact

that \j/(A) is dense in B implies that a is one-to-one and that the topology of AB
is the weak topology induced by the Gelfand transforms of the elements ^(x),
for x g A]

Let A be the disc algebra, let B = C(K), where K is an arc in the unit disc,

and let \j/ be the restriction mapping of A into B. This example shows that a(AB)

may be a proper subset of A^, even if \j/ is one-to-one.

Find an example in which \j/(A) = B but a(AB) ^ A^.

7. In Example 11.13(6) it was asserted that A ^ C(A). Find several proofs of this.

8. Which properties of Lebesgue measure are used in Example 11.13(/)? Can

Lebesgue measure be replaced by any positive measure, without changing any

of the results?

Supply the details for the last paragraph in Example 11.13(/).

9. Let C be the algebra of all continuously differentiable complex functions on the

unit interval [0, 1], with pointwise multiplication, normed by
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11/11 = 11/11 CO +11/1 CO'

(a) Show that C is a semisimple commutative Banach algebra. Find its

maximal ideal space.

(b) Fix p, 0 < p < 1; let J be the set of all/e C for which/(p) =/'(p) = 0. Show

that J is a closed ideal in C and that C'/J is a two-dimensional algebra
which has a one-dimensional radical. (This gives an example of a semisimple

algebra with a quotient algebra that is not semisimple.) To which of the two

algebras described in Exercise 5 of Chapter 10 is C/J isomorphic?
10. Let A be the disc algebra. Associate to each fe A a function /* e A by the

formula

/*(*) =m

Then/->/* is an involution on A.

(a) Does this involution turn A into a B*-algebra?

(b) Does (j{ff*) always lie in the real axis?

(c) Which complex homomorphisms of A are positive functional, with respect

to this involution?

(d) If fi is a positive finite Borel measure on [—1, 1], then

/-r f(t)dM)

is a positive functional on A. Are there any others?

11. Show that commuting idempotents have distance >1. Explicitly, if x2 =

x,

y2 =

y, xy
=

yx for some x and y in a Banach algebra, then either x =

y or

II x
—

y || > 1. Show that this may fail if xy ^ yx.

12. If xy
=

yx for some x and y in a Banach algebra, prove that

p(xy) < p{x)p(y) and p(x + y) < p(x) + p(y).

13. Let t be a large positive number, and define a norm on (p2 by

l|w|| = |wj + t|w2| if w = (w1, w2).

Let ^4 be the algebra of all complex 2-by-2 matrices, with the corresponding

operator norm:

||y||=max{||y(w)||:||w|| = l} (y e A).

For y e A, let y* be the conjugate transpose of y. Consider a fixed x e A,

namely,

-C»)
Prove the following statements.

(a) ||x(w)||=;||w||; hence ||x|| = t.

(b) a(x) = {t,-t} = (j(x*).

(c) a{xx*) = (1, tA) = <j{x*x).

(d) <t(x + x*) = {1 + t2, -I-*2}.
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(e) Therefore commutativity is required in Theorem 11.23 and in Exercise 12.

(/) If F(y) is the sum of the four entries in y, for y e A, then F is a positive
functional on A.

(g) The equality ||F|| = F(e) [see (e) of Theorem 11.31] does not hold, because

F{e) = 2 and F(x) = 1 + t\ so that ||F|| > t.

(h) If K is the set of all positive functional f on A that satisfy f(e) < 1 (as in

Theorem 11.33), then K has many extreme points, although 0 is the only

multiplicative linear functional on A. Commutativity is therefore required in

the implication (c) -» (a) of Theorem 11.33.

14. A complex function 0, defined on Rn, is said to be positive-definite if

r

X CiCjtftXi-x^O

for every choice of xu..., xr, in R" and for every choice of complex numbers

cl9...,cr.

{a) Show that | cf>{x) | < 0(0) for every x e Rn.

(b) Show that the Fourier transform of every finite positive Borel measure on Rn

is positive-definite.

(c) Complete the following outline of the converse of (b) (Bochner's theorem): //

(j> is continuous and positive-definite, then <j> is the Fourier transform of a finite

positive Borel measure.

Let A be the convolution algebra L1 (Rn), with a unit attached, as

described in (d) of Section 10.3 and (e) of Section 11.13. Define/(x) =/(
—

x).
Show that

/+ (xd-+f+ ad

is an involution on A and that

/+«£-> I f(t>dmn + *(t>(0)

is a positive functional on A. By Theorem 11.32 and (e) of Section 11.13,

there is a positive measure \i on the one-point compactification A of Rn, such

that

f f<f> dmn + a#)) = f (/+a)«i.
JR" JA

If a is the restriction of \i to R", it follows that

f f<f>dmn= \ fda
jRn JRn

for every/e l}(Rn). Hence (f> = a. (Actually, /x is already concentrated on Rn,

so that a = fx.)

(d) Let P be the set of all continuous positive-definite functions <f> on Rn that

satisfy 0(0) < 1. Find all extreme points of this convex set.

15. Let A be the maximal ideal space of a commutative Banach algebra A. Call a
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closed set /? cz A an A-boundary if the maximum of | x | on A equals its

maximum on ft for every x e A. (Trivially, A is an ,4-boundary.)
Prove that the intersection dA of all ^-boundaries is an ,4-boundary.

dA is called the Shilov boundary of A. The terminology is suggested by the

maximum modulus property of holomorphic functions. For instance, when A is

the disc algebra, then dA is the unit circle, which is the topological boundary of

A, the closed unit disc.

Outline of proof: Show first that there is an ,4-boundary fi0 which is

minimal in the sense that no proper subset of fi0 is an ,4-boundary. (Partially
order the collection of ^-boundaries by set inclusion, etc.) Then pick h0 e fi0,

pick xu ..., xn e A with x,(/i0) = 0, and put

V = {heA: \xtfi)\ < 1 for 1 < i < n).

Since /?0 is minimal, there exists x e A with Hxll^ = 1 and | x(h) | < 1 on fi0 — V.

If y
= xm and m is sufficiently large, then | x, y | < 1 on fi0, for all i. Hence

PiyIIoo < 1- Conclude from this first that \y(h)\ = WyW^ only in V, hence that

V intersects every y4-boundary /?, and finally that h0 e p. Thus fi0 cz ft and

16. Suppose A is a Banach algebra, m is an integer, m > 2, K < oo, and

Pir<xiixi

for every x e A. Show that there exist constants Kn < oo, for n = 1, 2, 3, ...,

such that

||x|r<KJ|xl (xeA).

(This extends Theorem 11.12.)

17. Suppose {a)n} (—oo < n < oo) are positive numbers such that co0= 1 and

a)m+n<wmwn

for all integers m and n. Let A = A{a)n} be the set of all complex functions /on
the integers for which the norm

11/11= Zl/MK
—

00

is finite. Define multiplication in A by

(f*9M= I f(n-k)g(k).
k=-cx>

(a) Show that each A{a)n) is a commutative Banach algebra.

(b) Show that R+ = limM^00 {con)1,n exists and is finite, by showing that R+ =

infM,oK)1/w.
(c) Show similarly that R_ = lim^^ (co_„)"1/w exists and that R_ <R+.

{d) Put A = {X e (p\ R_ < \k\ < R
+ }. Show that A can be identified with the

maximal ideal space of A{a)n) and that the Gelfand transforms are

absolutely convergent Laurent series on A.
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(e) Consider the following choices for {co„}:
(0 <»n

= I-

ill) W„
= 2\

{Hi) o)n
= 2" if n > 0, a)n

= 1 if n < 0.

(iv) a)n
= 1 + In1.

(v) con
= 1 + In2 if n > 0, a)n

= 1 if n < 0.

For which of these is A a circle? For which choices is A{a)n} self-adjoint, in

the sense that A is closed under complex conjugation?

(/) Is A{a)n) always semisimple?

(g) Is there an A{a>n}, with A the unit circle, such that A consists entirely of

infinitely differentiate functions?

18. Let A be the maximal ideal space of L?{m), as in Section 11.13. Show that

(a) A has no isolated point, and

(b) A contains no convergent sequence of distinct points. Hint: If pu p2, p3, ...,

are distinct points in A, none of which is a limit point of the others, and if

{w,} is any bounded sequence of numbers, then there exist pairwise disjoint

open sets Vt in A such that pt e V-x, and there exists a function q> e C(A) such

that <p
=

Wi on Vt.

19. Let n°(m) be as above and prove: If/„ e L°(m) and/„ -> 0 in the weak topology
of L?(m\ then J£ \fn\p dm^O for every p e (0, oo). Show, by constructing an

example, that the converse is false.

20. Prove the following partial converse of Theorem 11.31: If F is a bounded linear

functional on a B*-algebra A, and ||F|| = F(0) = 1, then F is positive.

Suggestion: Choose x e A, \\x\\ < 1, put F(xx*) = a + PU

yt
= xx* - (i + it)e,

for —

oo < t < oo. Use Theorem 11.28 to show that <j{xx*) <

therefore

[0, 1] and that

\F(yt)\<\\yt\\=p(yt)<\± + it\-

Proceed as in Lemma 5.26.

21. In (p2, let Kx consist of all points (eie, e~w), and let K2 consist of the points

(eie, eie), 0 < 6 < In. Of these circles, show that Kt is polynomially convex but

K2 is not. How about K3 = {(cos 0,sin 0): 0 < 0 < 2tt}?
22. Show that a 3-by-3 matrix M commutes with

[o
0

L°

0 1

0 0

0 0_

if and only if M =

a x y

0 z w

0 0 a

Deduce from this that centralizers (see Section 11.21) need not be commutative.
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Basic Facts

12.1 Definitions A complex vector space H is called an inner product

space (or unitary space) if to each ordered pair of vectors x and y in H is

associated a complex number (x, y), called the inner product or scalar

product of x and y, such that the following rules hold:

(a) (y, x) = (x, y). (The bar denotes complex conjugation.)

(b) (x + y9z) = (x, z) + (y, z).

(c) (ax, y) = a(x, y) if x g //, y g //, a g ^.

(d) (x, x) > 0 for all x g H.

(e) (x, x) = 0 only if x = 0.

For fixed y9 (x, y) is therefore a linear function of x. For fixed x, it is a

conjugate-linear function of y. Such functions of two variables are

sometimes called sesquilinear.
If (x, y) = 0, x is said to be orthogonal to y9 and the notation x _L y is

sometimes used. Since (x, y) = 0 implies (y, x) = 0, the relation _L is

symmetric. If E cz H and F a H, the notation £1F means that x _L y when-

306
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ever x g E and y g F. Also, E1 is the set of all y g H that are orthogonal to

every x g E.

Every inner product space can be normed by defining

11*11 =(*, *)1/2-

Theorem 12.2 implies this. If the resulting normed space is complete, it is

called a Hilbert space.

12.2 Theorem If x g H and y s H, where H is an inner product space,

then

(1) l(x,y)l<l|x||||y||

and

(2) l|x + y||<llx|| + ||y||.

Moreover

(3) ||y|| < ||Ax + y\\ for every X g $

if and only if x _L y.

proof. Put a = (x, y). A simple computation gives

(4) 0 < Ux + y\\2 = m2||x||2 + 2 Re (ad) + \\y\\2.

Hence (3) holds if a = 0. If x = 0, (1) and (3) are obvious. If x ^ 0, take

k= -a/||x||2. With this A, (4) becomes

(5) 0<||Ax + );||2=||y||2-!^.
11*11

This proves (1) and shows that (3) is false when a ^ 0. By squaring
both sides of (2), one sees that (2) is a consequence of (1). ////

Note: Unless the contrary is explicitly stated, the letter H will from

now on denote a Hilbert space.

12.3 Theorem Every nonempty closed convex set E a H contains a

unique x of minimal norm.

proof. The parallelogram law

(1) ||x + y\\2 + ||x
- y\\2 = 2\\x\\2 + 2\\y\\2 (x g H, y g H)

follows directly from the definition ||x||2 = (x, x). Put

(2) d = inf {||x||: xg E).
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Choose x„ g E so that ||xj -? d. Since \{xn + xm) g E, \\xn + xm||2 >

Ad2. If x and y are replaced by xn and xm in (1), the right side of (1)
tends to Ad2. Hence (1) implies that {xn} is a Cauchy sequence in H,

which therefore converges to some x g E, with ||x|| = d.

If y e E and \\y\\ = d, the sequence {x, y, x,y,...} must converge,

as we just saw. Hence y
= x. ////

12.4 Theorem If M is a closed sub space ofH, then

H = M®ML.

The conclusion is, more explicitly, that M and M1 are closed subspaces of

H whose intersection is {0} and whose sum is H. The space M1 is called the

orthogonal complement of M.

proof. If E c H, the linearity of (x, y) as a function of x shows that

E1 is a subspace of H, and the Schwarz inequality (1) of Theorem 12.2

implies then that E1 is closed.

If x g M and x e M1, then (x, x) = 0; hence x = 0. Thus

M n M1 = {0}.
If x g H, apply Theorem 12.3 to the set x

— M to conclude that

there exists x± e M that minimizes ||x
—

xj. Put x2
= x

—

xv Then

||x2|| < ||x2 + y\\ for all y g M. Hence x2 g M1, by Theorem 12.2.

Since x =

xx + x2, we have shown that M + M1 = H. ////

Corollary. lfM is a closed subspace ofH, then

(M1)1 = M.

proof. The inclusion M c (M1)1 is obvious. Since

M@ML = H = ML® (M1)1,

M cannot be a proper subspace of (M1)1. ////

We now describe the dual space H* of H.

12.5 Theorem There is a conjugate-linear isometry y -? A of H onto H*,

given by

(1) Ax = (x, y) (x g H).

proof. If y g H and A is defined by (1), the Schwarz inequality (1) of

Theorem 12.2 shows that AeH* and that ||A|| < || j;||. Since

(2) \\y\\2 = (y, y) = *y < \WW\yl

it follows that IIAII = ||v||.
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It remains to be shown that every A g H* has the form (1).
If A = 0, take y

= 0. If A # 0, let JT(\) be the null space of A.

By Theorem 12.4 there exists z g ^(A)1, z ^ 0. Since

(3) (Ax)z
-

(Az)x g JT(A) (x g //),

it follows that (Ax)(z, z)
—

(Az)(x, z) = 0. Hence (1) holds with y
=

(z,zy1(Az)z. /HI

12.6 Theorem // {x„} is a sequence of pairwise orthogonal vectors in H,

then each of the following three statements implies the other two.

OO

(a) Yj xn converges, in the norm topology of H.

«= i

(b) t WXnW2 < <»•

n=l

00

(c) Y, (xn > y) converges, for every y e H.

n=l

Thus strong convergence (a) and weak convergence (c) are equivalent
for series of orthogonal vectors.

proof. Since (x,, Xj) = 0ifi^ j, the equality

(1) II^ +
'-'

+ xJI^IIxJ^ +
'-'

+ IIxJI2

holds whenever n <m. Hence (b) implies that the partial sums of £ xn

form a Cauchy sequence in H. Since H is complete, (b) implies (a). The

Schwarz inequality shows that (a) implies (c). Finally, assume that (c)
holds. Define A„ e H* by

(2) Any= t(y>*d (yeH,n= 1,2,3,...).

By (c), {An};} converges for every y e H; hence {||AJ|} is bounded, by

the Banach-Steinhaus theorem. But

(3) ||AJ| = \\Xl +
• • •

+ x J = {llxj2 +
• • •

+ HxJ2}1'2.

Hence (c) implies (b). I///

Bounded Operators

In conformity with notations used earlier, @(H) will now denote the Banach

algebra of all bounded linear operators T on a Hilbert space H ^ {0},
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normed by

||T|| =sup {||Tx||:xetf, ||x|| < 1}.

We shall see that @(H) has an involution which makes it into a £*-algebra.
We begin with a simple but useful uniqueness theorem.

12.7 Theorem If T e @(H) and if (Tx, x) = 0 for every x e H, then

T = 0.

proof. Since (T(x + y), x + y) = 0, we see that

(1) (Tx, y) + (Ty, x) = 0 (x g H, y g H).

If y is replaced by iy in (1), the result is

(2) -i(Tx, y) + i(Ty, x) = 0 (x g tf, y g //).

Multiply (2) by i and add to (1), to obtain

(3) (Tx, y) = 0 (xeH,ye H).

With y
= Tx, (3) gives || Tx||2 = 0. Hence Tx = 0. ////

Corollary. IfS e ^(//), T g ^(//), an J

(5x, x) = (Tx, x)

for every x g H, then S = T.

proof. Apply the theorem to S — T. ////

Note that Theorem 12.7 would fail if the scalar field were R. To see

this, consider rotations in R2.

12.8 Theorem ///: H x H -+(p is sesquilinear and bounded, in the sense

that

(1) Af = sup{|/(x,y)|:||x|| = ||y|| = l}<oo,

then there exists a unique S g &(H) that satisfies

(2) /(x, y) = (x, Sy) (x e H, y e H).

Moreover, \\S\\ = M.

proof. Since |/(x, y)| < M||x|| ||y||, the mapping

x "?/(*, y)

is, for each y g //, a bounded linear functional on H, of norm at most

M||};||. It now follows from Theorem 12.5 that to each y g H corre-
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sponds a unique element Sy e H such that (2) holds; also,

\\Sy\\ < M||y||. It is clear that S: H -? H is additive. If a e <p, then

(x, S(ccy)) =/(x, ay) = a/(x, y) = a(x, Sy) = (x, ocSy)

for all x and y in //. It follows that S is linear. Hence S e ^(H), and

||S||<M.
But we also have

|/(x,y)| = |(x, Sy)|<||x||||Sy|| < ||x|| ||S||||y||,

which gives the opposite inequality M < \\S\\. ////

12.9 Adjoints If T g @(H), then (Tx, y) is linear in x, conjugate-linear
in y, and bounded. Theorem 12.8 shows therefore that there exists a unique
T* e @(H) for which

(1) (Tx, y) = (x, T*y) (x g //, y g //)

and also that

(2) l|T*|| = ||T||.

We claim that T -? T* is an involution on ^(//), that is, that the

following four properties hold:

(3) (T + 5)* = T* + S*.

(4) (aT)* = aT*.

(5) (ST)* = T*S*.

(6) T** = T.

Of these, (3) is obvious. The computations

(aTx, y) = a(Tx, y) = a(x, T*y) = (x, aT*y),

(STx, y) = (Tx, S*y) = (x, T*S*y\

(Tx, y) = (T*y9 x) = (y, T**x) = (T**x, y)

give (4), (5), and (6). Since

||Tx||2=(Tx, Tx) = (T*Tx, x) < ||T*T|| ||x||2

for every x g //, we have || T||2 < || T*T||. On the other hand, (2) gives

\\T*T\\ < ||T*||||T|| = ||T||2.

Hence the equality

(7) \\T*T\\ = \\T\\2

holds for every T g @(H).
We have thus proved that &(H) is a B*-algebra, relative to the

involution T -+ T* defined by (1).
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Note: In the preceding setting, T* is sometimes called the Hilbert

space adjoint of T, to distinguish it from the Banach space adjoint that was

discussed in Chapter 4. The only difference between the two is that in the

Hilbert space setting T -? T* is conjugate-linear instead of linear. This is

due to the conjugate-linear nature of the isometry described in Theorem

12.5. If T* were regarded as an operator on H* rather than on H, we would

be exactly in the situation of Chapter 4.

12.10 Theorem lfT e #(tf), then

JT(T*) = 0t(T)L and JT(T) = 0l(T*)L.

We recall that JT{T) and 0t(T) denote the null space and range of T,

respectively.

proof. Each of the following four statements is clearly equivalent to

the one that follows and/or precedes it.

(1) T*y = 0.

(2) (x, T*y) = 0 for every xe H.

(3) (Tx, y) = 0 for every x e H.

(4) y g 0t{T)\

Thus JT(T*) = 01{T)L. Since T** = T, the second assertion

follows from the first if T is replaced by T*. ////

12.11 Definition An operator T g 38(H) is said to be

(a) normal if TT* = T*T9

(b) self-adjoint (or hermitian) if T* = T,

(c) unitary if T*T = I = TT*, where / is the identity operator on H,

(d) a projection if T2 = T.

It is clear that self-adjoint operators and unitary operators are

normal. Most of the theorems obtained in this chapter will be about normal

operators.

This algebraic requirement, namely, that T should commute with its

adjoint, has remarkably strong analytic and geometric consequences.

12.12 Theorem An operator T g 08(H) is normal if and only if

(1) ||Tx|| = ||T*x||

for every x e H. Normal operators T have the following properties:
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(a) JT{T) = JT(T*).

(b) M{T) is dense in H if and only if T is one-to-one.

(c) T is invertible if and only if there exists S > 0 such that \\Tx\\ > S\\x\\

for every x g H.

(d) If Tx = (xx for some x g H, a g (£, then T*x = ax.

(e) If a and /? are distinct eigenvalues of T, then the corresponding eigen-

spaces are orthogonal to each other.

proof. The equalities

||Tx||2 = (Tx, Tx) = {T*Tx, x),

||T*x||2 = (T*x, T*x) = (TT*x, x),

combined with the corollary to Theorem 12.7, prove the first

statement, and (a) is an immediate consequence. Since 0t{J)L = jV(T*\ (a)

implies (b). If there is a 3 > 0 as in (c), then 0t{T) is closed, by
Theorem 1.26, and is dense, by (b); hence ${T) = H and T is

invertible. The converse follows from the open mapping theorem. To obtain

{d\ apply (a) to T — a/ in place of T. Finally, if Tx = ax and

Ty = Py, then (d) shows that

a(x, y) = (ax, y) = (Tx, y) = (x, T*y) = (x, py) = p(x, y).

Since a ^ /?, we conclude that x _L y. ////

12.13 Theorem IfUe @{H\ the following three statements are

equivalent.

(a) U is unitary.

{b) m{U) = H and (Ux, Uy) = (x, y)for allxe H,ye H.

(c) @{U) = H and \\ Ux\\ = \\x\\ for every x g H.

proof. If U is unitary, then 0t{JJ) = H because UU* = I. Also,
U*U = /, so that

(Ux, Uy) = (x, U*Uy) = (x, y).

Thus (a) implies (b). It is obvious that (b) implies (c). If (c) holds, then

{U*Ux9 x) = (Ux, Ux) = \\Ux\\2 = \\x\\2 = (x, x)

for every x g H, so that U*U = I. But (c) implies also that U is a

linear isometry of H onto H, so that U is invertible in ^(//). Since

U*U = UU'1 = U*9 and therefore U is unitary. ////
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Note: The equivalence of (a) and (b) shows that the unitary operators

are precisely those linear isomorphisms of H that also preserve the inner

product. They are therefore the Hilbert space automorphisms.
The equivalence of (b) and (c) is also a corollary of Exercise 2.

The preceding proof shows that an operator T g 08(H) is an isometry

(i.e., satisfies ||Tx|| = ||x|| for every x g H) if and only if T*T = I. This is

one half of what is needed to be unitary, but it is not enough. For example,
let T be the right shift SR on if2 (see Exercise 2, Chapter 10) whose adjoint is

easily seen to be SL.

12.14 Theorem Each of the following four properties of a projection
P g &(H) implies the other three:

(a) P is self-adjoint.

(b) P is normal

(c) ®{P) = JT(P)L.

(d) (Px, x) = || Px ||2 for every x g H.

Moreover, two self-adjoint projections P and Q have M(P) _L $(Q) if
and only if PQ = 0.

Property (c) is usually expressed by saying that P is an orthogonal

projection.

proof. It is trivial that (a) implies (b). Statement (a) of Theorem 12.12

shows that ^V(P) = M(P)L if P is normal; since P is a projection,

M(P) = JT(1
-

P), so that M(P) is closed. It now follows from the

corollary to Theorem 12.4 that (b) implies (c).
If (c) holds, every x g H has the form x =

y + z, with ylz,

Py = 0, Pz = z. Hence Px =

z, and (Px, x) = (z, z). This proves (d).

Finally, assume (d) holds. Then

||Px||2 = (Px, x) = (x, P*x) = (P*x, x).

The last equality holds because ||Px||2 is real and (x, P*x) = ||Px||2.
Thus (Px, x) = (P*x, x), for every x g H, so that P = P*, by Theorem

12.7. Hence (d) implies (a).
The identity (Px, Qy) = (x, PQy) proves the last assertion. ////

12.15 Theorem

(a) If U is unitary and X g o(U), then \ X \ = 1.

(b) IfS is self-adjoint and X g a(S), then X is a real number.
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proof, (a) Theorem 12.13 shows that \\U\\ = 1, and therefore \X\ < 1

if X g <j(U). On the other hand, if | X \ < 1, then ||At/*|| < 1; hence

XI - U = -

U(I -

XU*)

is invertible in 08(H) (Theorem 10.7), and therefore X $ o(U).

(b) Suppose S = S*, X = (x + ipe <x(S). Put SX = S- XI. A

simple calculation gives

||SAx||2= ||5x-ax||2 +j32||x||2,

so that ||SAx|| > | j8|||x||. If p ^ 0, it follows that Sx is invertible [by (c)
of Theorem 12.12], and thus X £ <x(S). ////

A Commutativity Theorem

Let x and y be commuting elements in some Banach algebra with an

involution. It is then obvious that x* and y* commute, simply because

x*y* = (yx)*. Does it follow that x commutes with y*? Of course, the

answer is negative whenever x is not normal and y
= x. But it can be

negative even when both x and y are normal (Exercise 28). It is therefore an

interesting fact that the answer is affirmative (if x is normal) in &{H\
relative to the involution furnished by the Hilbert space adjoint:

If N e &{H) is normal, if T e <%(H\ and if NT = TN, then

N*T = TN*.

In fact, a more general result is true:

12.16 Theorem (Fuglede-Putnam-Rosenblum) Assume that M, N,

T g 0$(H\ M and N are normal, and

(1) MT = TN.

ThenM*T = TN*.

proof. Suppose first that S e @(H). Put V = S - 5*, and define

(2) Q =

exp (V) = £ (J^V\
Then V* = —V, and therefore

(3) Q* =

exp (V*) =

exp (-V) = Q1.

Hence Q is unitary. The consequence we need is that

(4) ||exp (S - S*)\\ = 1 for every S e *(H).
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If (1) holds, then MkT = TNk for k = 1, 2, 3, ..., by induction.

Hence

(5) exp (M)T=T exp (N),

or

(6) T = exp(-M)Texp(N).

Put Ul =

exp (M*
-

M), U2 =

exp (N - N*). Since M and N are

normal, it follows from (6) that

(7) exp {M*)T exp (-N*)= UlTU2.

By (4), || U,|| = || U2\\ = 1, so that (7) implies

(8) ||exp(M*)Texp(-N*)||<||T||.

We now define

(9) f(X) =

exp (/IM*)T exp (-/IN*) (/I g 0).

The hypotheses of the theorem hold with XM and XN in place of M

and JV. Therefore (8) implies that ||/(A)|| < || T\\ for every X g (p. Thus/
is a bounded entire ^(//)-valued function. By Liouville's theorem 3.32,

f(X) =/(0) = T, for every A e £. Hence (9) becomes

(10) exp (AM*)T = T exp (AN*) [k g <£).

If we equate the coefficients of X in (10), we obtain M*T = TN*. ////

Remark. Inspection of this proof shows that it used no properties of

&(H) which are not shared by every B*-algebra. This observation

does not lead to a generalization of the theorem, however, because of

Theorem 12.41.

Note that the hypotheses of Theorem 12.16 do not imply that

MT* = T*N, even when M and N are self-adjoint and T is normal: If

then MT = TN but MT* # T*N.

Resolutions of the Identity

12.17 Definition Let 5CR be a cx-algebra in a set Q, and let H be a

Hilbert space. In this setting, a resolution of the identity (on 5CR) is a mapping

E:2R->^(//)

with the following properties:
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(a) E(0) = 0, E(Q) = L

(b) Each E(co) is a self-adjoint projection.

(c) E{(o' n co") = E(co')E(co").

(J) If co' n co" = 0, then E(co' u co") = E(co') + E(co").

(e) For every x e H and y e H, the set function Ex y
defined by

EXtJfco) = {E(co)x9y)

is a complex measure on $R.

When 5CR is the <x-algebra of all Borel sets on a compact or locally

compact Hausdorff space, it is customary to add another requirement to

(e): Each Ex y
should be a regular Borel measure. (This is automatically

satisfied on compact metric spaces, for instance. See [23].)
Here are some immediate consequences of these properties.
Since each E(co) is a self-adjoint projection, we have

(1) Ex x{co) = (E(co)x, x) = ||E(co)x\\2 (x e H)

so that each Ex x
is a positive measure on 5CR whose total variation is

(2) ||£;t,J|=£;t,;t(n)=||x||2.

By (c), any two of the projections E(co) commute with each other.

If o' n co" = 0, (a) and (c) show that the ranges of E(a>') and E(co")
are orthogonal to each other (Theorem 12.14).

By (d), E is finitely additive. The question arises whether E is count-

ably additive, i.e., whether the series

(3) t %)
fl=l

converges, in the norm topology of 0&(H\ to E(co), whenever co is the union of

the disjoint sets con g 5R. Since the norm of any projection is either 0 or at

least 1, the partial sums of the series (3) cannot form a Cauchy sequence,

unless all but finitely many of the E(con) are 0. Thus E is not countably

additive, except in some trivial situations.

However, let {con} be as above, and fix x g H. Since E(ton)E(tom) = 0

when n ^ m, the vectors E(con)x and E(com)x are orthogonal to each other

(Theorem 12.14). By (e\

(4) £ (E(con)x, y) = (E(co)x, y)

for every y g H. It now follows from Theorem 12.6 that

00

(5) X E(co„)x = E(co)x.
«= i
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The series (5) converges in the norm topology of H. We summarize the

result just proved:

12.18 Proposition IfE is a resolution of the identity, and ifxeH, then

co -? E(co)x

is a countably additive H-valued measure on 9CR.

Moreover, sets of measure zero can be handled in the usual way:

12.19 Proposition Suppose E is a resolution of the identity. If co„ g 9CR

and E(con) = Ofor n = 1, 2, 3,..., and if co = (J^°= x con, then E(co) = 0.

proof. Since E(con) = 0, Ex x(con) = 0 for every x g H. Since Ex x
is

countably additive, it follows that Exx(co) = 0. But ||E(co)x||2 =

EXt x{co). Hence E(co) = 0.

'

////

12.20 The algebra L°°(£) Let £ be a resolution of the identity on 5CR,

as above. Let /be a complex 5CR-measurable function on Q. There is a

countable collection {D,} of open discs which forms a base for the topology
of (p. Let V be the union of those Dt for which E(/_1(D£)) = 0. By
Proposition 12.19, E{f~\V)) = 0. Also, V is the largest open subset of <p with this

property.

The essential range off is, by definition, the complement of V. It is the

smallest closed subset of <p that contains f(p) for almost all peQ, that is,

for all p g Q except those that lie in some set co g 5CR with E(co) = 0.

We say that / is essentially bounded if its essential range is bounded,

hence compact. In that case, the largest value of | k \, as k runs through the

essential range of/, is called the essential supremum ||/||«, of/.
Let B be the algebra of all bounded complex 5CR-measurable functions

on Q; with the norm

ll/H =

sup {|/(p)|: pen},

one sees easily that B is a Banach algebra and that

N={/eB:||/|L = 0}

is an ideal of B which is closed, by Proposition 12.19. Hence B/N is a

Banach algebra, which we denote (in the usual manner) by L°°(£).
The norm of any coset [/] =f+Nof L°°(£) is then equal to H/H^,

and its spectrum <x([/]) is the essential range of/ As is usually done in

measure theory, the distinction between / and its equivalence class [/] will

be ignored.
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Our next concern will be the integration of functions with respect to

the projection-valued measures described above. The resulting integrals

J fdE turn out to be not only linear (as all good integrals ought to be) but

also multiplicative!

12.21 Theorem // E is a resolution of the identity, as above, then there

exists an isometric*-isomorphism *F of the Banach algebra L°°(£) onto a closed

normal subalgebra A of @l(H\ which is related to E by the formula.

(1) (¥(/)*, y) = I fdEXty (x, y g H,fe L°°(E)).

This justifies the notation

(2) V(f)=[fdE.
Moreover,

(3) ||¥(/> ||2 = f | /12 dEx, x (xeHJe !?(£)),
Jn

and an operator Q g &(H) commutes with every E(co) if and only if Q
commutes with every *F(/).

Recall that a normal subalgebra A of &(H) is a commutative one

which contains T* for every T e A. To say that *F is a *-isomorphism
means that *F is one-to-one, linear, and multiplicative and that

(4) y(/) = *(/)* (/eL"(£)).

proof. To begin with, let {cox, ..., con} be a partition of Q, with

cOi g 5CR, and let s be a simple function, such that s =

at on cot.

Define ¥(s) g <8(H) by

(5) ¥(s) = i*tE(a>d.
i=l

Since each E(cot) is self-adjoint,

(6) W(s)*=£aiE((oi) = W(s).
i = l

If {coi,..., co^} is another partition of this kind, and if t = /?7 on

a),then

V(sy¥(t) = Z ttfijEiadEW) = Z vJjEicDi n co}).
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Since st is the simple function that equals at /?, on cot n co'j, it follows

that

(7) ^(s)^) = *¥{st).

An entirely analogous argument shows that

(8) ¥(as + fit) = a¥(s) + p¥(t).

If x e H and y e H, (5) leads to

(9) (4>(s)x, y)=t ViWcodx, y)=t «?• £*, ,(^ = | * <*E*,, •

i = 1 i = 1 Jft

By (6) and (7),

(10) 4/(s)*4/(s) = ¥(s)¥(s) = ¥(ss) = ¥( | s |2).

Hence (9) yields

(11) \ms)x\\2 = (V(s)*V(s)x, x) = (4>(|S|2)x, x) = I |s|2 dEXtX9

so that

(12) |TOx|| < llsLllxll,

by formula (2) of Section 12.17. On the other hand, if x g M(E(<Oj))9
then

(13) x¥(s)x = cCjE(cOj)x =

(XjX,

since the projections £(co£) have mutually orthogonal ranges. If; is

chosen so that | a,-1 = ||s|| ^,
it follows from (12) and (13) that

(14) ITOII = l|slL.

Now suppose / g L°°(£). There is a sequence of simple
measurable functions sk that converges to fin the norm of L°°(£). By (14), the

corresponding operators *F(sfc) form a Cauchy sequence in &(H) which

is therefore norm-convergent to an operator that we call *¥(/); it is

easy to see that *¥(/) does not depend on the particular choice of {sk}.
Obviously (14) leads to

(15) IIW) II = 11/II« (felTW).

Now (1) follows from (9) (with sk in place of s), since each Ex y
is

a finite measure; (2) and (3) follow from (6) and (11); and if bounded

measurable functions / and g are approximated, in the norm of L°°(£),

by simple measurable functions s and t, we see that (7) and (8) hold

with/and g in place of s and t.
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Thus *¥ is an isometric isomorphism of L°°(£) into &(H). Since

L°°(E) is complete, its image A = *¥(n°(E)) is closed in @(H\ because of

(15).

Finally, if Q commutes with every E(co\ then Q commutes with

^(s) whenever s is simple, and therefore the approximation process

used above shows that Q commutes with every member of A. ////

It is perhaps worth mentioning that the equality

(16) ll/lli = sup{JjJ/|2dEx,x:||x||£l}
holds for every/g L°°(£), because of (3) and (15).

The Spectral Theorem

The principal assertion of the spectral theorem is that every bounded

normal operator T on a Hilbert space induces (in a canonical way) a

resolution E of the identity on the Borel subsets of its spectrum o(T) and

that T can be reconstructed from E by an integral of the type discussed in

Theorem 12.21. A large part of the theory of normal operators depends on

this fact.

It should perhaps be stated explicitly that the spectrum o(T) of an

operator T g 08(H) will always refer to the full algebra 0&(H). In other

words, X g o(T) if and only if T — XI has no inverse in £%(H). Sometimes we

shall also be concerned with closed subalgebras A of 0&(H) which have the

additional property that / g A and T* g A whenever T g A. (Such algebras
are sometimes called *-algebras.)

Let A be such an algebra, and suppose that T g A and T~l g @(H).
Since TT* is self-adjoint, a(TT*) is a compact subset of the real line

(Theorem 12.15), hence does not separate <p, and therefore aA(TT*) =

a{TT*\ by the corollary to Theorem 10.18. Since TT* is invertible in @{H\
this equality shows that {TT*)'1 e A, and therefore T"1 = T^TT*)'1 is

also in A.

Thus T has the same spectrum relative to all closed ^-algebras in &(H)
that contain T.

Theorem 12.23 will be obtained as a special case of the following

result, which deals with normal algebras of operators rather than with

individual ones.

12.22 Theorem // A is a closed normal subalgebra of &(H) which

contains the identity operator I and if A is the maximal ideal space of A, then the

following assertions are true:



322 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

(a) There exists a unique resolution E of the identity on the Borel subsets of
A which satisfies

-i(1) T= \ TdE

for every T e A, where Tis the Gelfand transform of T.

(b) The inverse of the Gelfand transform (i.e., the map that takes T back to

T) extends to an isometric *-isomorphism <D of the algebra L°°(£) onto a

closed subalgebra B of ${H\ B => A, given by

-I-(2) */=J/d£ (/eL°°(£))-

Explicitly, <D is linear and multiplicative and satisfies

(3) Of = (9f)\ ||«D/|| = ||/1|„ (/e L»(£)).

(c) B is the closure [in the norm topology of &{H)~] of the set of all finite
linear combinations of the projections E(co).

(d) If co a A is open and nonempty, then E(co) ^ 0.

(e) An operator S g &(H) commutes with every T g A if and only if S

commutes with every projection E(co).

proof. Recall that (1) is an abbreviation for

(4) (Tx, y) = \TdEx, y (x, y g H, T g A).

Since &(H) is a B*-algebra (Section 12.9), our given algebra A is

a commutative B*-algebra. The Gelfand-Naimark theorem 11.18

asserts therefore that T-^ Tis an isometric *-isomorphism of A onto

C(A).
This leads to an easy proof of the uniqueness of E. Suppose E

satisfies (4). Since t ranges over all of C(A), the assumed regularity of

the complex Borel measures Ex y
shows that each Ex y

is uniquely
determined by (4); this follows from the uniqueness assertion that is

part of the Riesz representation theorem ([23], Th. 6.19). Since, by

definition, {E(co)x, y) = Ex y(co), each projection E(co) is also uniquely
determined by (4).

This uniqueness proof motivates the following proof of the

existence of E. If x g H and y g H, Theorem 11.18 shows that T-> (Tx, y)
is a bounded linear functional on C(A), of norm <||x|| \\y\\, since

II ^11 oo

= II ^11- The Riesz representation theorem supplies us therefore

with unique regular complex Borel measures fix y
on A such that

-[(5) (Tx, y) = I Tdfix,, (x,yeH,Te A).
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For fixed T, the left side of (5) is a bounded sesquilinear functional on

H, hence so is the right side, and it remains so if the continuous

function Tis replaced by an arbitrary bounded Borel function/. To each

such / corresponds therefore an operator <bf g &(H) (see Theorem

12.8) such that

(6) ((0>/)x, y) = fdfiXty {x,yeH).*,y

A

Comparison of (5) and (6) shows that <DT = T. Thus <D is an

extension of the inverse of the Gelfand transform.

It is clear that <D is linear.

Part of the Gelfand-Naimark theorem states that T is self-

adjoint if and only if Tis real-valued. For such T,

I tdfix% y
= (Tx, y) = (x, Ty) = (T^lc) = \ f dMy. x,

Ja Ja

and this implies that fiy x

=

fix y.
Hence

((<D/)x, y)=\f dnx,, = J / dn,, x
= W)y, x) = (x, (<D/)y)

Ja Ja

for all x, y g H, so that

(7) 0/= (*/)*.

Our next objective is the equality

(8) 9(Jg) = (O/)(O0)

for bounded Borel functions /, g on A. If S e A and T e A, then

(ST)A = ST; hence

XTx, y
•SfdfiXty = (STx,y)= SdfiT

Ja Ja

This holds for every S e C(A); hence the two integrals are equal if 5 is

replaced by any bounded Borel function/ Thus

\ftd^y = \fdfiTx9y = ((*/)Tx, y) = (Tx, z) = I f <fox.r,
Ja Ja Ja

where we put z = (<pf)*y. Again, the first and last integrals remain

equal if Tis replaced by g. This gives

(*(/0)x, y)= \fg d/iXt y= \g d/xXtZ
Ja Ja

= ((<bg)x, z) = ((«g)x, (<D/)*y) = (*(/)*to)x, y),

and (8) is proved.
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We are finally ready to define E: If co is a Borel subset of A, let

Xa be its characteristic function, and put

(9) E(co) = d>(x J.

By (8), E(co n co') = E{co)E(co'\ With co' = co, this shows that

each E(co) is a projection. Since <D/is self-adjoint when/is real, by (7),
each E(co) is self-adjoint. It is clear that E(0) = 0>(0) = 0. That

E(A) = I follows from (5) and (6). The finite additivity of £ is a

consequence of (6), and, for all x,ye//,

=i«EXty((o) = {E{co)x, y)= \x<o dVx,y = A**i3M

Thus (6) becomes (2). That ||<D/|| = H/H^ follows now from Theorem

12.21.

This completes the proof of (a) and (b).
Part (c) is now clear because every /e L°°(£) is a uniform limit of

simple functions (i.e., of functions with only finitely many values).

Suppose next that co is open and E(co) = 0. If T e A and t has

its support in co, (1) implies that T = 0; hence t= 0. Since A = C(A).

Urysohn's lemma implies now that co = 0. This proves (J).
To prove (e), choose S e ^(//), x e H, y e H, and put z = S*y.

For any Tg/1 and any Borel set co a A we then have

(10) (STx, y) = (Tx, z) = tdEXtX9-i

?i(11) (TSx,y) =

jTdE5Xi,,
(12) (SE(co)x, y) = (£(G))x, z) = Ex, .(g)),

(13) (E(co)Sx,>;) = ESx,,(co).

If ST = TS for every T e A, the measures in (10) and (11) are

equal, so that SE(co) = E(co)S. The same argument establishes the

converse. This completes the proof. ////

We now specialize this theorem to a single operator.

12.23 Theorem IfTe &(H) and T is normal, then there exists a unique

resolution of the identity E on the Borel subsets ofa(T) which satisfies

(1) T = I X dE{X\
<r(T)JaC
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Furthermore, every projection E(co) commutes with every S g &(H)
which commutes with T.

We shall refer to this E as the spectral decomposition of T.

Sometimes it is convenient to think of E as being defined for all Borel

sets in (p; to achieve this put E(co) = 0 if co n o(T) = 0.

proof. Let A be the smallest closed subalgebra of &(H) that contains

/, T, and T*. Since T is normal, Theorem 12.22 applies to A. By
Theorem 11.19, the maximal ideal space of A can be identified with

a(T) in such a way that T(X) = X for every X g <j{T). The existence of E

follows now from Theorem 12.22.

On the other hand, if E exists so that (1) holds, Theorem 12.21

shows that

(2) p(T, T*) = I p(X, I) dE{X\
Jc(T)

where p is any polynomial in two variables (with complex coefficients).

By the Stone-Weierstrass theorem, these polynomials are dense in

C(o(T)). The projections E(co) are therefore uniquely determined by
the integrals (2), hence by T, just as in the uniqueness proof in

Theorem 12.22.

If ST = TS, then also ST* = T*S, by Theorem 12.16; hence S

commutes with every member of A. By (e) of Theorem 12.22,

SE{co) = E{co)S for every Borel set co c o{T). ////

12.24 The symbolic calculus for normal operators If E is the spectral

decomposition of a normal operator T g &{H\ and if/ is a bounded Borel

function on o(T\ it is customary to denote the operator

j(1) *(/) = fdE

by/(T).

Using this notation, part of the content of Theorems 12.21 to 12.23

can be summarized as follows:

The mapping f ^ f (T) is a homomorphism of the algebra of all bounded

Borel functions on a(T) into &(H\ which carries the function 1 to /,

which carries the identity function on o(T) to T, and which satisfies

(2) f(T) =f(T)*

and

(3) ||/(T)||< sup {|/(1)|:1 e <t(T)}.



326 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

Iffe C(c(T)), then equality holds in (3), and therefore f->f{T) is an

isomorphism on C(a(T)) which satisfies

ll/(T)x||2 = f \f\2dEXtX.

IfL ~+f uniformly, then \\fn(T) -f(T)\\ -? 0, as n -? oo.

IfS e @(H) and ST = TS, then Sf(T) =f(T)Sfor every bounded

Borel function f
Since the identity function can be uniformly approximated, on

<j{T), by simple Bor el functions, it follows that T is a limit, in the norm

topology of&{H), of finite linear combinations of projections E(co).

The following proof contains our first application of this symbolic
calculus.

12.25 Theorem IfTe @(H) is normal, then

\\T\\ =

sup {|(Tx, x)| : x e H, \\x\\ < 1}.

proof. Choose e > 0. It is clearly enough to show that

(1) |(Tx0,x0)|> ||T||-e

for some x0 g H with ||x0|| = 1.

Since ||T|| = ||f H^ = p(T) (Theorem 11.18), there exists k0 g

g{T) such that | A01 = || T\\. Let co be the set of all X g a(T) for which

| X — X01 < e. If E is the spectral decomposition of T, then (d) of

Theorem 12.22 implies that E(co) ^ 0. Therefore there exists x0 g H

with ||x0|| = 1 and E(co)x0 =

x0.

Define f(X) = X —

X0 for X g co; put f(X) = 0 for all other

X g a(T). Then

f(T) = (T-X0I)E(co),

so that

Hence

\(Tx0, x0)
-

A0| = \(f(T)x0, x0)| < \\f(T)\\ < e,

since | f(X) \ < e for all X g <j{T). This implies (1), because | X0 \ = \\ T\\.

Illl

To see that normality is needed here, let T be the linear operator on

(p2 (with basis {el9 e2}) given by Tex = 0, Te2 =

ev It has ||T|| = 1, but

|(Tx, x)| <|if ||x|| < 1.

Our next result contains a converse to Theorem 12.15.
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12.26 Theorem A normal T e @(H) is

(a) self-adjoint if and only ifo(T) lies in the real axis,

(b) unitary if and only ifo(T) lies on the unit circle.

proof. Choose A as in the proof of Theorem 12.23. Then f{X) = X

and (T*)A(/l) = 1 on a(T). Hence T = T* if and only if X = I on o(T\
and TT* = / if and only if kl = 1 on <x(T). ////

12.27 Invariant subspaces As in Theorem 10.35, a closed subspace M

of H is an invariant subspace of a set £ c $(H) if every Te^ maps M into

M. For example, every eigenspace of T is an invariant subspace of T. When

dim H < oo, the spectral theorem implies that the eigenspaces of every

normal operator T span H. [Sketch of proof: The characteristic function of

each point in o(T) corresponds to a projection in H. The sum of these

projections is E(a(T)) = /.] If dim H =

oo, it can happen that T has no

eigenvalues (Exercise 20). But normal operators still have invariant sub-

spaces that are nontrivial (that is, ^ {0} and ^ H).
In fact, let A be a normal algebra, as in Theorem 12.22, and let E be

its resolution of the identity, on the Borel subsets of A. If A consists of a

single point, then A consists of the scalar multiples of /, and every subspace
of H is invariant under A. Suppose that A = co u co\ where co and co' are

nonempty disjoint Borel sets. Let M and M' be the ranges of E(co) and

E(co'). Then TE{co) = E(co)T for every T e A. If x e M, it follows that

Tx = TE(co)x = E(co)Tx,

so that Tx g M. The same holds for M'.

Hence M and M' are invariant subspaces of A.

Moreover, M' = M1, and H = M © M'.

Decompositions of A into finitely many (or even countably many)

disjoint Borel sets induce, in the same manner, decompositions of H into pair-
wise orthogonal invariant subspaces of A.

It is an open problem whether every (nonnormal) T g 08(H) has a

nontrivial invariant subspace if H is an infinite-dimensional separable
Hilbert space.

Eigenvalues of Normal Operators

If T g £%(H) is normal, its eigenvalues bear a simple relation to its spectral

decomposition (Theorem 12.29). This will be derived from the following

application of the symbolic calculus:
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12.28 Theorem Suppose T g &(H) is normal and E is its spectral

decomposition. Iffe C(a(T)) and ifco0 = f~1(0), then

(1) ^(f(T)) = @(E(co0)).

proof. Put g(X) = 1 on co0, g(k) = 0 at all other points of o(T). Then

fg = 0, so that/(T)0(T) = 0. Since g(T) = E(co0), it follows that

(2) @(E(co0)) cz JTUiT)).

For each positive integer n, let con be the set of all X g g(T) where

1/n < | f(X) | < l/(n
—

1). The complement at of co0, relative to o"(T), is

then the union of the disjoint Borel sets con. Define

(3) /-a) = l1//(A) onft)"
K ' JnK '

(.0 elsewhere on a(T).

Each/„ is a bounded Borel function on <r(T), and

(4) /„0O/(T) = E(con) (n= 1,2,3,...).

If/(T)x = 0, it follows that E(con)x = 0. The countable additivity
of the mapping co -? E(co)x (Proposition 12.18) shows therefore that

E(a))x = 0. But E(cb) + E(co0) = /. Hence E(co0)x = x. We have now

proved that

(5) ^(f(T)) cz ®(E(co0)),

and (1) follows from (2) and (5). ////

12.29 Theorem Suppose E is the spectral decomposition of a normal

T g @{H), X0 g o{T\ and E0 = E({X0}). Then

(a) jV(T-101) = 0(Eo),

(b) A0 is an eigenvalue of T if and only if E0 ^ 0, and

(c) every isolated point ofc(T) is an eigenvalue of T.

(d) Moreover, ifo{T) = {/l^, k2, A3,...} is a countable set, then every x g H

has a unique expansion of the form

00

i=l

where Tx( = /1,-x,-. Also, x, _L Xj whenever i ^j.

Statements (b) and (c) explain the term point spectrum of T for the set

of all eigenvalues of T.

proof. Part (a) is an immediate corollary of Theorem 12.28, with

f(X) = X — X0. It is clear that (b) follows from (a). If k0 is an isolated



CHAPTER 12: BOUNDED OPERATORS ON A HILBERT SPACE 329

point of o"(T), then {k0} is a nonempty open subset of o"(T); hence

E0 ^ 0, by (d) of Theorem 12.22. Therefore (c) follows from (b).
To prove (d), put E{ = E{[k^\ i = 1, 2, 3,.... At limit points k{ of

<j{T\ Et may or may not be 0. In any case, the projections Et have

pairwise orthogonal ranges. The countable additivity of co -? E(co)x

(Proposition 12.18) shows that

00

X Etx = E(a(T))x = x (x 6 //).

The series converges, in the norm of H. This gives the desired

representation of x, if xt
= E(x. The uniqueness follows from the

orthogonality of the vectors x,, and Tx, = k{ xt follows from (a). ////

12.30 Theorem A normal operator T g &(H) is compact if and only if it

satisfies the following two conditions:

(a) a(T) has no limit point except possibly 0.

(b) IfX * 0, then dim JT(T
- XI) < oo.

proof. For the necessity, see (d) of Theorem 4.18, and Theorem 4.25.

To prove the sufficiency, assume (a) and (b) hold, let {/I,} be

an enumeration of the nonzero points of u(T) such that \X1\>

I k2 | > • *

*, define fn(k) = X if k = k{ and i < n, and put fn(k) = 0 at the

other points of a(T). If E, = E({k(})9 as in Theorem 12.29, then

fn(T) = k1E1+- + knEn.

Since dim 0t(E^ = dim jV(T
— k{l) < oo, each fn(T) is a compact

operator. Since | k —f„(k)\ < \kn\ for all k g o(T\ we have

\\T-fn(T)\\<\kn\^0 as n^oo.

It now follows from (c) of Theorem 4.18 that T is compact. ////

We have tacitly assumed that o(T) is infinite. If a(T) contains only n

points different from 0, then/„(T) = T in the preceding proof, and Theorem

4.18 is not needed.

12.31 Theorem Suppose T g @(H) is normal and compact. Then

(a) T has an eigenvalue k with \k\ = \\T\\,

(b) f(T) is compact iffe C(a(T)) andf(0) = 0, but

(c) f(T) is not compact iffe C(<t(T)),/(0) # 0, and dim H = oo.
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proof. Since T is normal, Theorem 11.18 shows that there exists

X g o{T) with | X | = || T||. If || T\\ > 0, this X is an isolated point of a(T)

(Theorem 12.30), hence an eigenvalue of T (Theorem 12.29). If

||T|| = 0, (a) is obvious.

To prove (b\ choose e > 0, then 3 > 0 so that | f(X) \ < e if

\X\ <3: let Xl9 ..., XN be the points in o(T) for which \Xt\ > 3; find

polynomials Qk (1 < k < N) so that Qk(Xk) = 1, Qk{Xj) = 0 for ; ^ fc,

1 <; < N; and define

k=l

where M is a positive integer, so large that | P(X) \ < e if | X \ < 3. The

polynomial P has X as a factor. Hence P(T) is a compact operator, by

(/) of Theorem 4.18. Also, P(Xj) =f(Xj) for 1 <j < N. It follows that

I PW ~fW\ < 2e for all X g a(T). Hence \\P{T) -f(T)\\ < 2e, and (c)
of Theorem 4.18 implies that/(T) is compact.

In the proof of (c), assume/(0) = 1, without loss of generality.
Then (b\ applied to 1 —/, shows that the operator S = I —f(T) is

compact. Let B be the unit ball of H. Then

Bc:S(B)+f(T)(B).

If f(T) were compact, it would follow that B lies in the sum of two

compact sets; hence H would be locally compact, hence finite-

dimensional, contrary to our hypothesis. ////

Positive Operators and Square Roots

12.32 Theorem Suppose T g @(H). Then

(a) (Tx, x) > Ofor every x g H if and only if

(b) T=T* and u{T) c [0, oo).

If T g &(H) satisfies (a), we call T a positive operator and write T > 0.

The theorem asserts that this terminology agrees with Definition 11.27.

proof. In general, (Tx, x) and (x, Tx) are complex conjugates of each

other. But if (a) holds, then (Tx, x) is real, so that

(x, T*x) = (Tx, x) = (x, Tx)

for every x g H. By Theorem 12.7, T = T*, and thus c{T) lies in the

real axis (Theorem 12.15). If X > 0, (a) implies that

AH*||2 = (Ax, x) < ((T + A/)x, x) < ||(T + A/)x|| ||x||,
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so that

\\(T + Xl)x\\ > X\\x\\.

By Theorem 12.12(c), T + XI is invertible in @{H\ and -X is not in

o(T\ It follows that (a) implies (b).
Assume now that (b) holds, and let E be the spectral

decomposition of T, so that

(Tx, x) = \ X dEXt X(X) (x g H).
J<r(T)

Since each Ex x
is a positive measure, and since X > 0 on o-(T),

we have (Tx, x) > 0. Thus (b) implies (a). ////

12.33 Theorem Every positive T g &(H) has a unique positive square

root S g &(H). If T is invertible, so is S.

proof. Let A be any closed normal subalgebra of &(H) that contains

/ and T, and let A be the maximal ideal space of A. By Theorem

11.18, A = C(A). Since T satisfies condition (b) of Theorem 12.32, and

since <x(T) = 7(A), we see that t> 0. Since every nonnegative
continuous function has a unique nonnegative continuous square root, it

follows that there is a unique S g A that satisfies S2 = T and S > 0;

by Theorem 12.32, S > 0 is equivalent to S > 0.

In particular, let A0 be the smallest of these algebras A. Then

there exists S0 g A0 such that Si = T and S0 > 0. If S g ^(//) is any

positive square root of T, let A be the smallest closed subalgebra of

@(H) that contains / and S. Then T e A, since T = S2. Hence A0 c A,

so that S0 g A. The conclusion of the preceding paragraph shows now

that S = S0.

Finally, if T is invertible, then 5_1 = T~1S, since 5 commutes

with S2 = T. /HI

12.34 Theorem lfTe @{H\ then the positive square root of T*T is the

only positive operator P g &(H) that satisfies \\Px\\ = \\Tx\\for every x g H.

proof. Note first that

(1) (T*Tx, x) = (Tx, Tx) = ||Tx||2 > 0 (x g //),

so that T*T > 0. (In the more abstract setting of Theorem 11.28 this

was much harder to prove!)

Next, if P g @{H) and P = P*, then

(2) (P2x, x) = (Px, Px) = ||Px||2 (x g H).
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By Theorem 12.7, it follows that ||Px|| = ||Tx|| for every x g H if and

only if P2 = T*T.

This completes the proof. ////

The fact that every complex number k can be factored in the form

k = cc | k |, where | a | = 1, suggests the problem of trying to factor T g &(H)
in the form T = UP, with U unitary and P > 0. When this is possible, we

call UP a polar decomposition of T.

Note that U, being unitary, is an isometry. Theorem 12.34 shows

therefore that P is uniquely determined by T.

12.35 Theorem

(a) If T g @(H) is invertible, then T has a unique polar decomposition
T = UP.

(b) If T g &(H) is normal, then T has a polar decomposition T = UP in

which U and P commute with each other and with T.

proof, (a) If T is invertible, so are T* and T*T, and Theorem 12.33

shows that the positive square root P of T*T is also invertible. Put

U =TP~1. Then U is invertible, and

U*U = p-i^TP'1 = P~1P2P~1 = I,

so that U is unitary. Since P is invertible, it is obvious that TP'1 is

the only possible choice for U.

(b) Put p(k) = \k\, u(k) = k/\k\ if k * 0, ti(0) = 1. Then p and u

are bounded Borel functions on a(T). Put P = p(T), U = u(T). Since

p > 0, Theorem 12.32 shows that P > 0. Since uu = 1, UU* =

U*U = I. Since k = u(k)p(k), the relation T = UP follows from the

symbolic calculus. ////

Remark. It is not true that every T g &(H) has a polar
decomposition. (See Exercise 19.) However, if P is the positive square root of

T*T, then ||Px|| = ||Tx|| for every x g H; hence Tx = Ty if Px = Py,

by linearity. The formula

VPx = Tx

defines a linear isometry V of 0t(P) onto ${T), which has a

continuous extension to a linear isometry of the closure of M(P) onto the

closure of ^(T).
If there is a linear isometry of 0t{P)L onto 0t{J)L, then V can be

extended to a unitary operator on H, and then T has a polar

decomposition. This always happens when dim H < oo, since M(P) and 0t{J)
have then the same codimension.
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If V is extended to a member of @(H) by defining Vy = 0 for all

y g ^(P)1, then V is called a partial isometry.

Every T g ^(//) t/iws has a factorization T = VP in which P is

positive and V is a partial isometry.

In (a), no two of T, U, P need to commute. For example,

e K x:)
In combination with Theorem 12.16, the polar decomposition

leads to an interesting result concerning similarity of normal

operators.

12.36 Theorem Suppose M, N, T e @{H\ M and N are normal, T is

invertible, and

(1) M=TNT~1.

IfT= UP is the polar decomposition of T, then

(2) M = UNU~1.

Two operators M and N that satisfy (1) are usually called similar. If U

is unitary and (2) holds, M and N are said to be unitarily equivalent. The

theorem thus asserts that similar normal operators are actually unitarily

equivalent.

proof. By (1), MT = TN. Hence M*T = TN*, by Theorem 12.16.

Consequently,

T*M = {M*T)* = (TN*)* = NT*,

so that

NP2 = NT*T = T*MT = T*TN = P2N,

since P2 = T*T. Hence N commutes with/(P2), for every/g C(a(P2)).
(See Section 12.24.) Since P > 0, o{P2) c [0, oo). If f{X) = X112 > 0 on

o{P\ it follows that NP = PN. Hence (1) yields

M = (UP)N(UPy1 = UPNP-iU-1 = UNU'1. ////

The Group of Invertible Operators

Some features of the group of all invertible elements in a Banach algebra A

were described at the end of Chapter 10. The following two theorems

contain further information about this group, in the special case A = @(H).

12.37 Theorem The group G of all invertible operators T g 08(H) is

connected, and every T g G is the product of two exponentials.
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Here an exponential is, of course, any operator of the form exp (S)
with S e @(H).

proof. Let T = UP be the polar decomposition of some T e G.

Recall that U is unitary and that P is positive and invertible. Since

a(P) c (0, oo), log is a continuous real function on a(P). It follows

from the symbolic calculus that there is a self-adjoint S g &(H) such

that P =

exp (S). Since U is unitary, o(U) lies on the unit circle, so

that there is a real bounded Borel function/on o(U) that satisfies

exp \if(X)} =k [A g a(U)l

(Note that there may not exist any continuous f with this property!)
Put Q =f(U). Then Q g @(H) is self-adjoint, and U =

exp (iQ). Thus

T =UP =

exp (iQ) exp (S).

From this it follows easily that G is connected, for if Tr is defined, for

0 < r < 1, by

Tr =

exp (irQ) exp (rS)

then r -? Tr is a continuous mapping of the unit interval [0, 1] into G,

T0 = /, and Tx = T. This completes the proof. ////

It is now natural to ask whether every T g G is an exponential, rather

than merely the product of two exponentials. In other words, is every

product of two exponentials an exponential? The answer is affirmative if

dim H < oo; in fact, it is affirmative in every finite-dimensional Banach

algebra, as a consequence of Theorem 10.30. But in general the answer is

negative, as we shall now see.

12.38 Theorem Let D be a bounded open set in (p such that the set

(1) Q = {a g (p\ a2 g D}

is connected and such that 0 is not in the closure of D. Let H be the space of
all holomorphic functions f in D that satisfy

(2) \f\2 dm2 < oo

(where m2 is Lebesgue measure in the plane), with inner product

(3) (f,9) = ^f9dm2.
Then H is a Hilbert space. Define the multiplication operator M g &(H) by

(4) (Mf)(z) = zf(z) (feH,zeD).

Then M is invertible, but M has no square root in M{H).
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Since every exponential has roots of all orders, it follows that M is not

an exponential.

proof. It is clear that (3) defines an inner product that makes H a

unitary space. We show now that H is complete. Let K be a compact

subset of D, whose distance from the complement of D if 3. If z g K,

if A is the open circular disc with radius 3 and center z, and if/(C) =

£ a„(C
—

z)n f°r C ^ A, a simple computation shows that

(5) Z(n+l)-1|«.l252"
+ 2

=
-

\J I

'A

f\2dm2.

Since /(z) =

a0, it follows that

(6) |/(2)| <n-^6-'\\f\\ (zeKJeH),

where ||/|| = (/,/)1/2. Every Cauchy sequence in H converges

therefore uniformly on compact subsets of D. From this it follows easily
that H is complete. Hence H is a Hilbert space.

Since D is bounded, M g 08(H). Since 1/z is bounded in D,

M"1 g^(//).
Assume now, to reach a contradiction, that M = Q2 for some

Q g ^(tf). Fix a g Q. Put X = a2. Then /I g D. Define

(7) MX = M- XU S = Q
- a/, T = Q + a/,

so that

(8) ST = MX= TS.

Since we are dealing with holomorphic functions, the formula

(9) {Mkg){z) = {z-k)g{z) (z g D, g g H)

shows that Mx is one-to-one and that its range ${MX) consists of

exactly those fe H that satisfy/(/I) = 0. Hence (6) shows that ^(MA) is

a closed subspace of H, of codimension 1.

Since MA is one-to-one, the first equation (8) shows that T is

one-to-one; the second shows that S is one-to-one. Since ^(MA) ^ H,

Mx is not invertible in &(H). Hence at least one of S and T is not

invertible. Suppose S is not invertible. Since Mx = ST, 0t(Mx) c ^(S),
so that $(S) is either $(MX) or //. In the latter case, the open mapping
theorem would imply that S is invertible. Hence S is a one-to-one

mapping of H onto ${MX). But the equation Mx = ST shows that S

maps M(T) onto ^(MA). Hence M(T) = H, and another application of

the open mapping theorem shows that T'1 g &(H).
We have now proved that one and only one of the operators S

and T is invertible in 08(H). Therefore exactly one of the numbers a

and —a lies in <j{Q\ if a g Q. It follows that Q is the union of two
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disjoint congruent sets, a(Q) n Q and — a(Q) n Q, both of which are

closed (relative to Q) since a(Q) is compact. The assumption that

M = Q2 leads thus to the conclusion that Q is not connected, which

contradicts the hypothesis.
This completes the proof. ////

The simplest example of a region D that satisfies the hypothesis of

Theorem 12.38 is a circular annulus with center at 0. In that case, a more

conceptual proof can be given. See Exercise 40.

A Characterization of B*-algebras

The fact that every &(H) is a B*-algebra has been exploited throughout this

chapter. We shall now establish a converse (Theorem 12.41) which asserts

that every B*-algebra (commutative or not) is isometrically *-isomorphic to

some closed subalgebra of some &(H). The proof depends on the existence

of a sufficiently large supply of positive functionals.

12.39 Theorem // A is a B*-algebra and if z e A, then there exists a

positive functional F on A such that

(1) F(e)=l and F(zz*) = ||z||2.

proof. Set zz* =

x0. By (e) of Theorem 11.28, a(x0) c [0, oo). Let A0
be the maximal ideal space of the closed algebra A0 a A generated by
e and x0. Then A0 = C(A0) and (by Theorem 11.19) x0 is a non-

negative real continuous function on A0. It attains its maximum at

some point h e A0. Thus

(2) *oWHI*ollooHI*oll = NI2.

Define a linear functional/on A0 by/(x) = x(h). Then

(3) /(*)=!, /(zz*) = || z ||2,

and ll/H = 1, because |/(x)| < pH^ = ||x|| for all x e A0.
The Hahn-Banach theorem extends /to a linear functional F on

A, with ||F|| = 1. We have to prove that F(yy*) > 0 for every y e A.

Fix y g A and let Ax be the maximal ideal space of the closed

algebra Ax a A generated by e and yy*. Then Al = C(AX). Use F to

define a linear functional cp on C(AX) by setting

(4) cp(x) = F(x) (x g A,).

Then <p(l) = F(e) =f(e) = 1, \q>(x)\ < \\x\\ = Pl^, hence ||^|| = 1,

and now Lemma 5.26 shows that cp(x) > 0 for all x e A for which

x > 0 on Ax. If xl
= yy*, we see, as at the start of this proof, that

xx > 0 on Ax. Thus F(yy*) = F(xx) = cpix^ > 0, as needed. ////
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12.40 Theorem // A is a B*-algebra and if u g A, u ^ 0, there exists a

Hilbert space Hu and there exists a homomorphism Tu of A into &(HU) that

satisfies Tu(e) = /,

(1)

(2)

and\\Tu(u)\\ = ll«l|.

TJLx*) = T„(x)*

l|T„(x)|| < ||x||

(x e A),

(x e A),

proof. We regard u as fixed and omit the subscripts u. Fix a positive
functional F on A that satisfies

(3) F(e)=\ and F(u*u) = \\u\\2.

Such an F exists, by Theorem 12.39. Define

(4) Y = {y g A: F(xy) = 0 for every x g ^4}.

Since F is continuous (Theorem 11.31), Y is a closed subspace of A.

Denote cosets of 7, that is, elements of A/Y, by x':

(5)

(6)

We claim that

x' = x + Y (x g

(a', 6') = F(b*a)

defines an inner product on A/Y.
To see that (a\ b') is well defined by (6), i.e., that it is independent

of the choice of representatives a and b, it is enough to show that

F(b*a) = 0 if at least one of a or b lies in Y. If a e 7, F(b*a) = 0

follows from (4). If b g 7, then

(7) F(b*a) = F(a*b) = 0,

by (a) of Theorem 11.31 and another application of (4). Thus (a\ b') is

well defined, it is linear in a', and conjugate-linear in b\ and

(8) (a', a') = F(a*a) > 0,

since F is a positive functional. If (a\ a!) = 0, then F(a*a) = 0; hence

F(xa) = 0 for every x g A, by (fr) of Theorem 11.31, so that a g Y and

a'= 0.

v4/Y is thus an inner product space, with norm ||a'|| = F(a*a)1/2.
Its completion H is the Hilbert space that we are looking for. We

define linear operators T(x) on A/Y by

(9) T(x)a' = (xa)'.



338 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

Again, one checks easily that this definition is independent of the

choice of a g a\ for if y g Y, (4) implies that xy g Y. (Y is a left ideal

in A.) It is obvious that x -? T(x) is linear and that

(10) T(xl)T(x2) = T(Xlx2) (x, eA,x2e A);

in particular, (9) shows that T(e) is the identity operator on A/Y. We

now claim that

(11) ||T(x)||< ||x|| (xeA).

Once this is shown, the uniform continuity of the operators T(x)
enables us to extend them to bounded linear operators on H. Note

that

(12) || T(x)a'||2 = ((*«)', (*«)') = F(a*x*xa).

For fixed a g A, define G(x) = F(a*xa). Then G is a positive functional

on A, so that

(13) G(x*x)<G(e)||x||2,

by (d) of Theorem 11.31. Thus

(14) ||T(x)fl'||2 = G(x*x) < F(fl*a)||x||2 = ||a'||2||x||2,

which proves (11).

Next, the computation

(T(x*)a\ b1) = ((x*a)'9 b') = F(b*x*a) = F((xb)*a)

= (a\ (xb)') = (a', T(x)b') = (T(x)V, b')

shows that T(x*)a' = T(x)*a', for all a! e A/Y. Since A/Y is dense in

//, this proves (1).

Finally, (3) and (12) show that

(15) ||m||2 = F(u*u) = ||T(W)e'||2 < ||T(m)||2

since ||e'||2 = F(e*e) = F(e) = 1. In conjunction with (11), (15) gives

|| T(u) || = ||m||, and the proof is complete. ////

12.41 Theorem If A is a B*-algebra, there exists an isometric

^-isomorphism of A onto a closed subalgebra of &(H), where H is a suitably chosen

Hilbert space.

proof. Let H be the "direct sum" of the Hilbert spaces Hu
constructed in Theorem 12.40. Here is a precise description of H: Let

nu(v) be the //u-coordinate of an element v of the cartesian product of

the spaces Hu. Then, by definition, v g H if and only if
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where ||7ctt(t;)|| denotes the //u-norm of nu(v). The convergence of (1)

implies that at most countably many nu(v) are different from 0. The

inner product in H is given by

(2) (v\ v") = £ (nu(v% nu(v")) (i/, v" e H),
u

so that \\v\\2 = (v, v) is the left side of (1). We leave it as an exercise to

verify that all Hilbert space axioms are now satisfied by H.

If Su g #(tfM), if ||SJ| < M for all u, and if Sv is defined to be the

vector whose coordinate in Hu is

(3) 7iu(Sv) = SunM

one verifies easily that SveHifveH, that S g £%{H\ and that

(4) ||S||=sup||SJ|.
u

We now associate with each x e A an operator T(x) g &{H\ by

requiring that

(5) nu(T(x)v) = TJLxfaJLv)),

where Tu is as in Theorem 12.40. Since

(6) l|Tu(x)||<||x|| = ||Tx(x)||,

by Theorem 12.40, it follows from (4) that

(7) ||T(x)||=sup||Tu(x)|| = ||x||.
u

That the mapping x -? T(x) of A into &(H) has the other

required properties follows from a coordinatewise application of

Theorem 12.40. ////

An Ergodic Theorem

12.42 Definitions The term "ergodic" comes from statistical

mechanics, where it is applied to systems in which
"

time average
=

space average
"

holds for certain quantities. To see a simple mathematical example, let /i be

a probability measure on some a-algebra M in a set Q, let \j/ map Q into Q,

and define its iterates by ij/1 = ij/9 \j/n = \j/ o \j/n~1 (n = 2, 3, 4,...). If we think

of time as discrete, the
"

time average
"

of a function / on Q, relative to the

transformation \j/9 is

(1) lim -(/ + /o^ + --.+/o^--i)

when this limit exists in some sense.

The
"

space average
"

of an/ g I}(h) is simply Jq/^/x.
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We will be concerned with measure-preserving one-to-one maps ^ of Q

onto Q. This means that ij/(E) and ^~1{E) are in Jt for every E g Jt and

that their measure is fi(E). It is then clear that

(2)
Jnto

for every/g I}(fi).
If, moreover, i//(E) = E g Jt occurs only when fi(E) = 0 or fi(E) = 1,

then \\f is said to be ergodic. In that case it is clear that every measurable

function g for which g
o \j/ =

g a.e. [//] is constant a.e. [/*].
We can now state von Neumann's mean ergodic theorem; it is so

named because L2-convergence used to be called "convergence in the

mean."

12.43 Theorem Let (Q, Jt, fi) be as above. Ifij/:Q^>Qis one-to-one and

measure-preserving, andf g L2(/z), then the averages

converge, in the H-metric, to some g g L2(/z), as n -? oo.

Moreover, g
o \jj =

g. Thus g is the constant jafdfi ifxj/ is ergodic.

It is clear that the second assertion follows from the first. The first one

says, explicitly, that

lim g-Anf\2dfi = 0.

The key to the proof is the observation that the map/->/o \j/ is an

isometry of L2(/z) onto L2(/z). It is thus a unitary operator on the Hilbert

space L2(/z). The following abstract reformulation of Theorem 12.43 is then

an easy consequence of the spectral theorem.

12.44 Theorem IfUe @(H) is unitary and x g H, then the averages

(1) Anx = -(x+ Ux +
•••

+ t/"_1x)

converge, in the norm topology ofH, to some y g H.

proof. Let E be the spectral decomposition of U. Define functions an

and b on the unit circle by

(2) flnW = i(l+^ + ...+r-1),

b(l)= l,b(/l) = 0for/l^ 1.
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Then Anx = an(U)x. Set y
= b(U)x. This gives

-j(3) \\y
- /U||2 = \\b(U)x

- a„(U)x\\2 = |fr
- a„|2 <*£,,,.

J<x(l/)

Since | b —

an \ < 1 on the unit circle, and (b —

an)(X) -? 0 pointwise, the

dominated convergence theorem shows that

(4) \im\\y-Anx\\=0. ////

Exercises

Throughout these exercises, the letter H denotes a Hilbert space.

1. The completion of an inner product space is a Hilbert space. Make this

statement more precise, and prove it. (See the proof of Theorem 12.40 for an

application.)

2. Suppose N is a positive integer, aef, aN = 1, and a2 ^ 1. Prove that every

Hilbert space inner product satisfies the identities

1
N

(^^ =

77 I ||x + a"y||2a"
™

n= 1

and

(x,y) = -^\* \\x + e>°y\\2e»d0.

Generalize this: Which functions / and measures \i on a set Q give rise to the

identity

HI*
Jo.

(x,y) = l|x+/(p)y||2^(p)?
Jsi

3. (a) Assume xn and yn are in the closed unit ball of H, and (x„, yn) -> 1 as n -> oo.

Prove that then ||x„
-

yn\\ -> 0.

(b) Assume xneH, x„-»x weakly, and ||x„|| -> ||x||. Prove that then

||xM-x||^0.
4. Let H* be the dual space of H; define ^: H* -+ H by

y*(x) = (x, i/^y*) (x 6 //, y* e //*).

(See Theorem 12.5.) Prove that H* is a Hilbert space, relative to the inner

product

[x*, y*] = (iffy*, il/x*).

If (/>://**-» //* satisfies z**(y*) = [y*, <£z**] for all y* e //* and z** e tf **,

prove that i/^(/> is an isomorphism of H** onto H whose existence implies that H

is reflexive.



342 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

5. Suppose {un} is a sequence of unit vectors in H (that is ||uj| = 1), and assume

that

r2=Z \(uiiUj)\2<^.

If {a,} is any sequence of scalars, prove that

(i-r)£|a,.|2< I <*?•«?• <(i + r)£Ki2,

and deduce that the following three properties of {a,} are equivalent to each

other:

(a) f|a,|2<oo.
i=l

00

(b) S ai ui converges, in the norm of H.

i=l

00

(c) Z ^i^i' y) converges, for every y e H.

i=l

This generalizes Theorem 12.6.

6. Suppose £ is a resolution of the identity, as in Section 12.17, and prove that

\EXty(w)\2<EXtX(w)Eyty(w)

for all x e H, y e H, and co e 9W.

7. Suppose £/ g &(H) is unitary, and £ > 0. Prove that scalars a0, ..., a„ can be

chosen so that

\\U~l -<x0I -^U -'--anUn\\ <£,

if <j(U) is a proper subset of the unit circle, but that this norm is never less than

1 if <t(U) covers the whole circle.

8. Prove Theorem 12.35 with PU in place of UP.

9. Suppose T = UP is the polar decomposition of an invertible T e @(H). Prove

that T is normal if and only if UP = PU.

10. Prove that every normal invertible T e &(H) is the exponential of some normal

S e @{H).

11. Suppose N e @(H) is normal, and T e @(H) is invertible. Prove that TNT1 is

normal if and only if N commutes with T*T.

12. {a) Suppose S e @(H), T e @(H\ S and T are normal, and ST = TS. Prove that

S + T and ST are normal

(b) If, in addition, S > 0 and T > 0 (see Theorem 12.32), prove that S + T > 0

and ST > 0.

(c) Show, however, that there exist S > 0 and T > 0 such that ST is not even

normal (of course, then ST ^ TS). In fact, such examples exist if dim H = 2.

13. If T e @(H) is normal, show that T* = UT, for some unitary U. When is U

unique?

14. Assume T e &(H) and T*T is a compact operator. Show that T is then

compact.
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15. Find a noncompact T e £%(H) such that T2 = 0. Can such an operator be

normal?

16. Suppose T g &(H) is normal, and <r(T) is a finite set. Deduce as much

information about T from this as you can.

17. Show, under the hypotheses of (d) of Theorem 12.29, that the equation Ty = x

has a solution y e H if and only if

IUJ-'UxJI^oo.
i=l

(If X{ = 0 for one i, then x, must be 0, for this i.)

18. The spectrum <j(T) of T e &(H) can be divided into three disjoint pieces:
The point spectrum Gp(T) consists of all X e (p for which T — XI is not

one-to-one.

The continuous spectrum crc{T) consists of all X e (p such that T — XI is a

one-to-one mapping of H onto a dense proper subspace of H.

The residual spectrum c£T) consists of all other X e cr{T).

(a) Prove that every normal T e &(H) has empty residual spectrum.

(b) Prove that the point spectrum of a normal T e 0b(H) is at most countable, if

H is separable.

(c) Let SR and SL be the right and left shifts (as defined in Exercise 2 of Chapter

10), acting on the Hilbert space f2.

Prove that (SR)* = SL and that

<jp(SL) = ar(SR) = {X: \X\ < 1},

°C(SL) = *e(SR) = {X: \X\ = 1},

<rr(SL) = *P(SR) = 0.

19. Let SR and SL be as above. Prove that neither SR nor SL has polar
decompositions UP, with U unitary and P > 0.

20. Let \i be a positive measure on a measure space Q, let H = L2(/z), with the usual

inner product

(f,g)= [fgdfi.
Jn

For <f) 6 L°°(//), define the multiplication operator M^ by M^/) = (/>/ Then

M^ 6 ^(tf).
Under what conditions on <j> does M^ have eigenvalues? Give an example

in which a(M^) = (jc(M^. Show that every M^ is normal. What is the relation

between a(M^) and the essential range of (/>? Show that <j> -» M^ is an isometric

?-isomorphism of L°°(//) onto a closed subalgebra A of &(H). (Certain
pathological measures \i have to be excluded in order to make this last statement correct.)
Is A a maximal commutative sub-algebra of @(H)1 Hint: If T e &(H) and

TM^
=

M^T for all <\> e L°°(//), and if //(Q) < oo, show that T is a multiplication

by T(l) and hence that T e A.

21. Suppose T e &(H) is normal, ^4 is the closed subalgebra of &(H) generated by /,

T, and T*, and T can be approximated, in the norm topology of 38(H), by finite

linear combinations of projections that belong to A.
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Under what (necessary and sufficient) conditions on <r(T) does this

happen?

22. Does every normal T e @(H) have a square root in @I(H)1 What can you say

about the cardinality of the set of all square roots of T? Can it happen that two

square roots of the same T do not commute? Can this happen when T = /?

23. Show that the Fourier transform /-»/ is a unitary operator on l3(Rn). What is

its spectrum? Suggestion: When n = 1, compute the Fourier transforms of

exp
d_\m

dx
exp(- -x2) (m = 0, 1,2,...).

24. Show that any two infinite-dimensional separable Hilbert spaces are isometri-

cally isomorphic (via countable orthonormal bases; see [23]). Show that the

space H in Theorem 12.38 is separable. Show that the answer to the question
that precedes Theorem 12.38 is therefore negative for every infinite-dimensional

//, separable or not.

25. Suppose T e &(H) is normal, / is a bounded Borel function on a(T), and

S =f(T). If ET and Es are the spectral decompositions of T and S, respectively,

prove that

E£a>) = E1(f-\(D))

for every Borel set co <= <j(S).

26. If S e @(H) and T e @{H), the notation S > T means that S - T > 0, that is,

that

(Sx, x) > (Tx, x)

for all x e H. Prove the equivalence of the following four properties of a pair of

self-adjoint projections P and Q:

(a) P>Q.

(b) ®(P) ^ 0t(Q\

(c) PQ = Q.

(d) QP = Q.
If £ is a resolution of the identity, it follows that E((d') > E(oj") if co' => co".

27. Suppose
* is an involution in a complex algebra A, q is an invertible element of

A such that q* =

q and x# is defined by

x# = q~lx*q

for every x e A. Show that
#

is an involution in A.

28. Let A be the algebra of all complex 4-by-4 matrices. If M = (m0) e A, let M* be

the conjugate transpose of M: mj = rn~{. Put

S =

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

o

T =

0

0

0

0

0

0

0

0

0

0

0

0

°\
0

0

1/

As in Exercise 27, define

M#=e-1M*e {Me A).
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(a) Show that S and T are normal, with respect to the involution #, that

ST = TS, but that ST# ^ T#S.

{b) Show that S + T is not #-normal.

(c) Compare ||SS#|| with ||S||2.

(d) Compute the spectral radius p(S + S#); show that it is different from

||S + S#||.

(e) Define V = (i>y) e ^4 so that y12
=

v2Ar
= i, v3l

=

v43
= —i, vi}

= 0 otherwise.

Compute a(VV*)\ it does not lie in [0, oo).
Part (a) shows that Theorem 12.16 fails for some involutions. Part (b)

does the same for part (a) of Exercise 12; (c), (d), and (e) show that various parts

of Theorem 11.28 fail for the involution #.

29. Let X be the vector space of all trigonometric polynomials on the real line:

these are functions of the form

f(t) = cleis>t +
'--

+ cneis»\

where sk e R and ck e <£, for 1 < k < n. Show that

(/ g) = lim ±- \A f(tW) dt

exists and defines an inner product on X, that

ll/ll2 = (/,/)=|c1|2 +
---

+ |c.|2,

and that the completion of X is a nonseparable Hilbert space H. Show that H

contains all uniform limits of trigonometric polynomials; these are the so-called

"almost-periodic" functions on R.

30. Let Hw be an infinite-dimensional Hilbert space, with its weak topology. Prove

that the inner product is a separately continuous function on Hw x Hw which is

not jointly continuous.

31. Assume Tn e @(H) for n = 1, 2, 3,..., and

lim ||T„x|| =0

w-*oo

for every x e H. Does it follow that

lim ||T*x|| =0

w-*oo

for every x e HI

32. Let X be a uniformly convex Banach space. This means, by definition, that the

assumptions

KH<1, llyjl<l, \\xn + yn\\^2

imply that || xn-yn || -> 0.

For example, every Hilbert space is uniformly convex.

(a) Prove that Theorem 12.3 holds in X.

(b) Assume ||xj| = 1, A e X*, ||A|| = 1, and Ax„-» 1. Prove that {xn} is a

Cauchy sequence (in the norm-topology of X). Hint: Consider A(x„ + xm).

(c) Prove that every A e X* attains its maximum on the closed unit ball of X.
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(d) Assume that x„ -> x weakly and ||x„|| -» ||x||. Prove that ||x„
— x|| -» 0. Hint:

Reduce to the case ||x„|| = 1. Consider A(x„ + x), for a suitable A.

(c) Show that the preceding four properties fail in certain Banach spaces (for

instance, in L1, or in C). These are therefore not uniformly convex.

33. Prove the assertion about the case dim H < oo made in the remark that follows

Theorem 12.35.

34. Find an operator T e 0b{H), with <j(T) = {1}, which is neither unitary nor self-

adjoint.

35. If S is self-adjoint and U =

exp (iS), show that U is unitary. Deduce from this,

and from the fact that <r(U) lies on the unit circle, that <r(S) lies on the real axis.

36. Show that <#(T*) = 01{J) if T e @(H) is normal. Hint: Using Theorem 12.35,

T = T*U2.

37. Define T on H = L2(0, 1) by (T/)(x) = x/(x). Show that T is self-adjoint and

that 0t{J) is a dense proper subspace of H.

38. Find a nonnormal T e &(H) such that

||T||=sup{|(Tx,x)|:x6//, ||x|| < 1}.

(This shows that Theorem 12.25 has no converse.)

39. Show that T and T* can have the same null space without being normal.

40. Let D be a circular annulus in (p with center at 0. Define H and M e &(H) as in

Theorem 12.38. Prove that M has no square root in @(H) by completing the

following outline: Assume Q e @{H), Q2 = M. Put u(z) = 1, v{z) =

z, h = Qu.
Since QM = MQ, induction shows that Qvn = hvn for all integers n. It follows

from the Laurent series expansion that Qf=hf for every feH. This leads to

h2 =

v, i.e., h2(z) = z for all z e D, an impossibility.
Find the adjoint M* of M. (Use Laurent series.)



CHAPTER

13

UNBOUNDED

OPERATORS

Introduction

13.1 Definitions Let H be a Hilbert space. By an operator in H we shall

now mean a linear mapping T whose domain <2)(T) is a subspace of H and

whose range $(T) lies in H.

It is not assumed that T is bounded or continuous. Of course, if T is

continuous [relative to the norm topology that S)(T) inherits from //] then

T has a continuous extension to the closure of ^(T), hence to H, since

S)(T) is complemented in H. In that case, T is the restriction to <2)(T) of

some member of 08(H).
The graph @(T) of an operator T in H is the subspace of H x H that

consists of the ordered pairs {x, Tx}, where x ranges over S)(T). Obviously,
S is an extension of T [that is, S){T) c Q)(S) and Sx = Tx for x g ^(T)] if

and only if ^(T) c ^(5). This inclusion will often be written in the simpler
form

(1) T c S.

A closed operator in H is one whose graph is a closed subspace of

H x H. By the closed graph theorem, T g @(H) if and only if S){T) = H

and T is closed.

We wish to associate a Hilbert space adjoint T* to T. Its domain

^(T*) is to consist of all y e H for which the linear functional

(2) x^(Tx,y)

347
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is continuous on @(T). If y g @(T*), then the Hahn-Banach theorem

extends the functional (2) to a continuous linear functional on H, and

therefore there exists an element T*y g H that satisfies

(3) (Tx, y) = (x, T*y) [x g 0(T)].

Obviously, T*y will be uniquely determined by (3) if and only if 3)(T) is

dense in H, that is, if and only if T is densely defined. The only operators T

that will be given an adjoint T* are therefore the densely defined ones.

Routine verifications show then that T* is also an operator in H, that is,

that @(T*) is a subspace of H and that T* is linear.

Note that if T g &(H), then the definition of T* given here coincides

with that given in Section 12.9. In particular, 9(T*) = H and T* g @(H).

Ordinary algebraic operations with unbounded operators must be

handled with care; the domains have to be watched. Here are the natural

definitions for the domains of sums and products:

(4) ®(S + T) = ®(S) n @(T),

(5) 9(ST) = {xe 9(T)\ Tx g 9(S)}.

The usual associative laws

(6) (R + S) + T = R + (S + T), (RS)T = R(ST)

then hold. As regards the distributive laws, one of them, namely,

(R + S)T = RT + ST, holds in its usual form, but the other one may only
hold in the form

(7) T(R + S)^TR + TS,

since it can happen that (R + S)x g ^(T), even though one of Rx or Sx is

not in ^(T). Scalar multiplication is defined as follows: If a = 0, then

^(aT) = H and aT = 0. If a # 0, then ^(aT) = 9{T) and (a7> = a(Tx) for

x g ^(T).

13.2 Theorem Suppose S, T, and ST are densely defined operators in H.

Then

(1) T*S* c (ST)*.

If, in addition, S e @(H), then

(2) T*S* = (ST)*.

Note that (1) asserts that (ST)* is an extension of T*S*. The equality

(2) implies that T*S* and (ST)* actually have the same domains.

proof. Suppose x g ^(ST) and y e ^(T*S*). Then

(3) (Tx, S*>0 = (x, T*S*y),
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because x e @(T) and S*y e ^(T*), and

(4) (STx, y) = (Tx, S*y),

because Tx e ^(5) and y e ^(5*). Hence

(5) {STx, y) = (x, T*S*y).

This proves (1).
Assume now that S e *(H) and y g 0((ST)*). Then 5* g #(tf),

so that 0(S*) = H, and

(6) (Tx, S*y) = (STx, y) = (x, (ST)*>,)

for every x g ^(5T). Hence S*y e 0(T*), and therefore y g ^(T*5*).
Now (2) follows from (1). ////

13.3 Definition An operator T in H is said to be symmetric if

(1) (Tx, y) = (x, Ty)

whenever x e @(T) and y g ^(T). The densely defined symmetric operators

are thus exactly those that satisfy

(2) T c T*.

If T = T*, then T is said to be self-adjoint.
These two properties evidently coincide when T g ^(//). In general,

they do not.

Moreover, if ^(T) is dense and (Tx, y) = (x, Sy) for all x g ^(T) and

y e ^(5), then S c T*.

13.4 Example Let H = L2 = L2([0, 1]), relative to Lebesgue measure.

We define operators Tl9 T2, and T3 in L2. Their domains are as follows:

^(Tx) consists of all absolutely continuous functions f on [0, 1] with

derivative/' s L2.

®(T2) = @(Tl)n{f:f(0)=f(l)}.

«(T3) = a(T1)n{/:/(0)-/(l) = 0}.

These are dense in L2. Define

(1) rk/=i/' for fe®(Tk),k =1,2, 3.

We claim that

(2) T* = T3, TJ = T2, TJ = 7i.
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Since T3 c T2 c: Tl9 it follows that T2 is a self-adjoint extension of the

symmetric (but not self-adjoint) operator T3 and that the extension 7\ of T2 is

not symmetric.
Let us prove (2). Note that

(3) (Tkf, g) = [\f')g = P fW) = (f, Tmg)
Jo Jo

when fe 3>{Tk), g e 2>(Tm), and m + k = 4, since then/(l)^(l) =f(0)g(0). It

follows that Tm <= T?, or

(4) Ttc:T*, r2crj, t3^t*.

Suppose now that g e 2>{T^) and <j> = T%g. Put tyx) = |S 4>- Then, for

(5)
Jo Jo

When fc = 1 or 2, then ^(Tfc) contains nonzero constants, so that (5) implies

0>(1) = 0. When k = 3, then/(l) = 0. It follows, in all cases, that

(6) ig
- 0 g ^(Tfc)\

Since ^(7\) = L2, i# = O if k = 1, and since 0(1) = 0 in that case,

ge®(T3). Thus T*c=T3.
If fc = 2 or 3, then ^(Tfc) consists of all m g L2 such that J J u = 0. Thus

(7) «(T2) = ®(T3) = 71,

where 7 is the one-dimensional subspace of L2 that contains the constants.

Hence (6) implies that ig
— O is constant. Thus g is absolutely continuous

and g' g L2, that is, # g ^(TJ. Thus TJ c T2.
If k = 2, then 0(1) = 0, hence g(0) = #(1), and # g ^(T2). Thus

T?c=T2.
This completes the proof.
Before we turn to a more detailed study of the relations between

symmetric operators and self-adjoint ones, we insert another example.

13.5 Example Let H = L2, as in Example 13.4, define Df = f for

fe @(T2), say (the exact domain is now not very important), and define

(Af/XO = tf(t). Then (DM
-

MD)f = f or

(1) DM - MD = /,

where / denotes the identity operator on the domain of D.

The identity operator appears thus as a commutator of two operators,

of which only one is bounded. The question whether the identity is the
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commutator of two bounded operators on H arose in quantum mechanics.

The answer is negative, not just in £%{H\ but in every Banach algebra.

13.6 Theorem If A is a Banach algebra with unit element e,ifxeA and

y e A, then

xy
—

yx ^ e.

The following proof, due to Wielandt, does not even use the

completeness of A.

proof. Assume xy
—

yx
= e. Make the induction hypothesis

(1) xny
-

yxn = nx"'1 ^ 0,

which is assumed to hold for n = 1. If (1) holds for some positive

integer n, then xn ^ 0 and

xn+1y - yxn+1 = xn(xy - yx) + (xny
- yxn)x

= xne + nxn~ xx = (n + l)x",

so that (1) holds with n + 1 in place of n. It follows that

nWx"-1]] = \\xny -

yxn\\ <2\\xn\\\\y\\ <2||xw-1||||x||||>;||,

or n < 21|x || || y ||, for every positive integer n. This is obviously

impossible. ////

Graphs and Symmetric Operators

13.7 Graphs If H is a Hilbert space, then H x H can be made into a

Hilbert space by defining the inner product of two elements {a, b} and

{c, d] of H x H to be

(1) ({a, b}, {c, d}) = (a, c) + (6, d),

where (a, c) denotes the inner product in H. We leave it as an exercise to

verify that this satisfies all the properties listed in Section 12.1. In particular,
the norm in H x H is given by

(2) ||{a,fe}||2 = ||a||2+||fe||2.

Define

(3) V{a, b} = {-b,a} (aeH,be H).

Then V is a unitary operator on H x H, which satisfies V2 = —I. Thus

V2M = M if M is any subspace of H x H.

This operator yields a remarkable description of T* in terms of T:
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13.8 Theorem // T is a densely defined operator in H, then

(1) ^(T*) = [J^(T)]1,

the orthogonal complement of V&(T) in H x H.

Note that once ^(T*) is known, so are ^(T*) and T*.

proof. Each of the following four statements is clearly equivalent to

the one that follows and/or precedes it.

(2) {y9 z) G »(T*).

(3) (Tx, y) = (x, z) for every x e ®{T).

(4) ({- Tx, x}, {y9 z}) = 0 for every x e ®(T).

(5) {y, z) e \V9(T)Y. ////

13.9 Theorem // T is a densely defined operator in H, then T* is a

closed operator. In particular, self-adjoint operators are closed.

proof. M1 is closed, for every M a H x H. Hence ^(T*) is closed in

H x //, by Theorem 13.8. ////

13.10 Theorem // T is a densely defined closed operator in H, then

(1) H x H = Vg(T)@g(T*\

a direct sum of two orthogonal subspaces.

proof. If ^(T) is closed, so is V<S{J)9 since V is unitary, and therefore

Theorem 13.8 implies that V9(T) = [^(T*)]1; see Theorem 12.4. ////

Corollary. IfaeH and b e H, the system of equations

— Tx + y
= a

x+T*y = b

has a unique solution with x e @(T) and y g @(T*).

Our next theorem states some conditions under which a symmetric

operator is self-joint.
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13.11 Theorem Suppose T is a densely defined operator in H, and T is

symmetric.

(a) If@(T) = H, then T is self-adjoint and T e @(H).

(b) If T is self-adjoint and one-to-one, then M(T) is dense in H, and T_1 is

self-adjoint.

(c) If 01{T) is dense in H, then T is one-to-one.

(d) If0t{T) = H, then T is self-adjoint, andT'1 e @(H).

proof, (a) By assumption, T c T*. If ^(T) = H, it is thus obvious

that T = T*. Hence T is closed (Theorem 13.9) and therefore

continuous, by the closed graph theorem. (We could also refer to Theorem

5.1.)

(b) Suppose y _L $(T). Then x->(Tx, y) = 0 is continuous in

^(T), hence y e ^(T*) = 9{T\ and (x, Ty) = (Tx, y) = 0 for all

x g ^(T). Thus Ty = 0. Since T is assumed to be one-to-one, it

follows that y
= 0. This proves that 0t{T) is dense in H.

T"1 is therefore densely defined, with ^(T_1) = ^(T), and

(T-1)* exists. The relations

(1) ^(T"1)= F^(-T) and F^T"1) = ^(- T)

are easily verified:

{a,b} e&(T-l)o{b,a} e$(T)o{b, -a} e$(-T)

o{a,b} g V$(-T).

Being self-adjoint, T is closed (Theorem 13.9); hence — T is

closed, and hence T_1 is closed, by (1). Theorem 13.10 can now be

applied to T~* and to — T and yields the orthogonal decompositions

(2) H x H= K^T-^e^T-1)*)

and

(3) H x H= V$(-T)®g(-T) = g(T-1)®Vg(T-1).

Consequently,

(4) ^((T"1)*) = [K^T-1)]1 = ^(T"1),

which shows that (T~x)* = T"1.

(c) Suppose Tx = 0. Then (x, Ty) = (Tx, y) = 0 for every

y g ^(T). Thus x 1 0t{T\ and therefore x = 0.

(d) Since 0&J) = H, (c) implies that T is one-to-one, and

^(T'1) = H. If x g H and y g H, then x = Tz and y
= Tw, for some



354 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

z g ^(T) and w g ^(T), so that

(T_1x, y) = (z, Tw) = (Tz, w) = (x, T" V).

Hence T_1 is symmetric, (a) implies that T_1 is self-adjoint (and

bounded), and now it follows from (b) that T = (T-1)-1 is also self-

adjoint. ////

13.12 Theorem // T is a densely defined closed operator in H, then

®{T*) is dense and T** = T.

proof. Since V is unitary, and V2 = — /, Theorem 13.10 gives the

orthogonal decomposition

(1) H x H = <${J) © V$(T*).

Suppose z _L ^(T*). Then (z, y) = 0 and therefore

(2) ({0,z},{-T*y,y}) = 0

for all y g ^(T*). Thus {0, z} g [F^T*)]1 = ^(T), which implies that

z = T(0) = 0. Consequently, ^(T*) is dense in H, and T** is defined.

Another application of Theorem 13.10 gives therefore

(3) H x H = V$(T*) © ^(T**).

By (1) and (3),

(4) ^(T**) = [^(T*)]1 = ^(T),

so that T** = T. ////

We shall now see that operators of the form T*T have interesting

properties. In particular, @(T*T) cannot be very small.

13.13 Theorem Suppose T is a densely defined closed operator in H, and

Q = I + T*T.

(a) Under these assumptions, Q is a one-to-one mapping of

®{Q) = @(T*T) = {xe S(T): Tx g @(T*)}

onto H, and there are operators B g &(H\ C g &(H) that satisfy

\\B\\ < 1, ||C|| < 1, C = TB,and

(1) B(I + T*T) c (/ + T*T)B = I.

Also, B > 0, and T*T is self-adjoint.

(b) If T is the restriction of T to @(T*T), then &(T) is dense in &(T).
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Here, and in the sequel, the letter / denotes the identity operator with

domain H.

proof. If x e 9{Q) then Tx e ^(T*), so that

(2) (x, x) + (Tx, Tx) = (x, x) + (x, T*Tx) = (x, Qx).

Therefore ||x||2 < ||x|| ||Qx||, which shows that Q is one-to-one.

By Theorem 13.10 there corresponds to every h g H a unique
vector Bh g 9{T) and a unique Ch g ^(T*) such that

(3) {0, h) = {-TBK Bh} + {Ch, T*Ch}.

It is clear that B and C are linear operators in H, with domain //. The

two vectors on the right of (3) are orthogonal to each other (Theorem

13.10). The definition of the norm in H x H implies therefore that

(4) ||/i||2>||B/i||2 + ||C/i||2 (heH\

so that ||B|| < 1 and ||C|| < 1.

Consideration of the components in (3) shows that C = TB and

that

(5) h = Bh + T*Ch = Bh + T*TBh = QBh

for every h g H. Hence QB = I. In particular, B is a one-to-one

mapping of H onto @(Q). If y g ^(Q), then y
= Bh for some he H,

hence Qy = QBh = h, and BQy = Bh =

y. Thus BQ c /, and (1) is

proved.
If h g //, then /i g Qx for some x g ^(Q), so that

(6) (£/i, h) = (BQx, Qx) = (x, Qx) > 0,

by (2). Thus B > 0, B is self-adjoint (Theorem 12.32), and now (fr) of

Theorem 13.11 shows that Q is self-adjoint, hence so is T*T = Q — I.

This completes the proof of part (a).
Since T is a closed operator, ^(T) is a closed subspace of

H x H; hence ^(T) is a Hilbert space. Assume {z, Tz} g ^(T) is

orthogonal to ^(T). Then, for every xg^(PT) = 9{Q\

0 = ({z, Tz}, {x, Tx}) = (z, x) + {Tz, Tx) = (z, x) + (z, T*Tx)

= (z, Qx).

But ^?(Q) = H. Hence z = 0. This proves (b). ////

13.14 Definition A symmetric operator T in H is said to be maximally

symmetric if T has no proper symmetric extension, i.e., if the assumptions

(1) T a S, S symmetric

imply that S = T.
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13.15 Theorem Self-adjoint operators are maximally symmetric.

proof. Suppose T is self-adjoint, S is symmetric (that is, S c 5*), and

T c S. This inclusion implies obviously (by the very definition of the

adjoint) that S* c T*. Hence

S c S* c T* = T c 5,

which proves that 5 = T. ////

It should be noted that maximally symmetric operators need not be

self-adjoint; see Example 13.21 and Exercise 10.

13.16 Theorem // T is a symmetric operator in H {not necessarily

densely defined), the following statements are true:

(a) ||Tx + ix\\2 = \\x\\2 + ||Tx||2 [x 6 0(T)].

(b) T is a closed operator if and only if 01{T + il) is closed.

(c) T + il is one-to-one.

(d) lf<%(T + il) = H, then T is maximally symmetric.

(e) The preceding statements are also true if i is replaced by — i.

proof. Statement (a) follows from the identity

|| Tx + ix||2 = ||x||2 + ||Tx||2 + (ix, Tx) + (Tx, ix),

combined with the symmetry of T. By (a),

(T + j/)x«->{x, Tx}

is an isometric one-to-one correspondence between the range of

T + il and the graph of T. This proves (b). Next, (c) is also an

immediate consequence of (a). If M(T + il) = H and Tx is a proper

extension of T [that is, ^(T) is a proper subset of ^(Tx)], then Tx + i/ is a

proper extension of T + il which cannot be one-to-one. By (c), Tx is

not symmetric. This proves (d).
It is clear that this proof is equally valid with — i in place of i.

mi

The Cayley Transform

13.17 Definition The mapping

t + i

sets up a one-to-one correspondence between the real line and the unit

circle (minus the point 1). The symbolic calculus studied in Chapter 12

shows therefore that every self-adjoint T e @(H) gives rise to a unitary
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operator

(2) U = (T -U)(T + U)-1

and that every unitary U whose spectrum does not contain the point 1 is

obtained in this way.

This relation T <-> U will now be extended to a one-to-one

correspondence between symmetric operators, on the one hand, and isometries, on

the other.

Let T be a symmetric operator in H. Theorem 13.16 shows that

(3) ||Tx + ix||2 = ||x||2 + ||Tx||2 = ||Tx-ix||2 (xe^(T)).

Hence there is an isometry U, with

(4) ®(U) = ®(T + il), MV) = 0t(T
-

il\

defined by

(5) U(Tx + ix) =Tx- ix (x g @(T)).

Since (T + il)'1 maps @(U) onto @(T), U can also be written in the

form

(6) U = (T -il)(T + il)~\

This operator U is called the Cayley transform of T. Its main features

are summarized in Theorem 13.19. It will lead to an easy proof of the

spectral theorem for self-adjoint (not necessarily bounded) operators.

13.18 Lemma Suppose U is an operator in H which is an isometry:

\\Ux\\ = \\x\\ for every x e @(U).

(a) lfx g @(U) and y e 9>{U\ then (Ux, Uy) = (x, y).

(b) If$(I
—

U) is dense in H, then I — U is one-to-one.

(c) If any one of the three spaces @(U), $(U\ and @(U) is closed, so are the

other two.

proof. Any of the identities listed in Exercise 2 of Chapter 12 proves

(a). To prove (b), suppose x g @(U) and (/
— U)x = 0, that is, x = Ux.

Then

(x, (/
-

U)y) = (x, y)
-

(x, Uy) = (Ux, Uy)
-

(x, Uy) = 0

for every y e @(U). Thus x 1 @(1 -

U), so that x = 0 if 01(1 - U) is

dense in H. The proof of (c) is a consequence of the relations

\Ux
-

Uy\\ = \\x -y\\=~^ \\{x, Ux} - {y, Uy}\\,

which hold for all x, y g 9(U). IIII
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13.19 Theorem Suppose U is the Cayley transform of a symmetric

operator T in H. Then the following statements are true:

(a) U is closed if and only if T is closed.

(b) 0t(l
—

U) = @(T), I — U is one-to-one, and T can be reconstructed from
U by the formula

r = i(/ + u)(i- uy\

(The Cayley transforms of distinct symmetric operators are therefore

distinct.)

(c) U is unitary if and only if T is self-adjoint.

Conversely, if V is an operator in H which is an isometry, and if I — V

is one-to-one, then V is the Cayley transform of a symmetric operator in H.

proof. By Theorem 13.16, T is closed if and only if 0t(T + il) is

closed. By Lemma 13.18, U is closed if and only if @(U) is closed.

Since @(U) = 0t(T + il), by the definition of the Cayley transform, (a)
is proved.

The one-to-one correspondence x«->z between @(T) and

@(U) = 0t(T + //), given by

(1) z = Tx + ix, Uz = Tx — ix

can be rewritten in the form

(2) (/
-

U)z = 2ix, (I + U)z = 2Tx.

This shows that / - U is one-to-one, that 01(1 -

U) = 9(T), so that

(I -U)'1 maps 9(T) onto @(U)9 and that

(3) 2Tx = (I+ U)z = (I + U)(I
- Uy\2ix) [x 6 ^(T)].

This proves (b).
Assume now that T is self-adjoint. Then

(4) 0t(l + T2) = H

by Theorem 13.13. Since

(5) (T + U\T -

il) = I + T2 =(T
-

il)(T + il)

[the three operators (5) have domain ^(T2)], it follows from (4) that

(6) @(U) = 0t(T + il) = H

and

(7) 0t(V) = ®(T
-

il) = H.
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Since U is an isometry, (6) and (7) imply that U is unitary (Theorem

12.13).
To complete the proof of (c), assume that U is unitary. Then

(8) [«(/
- U)Y = JT(l -U) = {0},

by (b) and the normality of / - U (Theorem 12.12), so that @(T) =

m{l
-

U) dense in H. Thus T* is defined, and T c T*.

Fix y g ^(T*). Since 0t(T + il) = ®{U) = H, there exists y0 e

@(T) such that

(9) (T* + il)y = (T + il)y0 = (T* + il)y0.

The last equality holds because T c T*. If yx
=

y
—

y0, then y1 g

^(T*) and, for every x e ^(T),

(10) ((T
-

i/)x, ^) = (x, (T* + i/)^) = (x, 0) = 0.

Thus yl 1 m{T
-

il) = 0t{V) = H, and so y1
= 0, and y

=

y0 g ^(T).
Hence T* c T, and (c) is proved.

Finally, let V be as in the statement of the converse. Then there

is a one-to-one correspondence z<->x between @(V) and ^2(7
—

V),

given by

(11) x = z-Vz.

Define 5 on ^(5) = 0t{\
-

V) by

(12) Sx = i(z +Vz) if x = z
- Vz.

If x g ^(5) and y g ^(5), then x = z
— Vz and y

= u
— Vu for some

z e @(V) and u g ^(F). Since V is an isometry, it now follows from (a)
of Lemma 13.18 that

(13) (Sx, y) = i(z + Vz,u- Vu) = i(Vz, u)
-

i(z, Vu)

= (z
— Vz, iu + iVu) = (x, Sy).

Hence S is symmetric. Since (12) can be written in the form

(14) 2iVz = Sx- ix, 2iz = Sx + ix [z g ®{V)~],

we see that

(15) V(Sx + ix) = Sx - ix [x g ^(5)]

and that ®(V) = 0t(S + il). Therefore V is the Cayley transform of S.

mi
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13.20 The deficiency indices If Ul and U2 are Cayley transforms of

symmetric operators Tx and T2, it is clear that Tx c T2 if and only if Ul c

U2. Problems about symmetric extensions of symmetric operators reduce

therefore to (usually easier) problems about extensions of isometries.

Let us now consider a closed and densely defined symmetric operator
T in H, with Cayley transform U. Then M{T + U) and St(T

-

il) are closed

(see Theorem 13.16), and U is an isometry carrying the first onto the

second. The dimensions of the orthogonal complements of these two spaces

are called the deficiency indices of T. (The dimension of a Hilbert space is, by

definition, the cardinality of any one of its orthonormal bases.)
Since M(l —

U) = @(T) is now assumed to be dense in //, every

isometric extension [/j of [/ has M(l —

C/±) dense in //, so that / —

U1 is

one-to-one (Lemma 13.18) and U1 is the Cayley transform of a symmetric
extension Tx of T.

The following three statements are easy consequences of Theorem

13.19 and the preceding discussion; we still assume that T is closed,

symmetric, and densely defined.

(a) T is self-adjoint if and only if both its deficiency indices are 0.

(b) T is maximally symmetric if and only if at least one of its deficiency
indices is 0.

(c) T has a self-adjoint extension if and only if its two deficiency indices are

equal.

The proofs of (a) and (b) are obvious. To see (c), use (c) of Theorem

13.19 and note that every unitary extension of U must be an isometry of

[«(T + i/)]1 onto \m{T - i/)]1.

13.21 Example Let V be the right shift on *f2. Then V is an isometry
and / — V is one-to-one (Chapter 12, Exercise 18), and so V is the Cayley
transform of a symmetric operator T. Since @(V) = £2 and 0t{V) has co-

dimension 1, the deficiency indices of T are 0 and 1.

This provides us with an example of a densely defined, maximally

symmetric, closed operator T which is not self-adjoint.

Resolution of the Identity

13.22 Notation SCR will now be a cx-algebra in a set Q, H will be a

Hilbert space, and E: 5CR -? £%(H) will be a resolution of the identity, with all

the properties listed in Definition 12.17. Theorem 12.21 describes a

symbolic calculus which associates to every /e L°°(£) an operator *F(/) e @(H\
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by the formula

(1) (¥(/)*, y)=\f dEXt y (xeH,ye H).

This will now be extended to unbounded measurable functions / (Theorem

13.24). We shall use the same notations as in Definition 12.17.

13.23 Lemma Letf: Q -? (p be measurable. Put

(1) 9,
= {xeH:jjf\2dEXtX<co}.

Then @f is a dense subspace ofH.IfxeH and y g H, then

(2) jjf\d\Ex,y\< lblljjj/12 dEx^'2-
Iff is bounded and v = ^(/Jz, then

(3) dEx,v=fdEXtZ (xeH,zeH).

proof. If z = x + y, and co g 5CR, then

\\E(co)z\\2 < (\\E(co)x\\ + \\E(co)y\\)2 < 2\\E(co)x\\2 + 2||£(co)>;||2

or

(4) Ez,z(co)<2Ex,x(co) + 2Ey,y(co).

It follows that @f is closed under addition. Scalar multiplication is

even easier. Thus @f is a subspace of H.

For n = 1, 2, 3,..., let con be the subset of Q in which | /1 < n. If

x e @(E(con)) then

(5) E(co)x = E(co)E(con)x = E(co n con)x

so that

(6) EXtX(co) = EXtX(concon) (a> 6 3K),

and therefore

\\f\2dEx,x= f
Ja Jcc

(7) l/l2d£».»= |/|2 <*£*,, <n2||x||2<co.
Ja Jco„

Thus ^(E(co„)) c ^r. Since Q = (J^°=1 co„, the countable additivity of

co -? £(co)^ implies that y
= lim £(con)^ for every y g //, so that y lies

in the closure of <2>f. Hence 3)s is dense.
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If x g H, y g H, and / is a bounded measurable function on Q,

the Radon-Nikodym theorem [23] shows that there is a measurable

function u on Q, with | u \ = 1, such that

(8) ufdEx<y = \f\d\Ex<y\.

Hence

(9) I |/1 d| EXt, | = (W(uf)x, y) < ||¥(u/>|| \\y\\.

By Theorem 12.21,

(io) \muf)x\\2 = uf\2dEx,x = \\f\2dEXiX.
n Jn

Now (9) and (10) give (2) for bounded/. The general case follows from

this.

Finally (3) holds because

1 g dEx<v = (V(g)x, v) = (V(g)x, V(f)z)

= (V(fm9)x, z) = mfg)x, z) = I gfdEXy,
Jn

for every bounded measurable g, by Theorem 12.21. ////

13.24 Theorem Let E be a resolution of the identity, on a set Q.

(a) To every measurable f: Q -? <p corresponds a densely defined closed

operator *¥(f) in H, with domain ^^¥{f)) = <2>f, which is characterized

by

(1) 0P(/>, y) =

Jr
fdEx_y (xe®f,yeH)

and which satisfies

(2) fV{f)x\\2 = \\f\2dEXtX (xe2f).
Jn

(b) The multiplication theorem holds in the following form: If f and g are

measurable, then

(3) V(fyV(g) cz <¥(fg) and ®W(fy¥(g)) = 9, n 9„.

Hence V{fy¥{g) = *¥{fg) if and only if@fg e 2g.

(c) For every measurable f: Q -? <£,

(4) ¥(/)* = ¥(/)
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and

(5) n/W)* = *( I /I2) = *(/)**(/)•

proof. If x e ^y then )>-? jo/dE,^ is a bounded conjugate-linear
functional on H, whose norm is at most (J |/|2 dEx x)1/2, by (2) of

Lemma 13.23. It follows that there is a unique element *F(/)x e H

that satisfies (1) for every y e H and that

(6) m/W|2< \\f\2dEx%x (xeSf).

The linearity of *¥(/) on ^y follows from (1), since Ex y
is linear in x.

Associate with each/its truncations fn =f4>n, where 4>n{p) = 1 if

l/(p)l<n,^(p) = Oif|/(p)|>n.
Then @f_fn = @f, since each fn is bounded, and therefore (6)

shows, by the dominated convergence theorem, that

(7) \mf)x - *(/„)x||2 < f | f-fn\2 dEx,x^0 as n- oo,

for every x e @f. Since/, is bounded, (2) holds with/, in place of/

(Theorem 12.21). Hence (7) implies that (2) holds as stated.

This proves (a), except for the assertion that ¥(/) is closed. The

latter follows from Theorem 13.9 if (4) (to be proved presently) is

applied to/in place of/
We turn to the proof of (b).
Assume first that / is bounded. Then @fg a @g. If z g H and

v = x¥(f)z, Equation (3) of Lemma 13.23 and Theorem 12.21 show

that

pF(/)Vfo)x, z) = 0Ffo)x, W(f)z) = OF(0)x, i;)

= f 0d£Xi„= [/^,z = m/^)x,z).

Hence

(8) V(f)V(g)x = ¥(#)* (x e 9g, f 6 L»).

If 3;
= »F(0)jc, it follows from (8) and (2) that

(9) I \f\2 dEy<y= [ \fg\2 dEXiX (x e ®„fe L»).

Now let / be arbitrary (possibly unbounded). Since (9) holds for

all/G L00, it holds for all measurable/ Since @(*¥(fy¥(g)) consists of

all x g @g such that y e @f9 and since (9) shows that y e @f if and
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only if x g @fg, we see that

(10) 9W(fyr{g)) = 9§n9f§.

If x g @g n @fg, if y
= x¥(g)z, and if the truncations fn are

defined as above, then/„->/in l}(Ey y\fng ^>fg in l}(Ex x\ and now

(8) (with/„ in place off) and (2) imply

V(fmg)x = V(f)y = lim V(fn)y = Km V(fmg)x = V(fg)x.
n->oo it-^oo

This proves (3) and hence (b).

Suppose now that x e @f and y g @j = @f. It follows from (7)
and Theorem 12.21 that

pF(/)x, y) = lim (4UK )>) = lim (x, 4UM = (x, V(/)y).
n->oo n->oo

Thus j; e 2>Q¥{f)*), and

(11) *(/)<= ¥(/)*•

To pass from (11) to (4) we have to show that every

z g 0PF(/)*) lies in 0,. Fix z; put v = *F(/)*z. Since /„ =/</>„, the

multiplication theorem gives

(12) 4U) = V^W

Since ¥(<£„) is self-adjoint, we conclude from Theorems 13.2 and 12.21

that

Hence

(13) *(*> = ¥(/Jz (n= 1,2,3,...).

Since | <j>n \ < 1, (13) and (2) imply

(14) f | f„ |2 dEz, z
= f 14>n \2 dEv, v

< Ev, M

for n = 1, 2, 3,.... Hence z e @f, and (4) is proved.

Finally, (5) follows from (4) by another application of the

multiplication theorem, because 3)sj c Q)f. ////

Remark. If g is bounded, then <2>fg c <2>g (simply because <2)g = H) so

that x¥(f)x¥(g) = x¥(fg). This was used in (12). It also shows, for

bounded g, that

(15) Vigmf) c V(fy¥(g\
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because ¥(#)¥(/) c ^(gf) = ^(fg). If g is the characteristic function

of a measurable set co c Q, (15) becomes

(16) £(©)*(/) c= *(/)£(©).

If x e % n ^(E(co)), it follows that

(17) E(a>mf)x = V(f)E(co)x = ¥(/>.

Thus ¥(/) maps 0, n St(E{(o)) into #(E(o))).
This should be compared with the discussion of invariant sub-

spaces in Section 12.27.

Note also that, by analogy with (3),

(18) V(f) + W(9)<=nf+g).

Equality holds if and only if @f+g = @f n @g9 which is true

whenever at least one off g is bounded.

13.25 Theorem In the situation of Theorem 13.24, @f = H if and only if

feL*>(E).

proof. Assume @f = H. Since *¥(/) is a closed operator, the closed

graph theorem implies that *¥(f) e 08(H). If/W =f<j>„ is a truncation of

f it follows from the multiplication theorem, combined with Theorem

12.21, that

ii/jl = nm,)ii = \mfm<t>n)\\ < \mni

since HV^JH = II^JL < 1. Thus \\f\\„ < ||V(/)||, and/G L°°(£). The

converse is contained in Theorem 12.21. ////

13.26 Definition The resolvent set of a linear operator T in H is the set

of all k g ^ such that T — /I/ is a one-to-one mapping of @(T) onto //

whose inverse belongs to &(H).
In other words, T — kl should have an inverse S e ^(//), which

satisfies

S(T
- kl) c (T

- /l/)S = /.

For instance, Theorem 13.13 states that — 1 lies in the resolvent set of

T*T if T is densely defined and closed.

The spectrum o{T) of T is the complement of the resolvent set of T,

just as for bounded operators.

Some properties of o(T), for unbounded T, are described in Exercises

17 to 20.
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For the next theorem, we refer to Section 12.20 for the definition of

the essential range of a function, with respect to a given resolution of the

identity.

13.27 Theorem Suppose E is a resolution of the identity on a set Q,

/: Q -? <p is measurable, and

coa
= {peQ:f(p) = 0L} (a g $).

(a) If oc is in the essential range off and E(coa) ^ 0, then *F(/) — a/ is not

one-to-one.

(b) If cc is in the essential range of f but E(coa) = 0, then *¥(f) — a/ is a

one-to-one mapping of @f onto a dense proper subspace of H, and there

exist vectors xn g H, with ||xj| = 1, such that

lim [V(fK
-

ax J = 0.

n-> oo

(c) 0-(*F(/)) is the essential range off

In the terminology used earlier for bounded operators, we may say

that a lies in the point spectrum of *F(/) in case (a) and in the continuous

spectrum of *F(/) in case (b). The conclusion of (b) is sometimes stated by

saying that a is an approximate eigenvalue ofx¥(f).

proof. We shall assume, without loss of generality, that a = 0.

(a) If E(co0) ^ 0, there exists x0 g $(E(co0)) with ||x0|| = 1. Let

<t>0 be the characteristic function of co0. Then f4>0 = 0, hence

*F(/)*F(0o) = °> by the multiplication theorem. Since ^(^o) = E(co0), it

follows that

n/>0 = nm^o = n/TOo)xo=o.

(b) The hypothesis is now that E(co0) = 0 but E(con) ^ 0 for

n = 1, 2, 3,..., where

co„
= jpGQ:|/(p)|<4.

Choose xn g $(E((on)\ \\x„\\ = 1; let </>„ be the characteristic functions

of con. The argument used in (a) leads to

IW)*JI = IIW-XII ^ IWWII = WJL^.
Thus ¥(/>„ -> 0 although ||x„|| = 1.
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If ¥(/> = 0 for some xe@f9 then

\f\2dEXtX = \mf)X\\2 = o.J
Since |/| > 0 a.e. [£XtJC], we must have Ex X(Q) = 0. But Ex X(Q) =

\\x\\2. Hence *F(/) is one-to-one.

Likewise ¥(/)* = ¥(/) is one-to-one. If y 1 #(¥(/)), then

x -? (*F(/)x, ^) = 0 is continuous in <2>f, hence y g ^(*F(/)*), and

(x, V(j)y) = W)*, rf = 0 (x 6 St\

Therefore, *F(/)); = 0, and y
= 0. This proves that $?(¥(/)) is dense

in//.

Since ¥(/) is closed, so is ¥(/)"x. If «(*(/)) rilled //, the closed

graph theorem would imply that *F(/)_1 g ^(//). But this is

impossible, in view of the sequence {xn} constructed above.

Hence (b) is proved.

(c) It follows from (a) and (b) that the essential range off is a

subset of a(*F(/)). To obtain the opposite inclusion, assume 0 is not

in the essential range of /. Then g
= 1//g L°°(£), fg = 1, hence

*¥(fy¥(g) = ¥(1) = /, which proves that #(¥(/)) = //. Since |/| > 0,

¥(/) is one-to-one, as in the proof of (ft). Therefore *F(/)_1 e ^(//), by
the closed graph theorem.

This completes the proof. ////

The following theorem is sometimes called the change of measure

principle.

13.28 Theorem Supp >ose

(a) 5CR and W are o-algebras in sets Q and Q',

(b) E: 5CR -? &(H) is a resolution of the identity, and

(c) 4>: Q -? Q' has the property that 4>" 1(co/) g 5CR/or every co' g 9W'.

// E'(co') = E((t>~1(cof)\ then E':W^> @(H) is also a resolution of the

identity, and

(1) [ fdE'x,y= [{f°<t>)dEx,y
for every W-measurable f. Q' -? (pfor which either of these integrals exists.

proof. For characteristic functions/, (1) is just the definition of E'.

Hence (1) holds for simple functions/. The general case follows from
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this. The proof that E is a resolution of the identity is a matter of

straightforward verifications and is omitted. ////

The Spectral Theorem

13.29 Normal operators A (not necessarily bounded) linear operator

T in H is said to be normal if T is closed and densely defined and if

T*T = tj1*

Every ¥(/) that arises in Theorem 13.24 is normal; this is part of the

statement of the theorem. We shall now see, just as in the bounded case

discussed in Chapter 12, that all normal operators can be represented in

this way, by means of resolutions of the identity on their spectra (Definition

13.26). For self-adjoint operators, this can be deduced very quickly from the

unitary case, via the Cayley transform (Theorem 13.30). For normal

operators in general, a different proof will be given in Theorem 13.33.

13.30 Theorem To every self-adjoint operator A in H corresponds a

unique resolution E of the identity, on the Borel subsets of the real line, such

that

ix, y) =

j
°

(1) (Ax, y)= \ t dEXt y(t) (x g S(A\ y e H).
J— oo

Moreover, E is concentrated on a(A) c (
—

oo, oo), in the sense that

E(o(A)) = 1.

As before, this E will be called the spectral decomposition of A.

proof. Let U be the Cayley transform of A, let Q be the unit circle

with the point 1 removed, and let E' be the spectral decomposition of

U (see Theorems 12.23 and 12.26). Since / — U is one-to-one

(Theorem 13.19), £'({*}) = 0, by (b) of Theorem 12.29, and therefore

Jx, y)=\ s(2) (Ux, y)=\ I dEx% y{k) (xeH,ye H).

Define

(3) /(A) = ^f (1 e Q),

and define *F(/) as in Theorem 13.24 with E in place of E:

(4) pF(/)x, y)=\f dEx%y (xsSf9ysH).
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Since/is real-valued, *F(/) is self-adjoint (Theorem 13.24), and

since/(/l)(l — X) = i(l + X), the multiplication theorem gives

(5) V(f)(l -U) = i(I + U).

In particular, (5) implies that 01(1
- U) c ^0F(/)). By Theorem 13.19,

(6) A(I -U) = i(I + U),

and 9(A) = 01(1
-

U) c ^(^(Z)). Comparison of (5) and (6) shows

now that ¥(/) is a self-adjoint extension of the self-adjoint operator

A. By Theorem 13.15, A = *¥(f). Thus

(7) (Ax, y)=\f dE'Xt y [x g 0(4), ye HI
Jo.

By (c) of Theorem 13.27, o(A) is the essential range of/. Thus

(x(A) c (—oo, oo). Note that/is one-to-one in Q. If we define

(8) E(f(co)) = E'(a>)

for every Borel set co c Q, we obtain the desired resolution E which

converts (7) to (1).
Just as (1) was derived from (2) by means of the Cayley

transform, (2) can be derived from (1) by using the inverse of the Cayley
transform. The uniqueness of the representation (2) (Theorem 12.23)
leads therefore to the uniqueness of the resolution E that satisfies (1).

This completes the proof. ////

The machinery developed in Theorem 13.24 can now be applied to

self-adjoint operators. The following theorem furnishes an example of this.

13.31 Theorem Let A be a self-adjoint operator in H.

(a) (Ax, x) > 0 for every x g @(A) (briefly: A > 0) if and only if g(A) c

[0, oo).

(b) If A > 0, there exists a unique self-adjoint B > 0 such that B2 = A.

proof. The proof of (a) is so similar to that of Theorem 12.32 that we

omit it.

Assume A > 0, so that o(A) c [0, oo), and

(1) (Ax, y)=\ t dEXt x(t) [jc g 9(A), y g H],

where 9(A) = {x g H: \ t2 dEx y(t) < oo}; the domain of integration
is [0, oo). Let s(t) be the nonnegative square root of t > 0, and put



370 PART III: BANACH ALGEBRAS AND SPECTRAL THEORY

B = x¥(s); explicitly,

(2) (Ac, y) = \\t) dEXt y(t) (xe®s,ye H).

The multiplication theorem (b) of Theorem 13.24, with f=g =

s,

shows that B2 = A. Since s is real, B is self-adjoint [(c) of Theorem

13.24], and since s(t) > 0, (2) with x =

y, shows that B > 0.

To prove uniqueness, suppose C is self-adjoint, C > 0, C2 = A,

and Ec is its spectral decomposition:

-*> >0 =(3) (Cx, y)=| s dEcXt y(s) (x G 0(Q, y G H).

Apply Theorem 13.28 with Q = [0, oo), (f)(s) = s2J(t) = U and

(4) E\<K(o)) = Ec(co) for co c [0, oo),

to obtain

(5) (Ax, y) = (C2x, y) = \s2 dEl y(s) = \t dE'Xt y(t).
Jo Jo

By (1) and (5), the uniqueness statement in Theorem 13.30 shows that

E' = E. By (4), E determines Ec, and hence C ////

The following properties of normal operators will be used in the proof
of the spectral theorem 13.33.

13.32 Theorem IfN is a normal operator in H, then

(a) ®(N) = ®{N*\

(b) || Nx || = || N*x || for every x e ®(N)9 and

(c) N is maximally normal

proof. If y g @(N*N) = ®{NN*\ then (Ny, Ny) = (y, N*Ny) because

Ny g ®{N*\ and (N*y9 N*y) = (y, NN*y) because N*y g @(N) and

N = N** (Theorem 13.12). Since N*N = NN*, it follows that

(1) \\Ny\\ = \\N*y\\ if y g @(N*N).

Now pick x g @(N). Let N' be the restriction of N to @(N*N).

By Theorem 13.13, {x, Nx} lies in the closure of the graph of AT.

Hence there are vectors yt g @(N*N) such that

(2) \\yt
-

x|| -?0 as !*-? oo
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and

(3) IIAty-JVxII-^Oasi-^oo.

By (1), \\N*yt -

JV*^|| = \\Nyt
-

Aty||, so that (3) implies that {N*yt}
is a Cauchy sequence in H. Hence there exists z e H such that

(4) \\N*yt-z\\ ->0as i->oo.

Since A/"* is a closed operator, (2) and (4) imply that {x, z} e &(N*).
From this we conclude first that x e @(N*), so that @(N) a

@(N*% and secondly that

(5) ||JV*x|| = ||z|| = lim \\N*yt\\ = lim \\Nyi\\ = ||tfx||.

This proves (b) and half of (a). For the other half, note that N* is also

normal (since N** = N), so that

(6) @(N*) c @(N**) = ®{N).

Finally, suppose M is normal and N c M. Then M* c A/"*, so

that

(7) ®(M) = 0(M*) c 0(JV*) = 0(JV) c ^(M),

which gives 0(Af) = @(N); hence M = N. ////

13.33 Theorem £yery normal operator N in H has a unique spectral

decomposition E, which satisfies

(1) (Nx, y) = I k dEx< y(k) (x e ®(N), y e H).
Jff(JV)

Moreover, E(co)S = SE(co)for every Borel set to co c o-(Af) and for every

S g ^(//) £/ia£ commutes with N, in the sense that SN c A/"S.

It also follows from (1) and Theorem 13.24 that E(co)N c JVE((w).

proof. Our first objective is to find self-adjoint projections Pi9 with

pairwise orthogonal ranges, such that PtN c NPj g ^(//), NP; is

normal, and x = £ P,- x for every x e H. The spectral theorem for

bounded normal operators will then be applied to the operators NPt,
and this will lead to the desired result.

By Theorem 13.13, there exist B e @(H) and C e ^(H) such that

£>0, ||B|| < 1,C = JV£,and

(2) B(/ + N*N) c / = (/ + N*N)B.
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Since N*N = NN*, (2) implies

(3) BN = BN(I + N*N)B = B(I + N*N)NB aNB = C.

Consequently, BC = B(NB) = (BN)B c CB. Since B and C are

bounded, it follows that BC = CB and therefore, that C commutes

with every bounded Borel function of B. (See Section 12.24.)
Choose {tt} so that 1 = t0 > t1 > t2 >

• •

•, lim t{ = 0. Let pt be

the characteristic function of (ti9 ^-J, for i = 1, 2, 3, ...,
and put

f.(t) = p.(t)/t. Each fi is bounded on o{B) c [0, 1]. Let EB be the

spectral decomposition of B. The equality (2) shows that B is one-to-one,

that is, 0 is not in the point spectrum of B. Hence EB({0}) = 0, and EB

is concentrated on (0, 1].
Define

(4) Pi = Pi(B) (i= 1,2,3,...).

Since pipj
= 0 if i ^;, the projections Pt have mutually orthogonal

ranges. Since £ Pi is the characteristic function of (0, 1], we have

00

(5) £ Pt x = E*((0, l])x = x (xe H).
i=l

Since Pi(t) = t/fc),

(6) NPt = NBfiB) = CUB) g ^(//),

and P^N =fi(B)BN c/;.(B)C, by (3), so that

(7) PiNaNPi.

By (6), @(NPi) = H, so that

(8) ^(Pf)c^(N) (i = 1,2,3,...).

Hence, if Pf x =

x, (7) implies P; A/x = NPt x = Nx. Thus N carries

$(Pi) into ^(Pj), or: ^(Pf) is an invariant subspace ofN.

Next, we wish to prove that each NPt is normal. By (7) and

Theorem 13.2,

(9) (NPJ* c (P. N)* = N*Pt.

But NPt g ^(H), so that (NPt)* has domain H. Hence

(10) (NPi)* = N*Pi,

and now Theorem 13.32 shows, by (8) and (10), that

(11) \\NPiX\\ = \\N*Ptx\\ = \\{NPd*x\\ (x g H).

By Theorem 12.12, (11) implies that NPt is normal.

Hence (5), (6), and (7) show that our first objective has now been

reached.
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By Theorem 12.23, each NP, has a spectral decomposition E\

defined on the Borel subsets of (p.
Since N carries ^(Pt) into ^2(Pf), P{ commutes with NPt.

Therefore Pf commutes with E\oo\ for every Borel set co c (p, so that

(12) £?(co)P,x = P,£f(co)x g ^(P,) (x g //, i = 1, 2, 3, ...).

Since these ranges are pairwise orthogonal, and since (5) implies

(13) t\\E*(co)Ptx\\2<Z t IIM2=II*II2>
i = 1 i = 1

the series £ E\u>)Pi x converges, in the norm of //, and it makes sense

to define

(14) E(co)= £sf(co)Pf

for all Borel sets co a (p.
It is easy to check that £ is a resolution of the identity. Hence

there is a normal operator M, defined by

(15) (Mx, y) = A d£Xt y(A) (x g ^(M), y g //),

where the domain of integration is <p, and

(16) S{M) = <x g //: |A|2 d£XtX(A) < oo i.

Our assertion (1) will not be proved by showing that M = N.

For any x g //, (14) shows that

(17) Ex,» = ||E(a>)x||2 = £ ||Efap,x\\2=t K.xM,
i = 1 i = 1

where xf
= Ptx. If x g 0(JV), then P(Nx = NP(x, so that

(18) f f |A|2 dEiliX^) = Z l|Wi*ill2 = £ ||PfNx||2 = ||Nx||2.
i = 1 J i = 1 i = 1

It follows from (17) and (18) that the integral in (16) is finite for every

x g ®(N). Hence

(19) S(N) c S(M),

If x g ^(Pt), then x = Pfx, and so E(co)x = E\co)x; thus Ex y
=

Ex for every y e H. Hence

(Nx,y) = (NPix,y) = ?Jlrf£i,,(l)= Arf£x,,(A) = (Mx,j;).
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Consequently

(20) P(Nx = NPtx = MPtx [x e @(N), i = 1, 2, 3, ...].

If Q. = pi +
• • •

+ p.9 it follows that Qi Nx = MQtx. Thus

(21) {Qtx, QtNx} g <$(M) [x g 0(iV), i = 1, 2, 3, ...].

Since #(Af) is closed, it follows from (5) and (21) that {x, Nx} e 9(M),
that is, that Nx = Mx for every x e ^(N). Thus N c M, by (19), and

now the maximality of N (Theorem 13.32) implies N = M.

This gives the representation (1), with (p in place of a(N). That E

is actually concentrated on a(N) follows from (c) of Theorem 13.27.

To prove the uniqueness of E, consider the operator

(22) T = N(I + y/N*N)-\

where ^/N*N is the unique positive square root of N*N. If (1) holds,

it follows from Theorem 13.24 that

f(23) T = \(t> dE,

where c/>(/l) = k/(l + \k\), so that T g ^(//), and since <j> is one-to-one

on (p, Theorem 13.28 implies that the spectral decomposition ET of T

satisfies

(24) E(co) = ET(<P(co))

for every Bor-el set co a (p. The uniqueness of E follows now from that

of ET (Theorem 12.23).

Finally, assume S e @(H) and SN c NS. Put Q = Qn = E(co%
where co = {k: |/l| < n}, and n is some positive integer. Then

NQ g ^(//) is normal and is given by

-J-(25) NQ=\fdE,

where/(/I) = k on co,/(/I) = 0 outside co. Theorem 13.28 implies that

the spectral decomposition E' of NQ satisfies E\co) = E(f~1(co)), or

(26)
\E\co) = E(co n co) = QE(co) if 0 £ co,

l£'({0}) = £({0} u (0
-

co)) = £({0}) + I-Q.

Hence

(27) E(co) = QE(co) = QE'(co) if co c co.

By Theorem 13.24, QN c NQ = QNQ, so that

(28) (QSQ)(NQ) = QSNQ c= QNSQ c= (NQXQSe).
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Since (QSQXNQ) g 08{H\ the inclusions in (28) are actually equalities.
Now Theorem 12.23 implies that QSQ commutes with every E'(co).

Consider a bounded co, and take n so large that co c co. By (27)

QSE(co) = QSQE\co) = E\co)QSQ = E(co)SQ

so that

(29) Qn SE(co) = E(co)SQn (n = 1, 2, 3, ...).

It now follows from Proposition 12.18 that

(30) SE(co) = E(co)S

if co is bounded [let n -? oo in (29)], and hence also if co is any Borel

set in (p. /HI

Semigroups of Operators

13.34 Definitions Let X be a Banach space, and suppose that to every

t g [0, oo) is associated an operator Q(t) g 0&(X\ in such a way that

(a) 2(0) = /,

(b) Q(s + t) = Q(s)Q(t) for all s > 0 and t > 0, and

(c) lim \\Q(t)x —

x\\ = 0 for every xel

r->0

If (a) and (b) hold, {Q(t)} is called a semigroup (or, more precisely, a

one-parameter semigroup). Such semigroups have exponential

representations, provided that the mapping t -? Q(t) satisfies some continuity
assumption. The one that is chosen here, namely (c), is easy to work with.

Motivated by the fact that every continuous complex function that

satisfies f(s + t) =f(s)f(t) has the form/(t) =

exp (At), and that/is
determined by the number A =f'(0\ we associate with {Q(t)} the operators AE,

by

(1) Ae x =
-

[Q(e)x
- x] (x g X, e > 0),

£

and define

(2) Ax = UmAEx

for all x g @(A), that is, for all x for which the limit (2) exists in the norm

topology of X.

It is clear that Q)(A) is a subspace of X and that A is thus a linear

operator in X.
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This operator, which is essentially Q'(0% is called the infinitesimal gen-

r of the semigroup {Q(0}-erator

13.35 Theorem // the semigroup {Q(t)} satisfies the preceding

hypotheses, then

(a) there are constants C, y such that

||<2(0II <Ce* (0<t<oo);

(b) t -? Q(t)x is a continuous map o/[0, oo) into X,for every x g X;

(c) @(A) is dense in X and A is closed;

(d) the differential equation

-

Q(t)x = AQ(t)x = Q(t)Ax

holds for every x g @(A);

(e) for every x g X,

Q(t)x = lim (exp (tAE))x,
E->0

the convergence being uniform on every compact subset of[0, oo); and

(f) ifXe(fi and Re X > y, the integral

)X= fV*.R(X)x= e~MQ(t)xdt

defines an operator R(A) e &(X) [the so-called resolvent of {Q{t)}~\ whose

range is @(A) and which inverts XI — A.

It is remarkable that (e) holds for every xeI, not just for x g @(A).
The limit in (e), as well as the one that is implicit in the derivative used in

(d), is understood to refer to the norm topology of X. It follows from (/)
that o{A) lies in the half plane {X: Re X < y}.

proof, (a) If there were a sequence £„-?() with 116(011-? oo, the

Banach-Steinhaus theorem would imply the existence of an x g X for

which {112(0*11} *s unbounded, contrary to our assumption that

(1) ||e(f)x-x||->0 as £-?().

Hence there is a d > 0 and a C < oo such that ||Q(t)|| < C on [0, 5]. If

now 0 < t < oo and n is the positive integer satisfying (n
— 1)3 <

t < nd, then ||Q(t/n)|| < C, and the functional equation

(2) Q(s + t) = Q(s)Q(t)
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leads to

(3) newii = ne(^rii<c"<ci+^

which proves (a), with ey = C1/d.

(b) If 0 < s < t < T, then (a) and (2) imply that

\\Q(t)x
-

Q(s)x\\ < \\Q(s)\\
•

\\Q(t
-

s)x -

x\\

<CeyT\\Q(t- s)x-x\\,

which tends to 0 as t —

s -? 0.

(c) Because of (b), the X-valued integrals

-

Q(s)x
1 Jo

(4) Mtx =
-

Q(s)x ds (xeX9t> 0)
t Jo

can be defined. In fact, Mt g @(X) and ||Mr|| < Cey\ by (a). We claim

that

(5) AEMtx = AtMEx (e>0,t>0,xeX).

To prove (5), insert the integrand Q(s)x ds into

'r + e rt rt + e re

Jo Jr Jo

By (2), the left side becomes

[\q(b + s)- Q(s)-]x ds = [2(e) - /] [tQ(s)s ds

Jo Jo

= eAEtMtx.

In the same way, the right side becomes tAt eME x. This gives (5).
As e-? 0, the right side of (5) converges to Atx. Thus Mtx g

@(A), which proves that @(A) is dense in X, because Mrx->x as

t -? 0. Moreover,

(6) AMtx = Atx (xel).

To show that A is closed, suppose xn g @(A), xn -? x, and

Axn^y. Since Q(s) commutes with Q(t), AE commutes with Mr, and

therefore A commutes with Mt on @(A). Thus (6) gives

Atxn = AMtxn = MtAxn.

Letting n -? oo, we get

(7) Atx = Mty.

As t -? 0, the right side of (7) converges, to y; hence the same is true of

Atx. This says that x g @(A) and that Ax =

y. The graph of A is

therefore closed.
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(d) Multiplying (6) by t gives

(8) A Q(s)x ds = Q(t)x
-

x.A Q(s)x ds = Q(t)x

The integrand is continuous. Differentiation of the integral therefore

proves (d), since Q(t)Ax = AQ(t)x for x e @(A). [Note that Q(t)AE =

AEQ(t).-]

(e) We need an estimate for the norm of

exp (tAe) = e~"e exp K Q{e)

Replace the norm of this sum by the sum of the norms, apply the

estimate (a), and sum the resulting series, to obtain

(9) ||exp (tAE)\\ < C exp <- (etEy - l)i < C exp (teyt)

for 0 < e < 1. Now define, for fixed x e X,

(10) (p(s) = {exp ((t
- s)Ae)}Q(s)x (0 < s < t).

If x g @(A)9 it follows from (d) that

(11) cp'(s) = {exp ((t
-

s)Ae)}Q(s)(Ax -

AE x).

Thus (a) and (9) show that there is a K(t) < oo such that

(12) \\(p'(s)\\ < K(t)\\Ax
-

AEx\\

whenever 0<s<t, 0 < e < 1, and x g @(A).
Since cp{t) = Q(t)x and cp(0) = {exp (tAE)}x, (12) implies

(13) 112(0*
-

{exp (MJ}x|| < tK(t)\\Ax
-

Aex\\,

for x g ®{A\ 0 < e < 1. This gives (e) for x g @{A).

However, \\Q(t)
-

exp (tAE)\\ is bounded on 0 < t < T, 0 < e < 1,

by (a) and (9). These operators form therefore an equicontinuous

family (Chapter 4, Exercise 3); it follows that their convergence on the

dense set @(A) forces their convergence on all of X (Chapter 2,

Exercise 14). This proves (e).

{f) It follows from (a) that

(14) \\R(X)\\ < C e(v-ReA)r^ =
-_

<o0

Re (2
-

y)
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if Re X > y. Thus R(X) e @(X). The definition of R(X) shows that

e~XtQ(t + e)x dt - e~XtQ(t)x dt.

o Jo

If we replace t by t —

s in the first integral, we are led to

Xe-l
j [a

(15) AE R(A)x = R(X)x --eXe e~XtQ(t)x dt

As £->0, the right side of (15) converges to AR(X)x —

x. This shows

that R(X)x g @(A) and that

(16) (/I/
-

A)R(A)x = x (xe X).

On the other hand, if x g @(A), we can apply (d) to

(17) R(/l)Aex= e~XtQ(t)AExdt

and see that

f00 , d

(18) R(X)Ax = e~xt -

Q(t)x dt= -x + kR{k)x
Jn dt

by an integration by parts. Thus

(19) R{X){U
-

A)x = x (x g 9(A)).

In particular, 9(A) lies in the range of R(X). This completes the proof.

////

It is now natural to ask whether the limit can be removed from the

conclusion (e\ that is, under what conditions the exponential representation

Q(t) =

exp (tA) is valid. Theorems 13.36 and 13.38 give answers to these

questions.

13.36 Theorem If {Q(t)} is as in Theorem 13.35, then any of the

following three conditions implies the other two:

(a) 9(A) = X.

(b) lim 112(e)-/1| =0.

£-?0

(c) A g @(X) and Q(t) = etA (0<t< oo).

proof. We shall use the same notations as in the proof of Theorem

13.35.
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If (a) holds, the Banach-Steinhaus theorem implies that the

norms of the operators AE are bounded, for all sufficiently small e > 0.

Since Q(s)
— I = sAE, (b) follows from (a).

If (b) holds, then also \\Mt
- 1\\ -? 0 as t -? 0. Fix t > 0, so small

that Mt is invertible in &(X). Since Mt AE = AtME, we have

(1) AE = (M,rlAtMe.

As £->0, (1) shows first of all that AEx converges, for every x e X

[since MEx^x and (Mr)~Mr g 8(X)]9 second that A=(Mt)~1At9
and third that

(2) \\AE - A\\ < \\(Mty1At\\\\ME -

/|| -0 as e^0.

The formula Q(t) =

exp (tA) follows now from (e) of Theorem 13.35,

since (2) implies that

(3) lim || exp (tAE)
-

exp (tA)\\ =0 (0 < t < oo).

Thus (c) follows from (b).
The implication (c) -? (a) is trivial. ////

Infinitesimal generators have the following characterization.

13.37 The Hille-Yosida theorem A densely defined operator A in a

Banach space X is the infinitesimal generator of a semigroup {Q(t)} as in

Definition 13.34 if and only if there are constants C, y so that

(1) \m-A)-m\\<C^-yym

for all X>y and all positive integers m.

proof. If A is related to {Q(t)} as in Theorem 13.35, we saw there that

(U
- A)'1 = R(X), for X > y, where

,x = f(2) R(X)x = e~XtQ(t)x dt

is the Laplace transform of Q(t)x. Hence R(X)2x is the transform of the

convolution

f(3) Q(t
-

s)Q(s)x ds = tQ(t)x.

(The formalism is the same as for Fourier transforms.) Continuing in

this way, we find that

(4) R(X)mx =

*

yr-le-»Qk)x dt
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for m = 1, 2, 3, Therefore, with C and y as in (a) of Theorem 13.35,

C f00
(5) HWH < — r_1e-(A-y)f dt = C{k - y)~m.

(m- 1)! Jo

This proves the necessity of (1).
For the converse, set 5(e) = (/

— sA)'1, so that (1) becomes

(6) ||5(e)m|| < C(l
-

ey)~m (0 < e < e0, m = 1, 2, 3, ...),

and the relations

(7) (/
-

eA)S(e)x = x = 5(e)(/
-

eA)x

hold, the first for all xel, the second for all x g @(A).
If x g @(A), then x

-

S(e)x = —

eS(e)x, so that

(8) lim S(e)x = x.

But since ||5(e)|| < C(l
— Boy)'1, {5(e): 0 < e < e0} is equicontinuous,

and hence (8) holds for all x g X.

Next we set

(9) T(t, e) =

exp (tAS(e))

and claim that

(10) || T(t, e)|| < C exp {737} (0 < e < e0, t > 0).

Indeed, the relation eAS(e) = 5(e)
— / [see (7)] shows that

00 y.mr

(11) T{t,e) = e-« Z -T^Sier.
m

= 0
m\em

Now (10) follows from (6) and (11).
For x g @(A)9 (7) and (9) show that

4- {T(t9 e)T(t, dy'x} = T(t, e)T(t, (5)_1(5(e) - S(S))Ax.
dt

If we integrate this and apply T(t, (5) to the result, we obtain

(12) T(t, e)x
-

T(t, S)x = T(u, e)T(t
-

u, 3)(S(e)
-

S(5))Ax du.

If we use (8) with Ax in place of x, and refer to (10), we see that

the right side of (12) converges to 0 when e -? 0 and (5 -? 0. The limit

(13) Q(t)x = lim T(t, e)x
E~>0
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exists therefore for every x g @(A)9 uniformly on every bounded

subset of [0, oo). Moreover, (10) shows that \\Q(t)\\ < Ceyt. By equi-

continuity, and the assumption that @(A) is dense, we see now that

(13) holds for all xel Since T(t, e) is defined by (9), it follows that

{Q(t)} is a semigroup, as in Definition 13.34.

Let A be the infinitesimal generator of {Q(t)}. Then, by (/) of

Theorem 13.35,

xx = e~XtQ(t)x ,(14) (kl - A)~lx = e~XtQ(t)x dt (k > y).

On the other hand, AS(s) is the infinitesimal generator of

{exp (MS(e))} = {T(t, e)}. Thus

-1* = e~XtT(t,(15) (kl -AS(e))~1x = I e-MT(t,e)xdt.

By (13) this becomes

(16) (U-Ay1x=\ e~MQ(t)xdt.?ix= |V*(
Comparison of (14) and (16) shows now that 11 — A and 11 — A have

the same inverse for all sufficiently large k, and this implies that

A = A. mi

For our final theorem, we return to the Hilbert space setting.

13.38 Theorem Assume that {Q(t): 0 < t < oo} is a semigroup of normal

operators Q(t) g &(H), which satisfies the continuity condition

(1) lim ||e(f)x-x|| =0 (x eH).
r->0

The infinitesimal generator A of {Q(t)} is then a normal operator in H,

there is a y < oo such that Re k < y for every k g g(A), and

(2) Q(t) = etA (0 < t < oo).

If each Q(t) is unitary, then there is a self-adjoint operator S in H such

that

(3) Q(t) = eitS (0 < t < oo).

This representation of unitary semigroups is a classical theorem of

M. H. Stone.

Note: Although @(A) may be a proper subspace of H, the operators

etA are defined in all of H and are bounded. To see this, let EA be the

spectral decomposition of A (Theorem 13.33). Since \ea\<ety for all
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X g o{A\ the symbolic calculus described in Theorem 12.21 allows us to

define bounded operators etA by

MA)

(4) etA = | ea dE\k) (0 < t < oo).
«(A)

The theorem has an easy converse: If A is as in the conclusion, then

(2) obviously defines a semigroup of normal operators, and (1) holds

because

(5) \\Q(t)x -x\\2=[ \e"-t\2 dEiX(X)-0
Ja(A)

as t -? 0, by the dominated convergence theorem.

proof. Since each Q(s) commutes with each Q(t). Theorem 12.16

implies that Q(s) and Q(t)* commute. The smallest closed subalgebra
of @(H) that contains all Q(t) and all Q(t)* is therefore normal. Let A

be its maximal ideal space, and let E be the corresponding resolution

of the identity, as in Theorem 12.22.

Let ft and aE be the Gelfand transforms of Q(t) and AE,

respectively. Then

(6) aE
=

£=+
(6 > 0),

and a simple computation gives

(7) a2e -<>e
=

2
(fl*)2>

since f2e = (/J2. Define

(8) b(p) = lim a2-n(p)
n-> oo

for those p g A at which this limit exists (as a complex number), and

define b(p) = 0 at all other p g A. Then b is a complex Borel function

on A. Put B = ^(b), as in Theorem 13.24, with domain

(9) ®{B) = \xe H: \b\2 dExx< oo i.

Then B is a normal operator in H.

We will show that A = B.

If x g @(A) then ||>4ex|| is bounded, as e -? 0. Hence there exists

Cv < oo such that

(10) \aE\2dEXtX=\\Aex\\2<Cx (0<e<l)
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and therefore

(11) I «2e
-

ae dEv Hc- (0 < 5 < 1),

by (7). Take e = 2~n (n = 1, 2, 3, ...) in (11) and add the resulting

inequalities. It follows that

(12) £ \a2-n+i
-

a2-„\ < oo a.e. [£*,*].

The limit (8) exists therefore a.e. \_EX J, and now Fatou's lemma and

(10) imply that

(13) \i b\2dEXtX<Cx.

Consequently, 0(A) c 0(B).
Part (a) of Theorem 13.35 shows that || exp (AE)\\ <yx<co for

0 < e < 1, where yx depends on {Q(0}- Hence |exp aE(p)\ < yt for

every peA, since the Gelfand transform is an isometry on B*-

algebras. It now follows from (8) that | exp b(p) \ < y1 for every p g A.

Hence there exists y < oo such that

(14) Re b(p) <y (p g A).

For every x g @(A) and every t > 0,

(15) ||exp (tAE)x -

exp (tB)x\\2 = | exp (taE)
—

exp (t^) |2 J£x

tends to 0 as e -? 0 through the sequence {2~n}, because the integrand
is bounded by 4yf and its limit is 0 a.e. \_EX J. Hence (e) of Theorem

13.35 implies that

(16) Q(t)x = etBx [x g 0(A)].

However, etb is a bounded function on A, etB g ^(//), and since

(16) shows that the continuous operators Q(t) and etB coincide on the

dense set 0(A), we conclude that

Q(t) = etB (0<t< oo).(17)

It follows from (17) that

(18)

so that

(19)

A, x — Bx =

\Atx-Bx\\2 =

eeB-I
-B)x

eeb- 1
dEr
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As £-?(), the integrand (19) tends to 0, at every point of A. Since

\(ez
— l)/z| is bounded on every half-plane {z: Re z < c}, and since

the integrand (19) can be written in the form

I eEb - 1
- 1 \b\2

eb

it follows from (14) and the dominated convergence theorem that

(20) lim ||y4ex
- Bx||2 = 0 if x e 9(B).

£-?0

This proves that 9(B) c 9(A) and that A = B.

That the real part of o(A) is bounded above follows now from

(14) and (c) of Theorem 13.27.

This completes the proof, except for the final statement about

unitary semigroups. If each Q(t) is unitary, then |/e| = 1, (6) shows

that lim az is pure imaginary at every point at which it exists, as e -? 0,

hence b(p) is pure imaginary at every p g A, and if S = —iB then (17)

gives (3), and (c) of Theorem 13.24 shows that S is self-adjoint. ////

Exercises

Throughout this set of exercises, the letter H denotes a Hilbert space, unless the

contrary is stated.

1. The associative law (TXT2)T^ = TX(T2T^) has been used freely throughout this

chapter. Prove it. Prove also that Tt cz T2 implies STt cz ST2 and TtS c T2 S.

2. Let T be a densely defined operator in H. Prove that T has a closed extension if

and only if <&(T*) is dense in H. In that case, prove that T** is an extension

of T.

3. By Theorem 13.8, @(T*) = {0} for a densely defined operator T in H if and only
if ^(T) is dense in H x H. Show that this can actually happen.

Suggestion: Let {en: n = 1, 2, 3, ...} be an orthonormal basis of H; let

{x„} be a dense subset of H; define Ten =

x„; and extend T linearly to @(T), the

set of all finite linear combinations of the basis vectors en. Show that the graph
of this T is dense in H x H.

4. Suppose T is a densely defined, closed operator in H, and T*T a TT*. Does it

follow that T is normal?

5. Suppose T is a densely defined operator in H, and (Tx, x) = 0 for every

x e 9(T). Does it follow that Tx = 0 for every x e ^(T)?

6. If T is an operator in //, define

JT(T) = {xe9(T)\ Tx = 0}.

If <&(T) is dense, prove that

J^(T*) = ®(T)L n ^(T*).
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If T is also closed, prove that

JT(T) = ^(T*)1 n 9(T).

This generalizes Theorem 12.10.

7. Consider the following three boundary value problems. The differential

equation is

f-f=g,

where g e L2([0, 1]) is given. The choices of boundary conditions are

(0 /(o)=/(i) = o.

(h) /'(0) =/'(!) = 0.

m /(0)=/(l)and/'(0)=/'(l).
Show that each of these problems has a unique solution / such that /' is

absolutely continuous and /" e L2([0, 1]). Hint: Combine Example 13.4 with

Theorem 13.13.

Do this also by solving the problems explicitly.

8. (a) Prove the self-adjointness of the operator T in l3(R), defined by Tf= if,
with <3(T) consisting of all absolutely continuous/e L2 such that/' e L2.

Hint: You may need to know that/(0~>0 as f-> ±oo for every

fe @(T). Prove this. Or prove more, namely, that every fe @(T) is the

Fourier transform of an L1-function.

(b) Fix g e L?{R). Use Theorem 13.13 to prove that the equation

f"-f=g

has a unique absolutely continuous solution fe L2, which has /' 6 L2,

/" g L2, and/' absolutely continuous.

Prove also, by direct calculation, that

1 Cx If00

This solution can also be found by means of Fourier transforms.

9. Let H2 be the space of all holomorphic functions/(z) = £ cnz" in the open unit

disc that satisfy

imi2= Zkj2<cx).
« = 0

Show that H2 is a Hilbert space which is isomorphic to {2 via the one-to-one

correspondence/<-? {cn}.
Define V e @(H2) by (Vf\z) = zf(z). Show that V is the Cayley transform

of the symmetric operator T in H2, given by

(Tf\z) = i\^f(z).1 —

z

Find the ranges of T + i/ and of T — i7; show that one is H2 and one has

codimension 1. (Compare with Example 13.21.)
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10. With H2 as in Exercise 9, define V now by

(Vf)(z) = zf(z2).

Show that V is an isometry which is the Cayley transform of a closed symmetric

operator T in H2, whose deficiency indices are 0 and oo.

11. Prove part (c) of Lemma 13.18.

12. (a) In the context of Theorem 13.24, how are the operators ¥(/+#) and

¥(/) + ¥(#) related?

(b) If / and g are measurable and g is bounded, prove that ¥(#) maps @f
into 9f.

(c) Prove that ¥(/) = ¥(#) if and only if/= g a.e. [£], that is, if and only if

E({p:f(p)*g(p)}) = 0.

13. Is the operator C that occurs in the proof of Theorem 13.33 normal?

14. Prove that every normal operator N in H, bounded or not, has a polar

decomposition

N = UP = PU,

where U is unitary, P is self-adjoint, P > 0. Moreover, 3>(P) = 0(N).

15. Prove the following extension of Theorem 12.16: If T e 31(H), if M and N are

normal operators in H, and if TM a NT, then also TM* cz N*T.

16. Suppose T is a closed operator in H, 3>(T) = 2>(T*), and ||Tx|| = ||T*x|| for

every x e 3>(T). Prove that T is normal. Hint: Begin by proving that

(Tx, 7» = (T*x, T*y) (x e 0(T), y e 9(T)).

17. Prove that the spectrum <j(T) of any operator T in // is a closed subset of £.

(See Definition 13.26.) Hint: If ST ^ TS = I, and S e ^(H), then S{I -XSf1 is

a bounded inverse of T — M, for small \X\.

18. Put 0(0 =

exp (-t2). Define S e ^(L2), where L2 = L2(K), by

(Sfft) = <Kt)f(t-l) (/eL2),

so that (S2/X0 = <f>{t)<f>{t
-

l)f(t
-

2), etc. (Note that S is presented in its polar

decomposition S = PU.)
Find S*. Compute that

Conclude that S is one-to-one, that $(S) is dense in L2, and that a(S) = {0}.
Define T, with domain ®(T) = @{S), by

TS/ = / (feL2).

Prove that a(T) is empty.

19. Let Tl9 T2, T3 be as in Example 13.4, put

®(T4) = {fe®(Tl):f (0) = 0},

and define T4f= if for all/e 0(T4).
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Prove the following assertions:

(a) Every X e (p is in the point spectrum of Tv

(b) o(T2) consists of the numbers 2nn, where n runs through the integers; each of

these is in the point spectrum of T2.

(c) @{T3
— XI) has codimension 1 for every X e (p. Hence a(T3) = (p. The point

spectrum of T3 is empty.

(d) a{T4) is empty.

Hint: Study the differential equation if
—

Xf= g.

This illustrates how sensitive the spectrum of a differential operator is to

its domain (in this case, to the boundary conditions that are imposed).

20. Show that every nonempty closed subset of (p is the spectrum of some normal

operator in H (if dim H = oo).

21. Define Q{t) e @{l}\ where L2 = L2(K), by

(fiW/X*)=/(s + t).

(a) Prove that each Q(t) is unitary.

(b) Prove that {Q{t)} satisfies the conditions stated in Definition 13.34.

(c) If A is the infinitesimal generator of {6(0}, prove that/e @(A) if and only if

j \yf(y)\2 dy < oo (where/is the Fourier transform off) and that Af = f
for all/ g 9(A).

(d) Prove that a(A) is the imaginary axis. More precisely, show that A — XI is

one-to-one for every X e (p, that X lies in the resolvent set of A if and only if

X is not pure imaginary, and that the range of A — XI is a proper dense

subspace of L2 if X is pure imaginary.
Hint: g e 0i(A

— XI) if and only if g e L2 and also g{y)/{iy
— X) is in L2.

22. Iff e H2 (see Exercise 9) and/(z) = X cBz", define

[QW/]W = I> + iPc.*" (0 < t < oo).
« = o

Show that each Q(t) is self-adjoint (and positive). Find the infinitesimal

generator A of the semigroup {Q{t)}. Is A self-adjoint? Show that A has pure point

spectrum, at the points log 1, log \, log ^,
23. For/e L2(R), xeR, 0<y<oo, define

and put 6(0)/ = / Show that {6(y): 0 < y < oo} satisfies the conditions imposed
in Definition 13.34 and that \\Q{y)\\ = 1 for all y.

[The integral represents a harmonic function in the upper half-plane, with

boundary values/ The semigroup property of {Q{y)} can be deduced from this,

as well as from a look at the Fourier transforms of the functions 6(y)/]
Find the domain of the infinitesimal generator A of {6(y)}, and prove that

Af= -Hf\

where H is the Hilbert transform (Chapter 7, Exercise 24).
Prove that — A is positive and self-adjoint.
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24. Show that every isometric operator in H has a closed isometric extension.

25. On the other hand, show that some symmetric operators in H have no closed

symmetric extension by completing the following outline.

Let {eu e2, e3, ...} be an orthonormal basis of H. Let X be the set of all

finite sums £ a, et, subject to the condition £ a,
= 0. Prove that X is a dense

subspace of H. Define U e &(H) by

(00
\ 00

X *.-*«) =

ai*i -X *.•*.-.

and let V be the restriction of U to X. Then V is an isometry, with @(V) = AT,

and / — V is one-to-one on X. Hence V is the Cayley transform of a symmetric

operator T. Any closed symmetric extension of T would correspond to a closed

isometric extension Vx of V, with I —

Vt one-to-one. But @(V) is dense in H;

hence V has only one closed isometric extension, namely £/, and / — U is not

one-to-one.





APPENDIX

A

COMPACTNESS

AND CONTINUITY

Al Partially ordered sets A set & is said to be partially ordered by a

binary relation < if:

(i) a < b and b < c implies a < c.

(ii) a < a for every ae^,

(Hi) a < b and b < a implies a = b.

A subset J of a partially ordered set & is said to be totally ordered if

every pair a,b e £ satisfies either a < b or b < a.

Hausdorff's maximality theorem states:

Every nonempty partially ordered set & contains a totally ordered

subset £ which is maximal with respect to the property of being totally
ordered.

A proof (using the axiom of choice) may be found in [23]. Explicit

applications of the theorem occur in the proofs of the Hahn-Banach

theorem, of the Krein-Milman theorem, and of the theorem that every

proper ideal in a commutative ring with unit lies in a maximal ideal. It will

now be applied once more (A2) to prepare the way to an easy proof of the

Tychonoff theorem.

391
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A2 Subbases A collection if of open subsets of a topological space X is

said to be a subbase for the topology t of X if the collection of all finite

intersections of members of if forms a base for t. (See Section 1.5.) Any
subcollection of if whose union is X will be called an ^-cover of X. By

definition, X is compact provided that every open cover of X has a finite

subcover. It is enough to verify this property for ^-covers:

Alexander's subbase theorem. If <f is a subbase for the topology of a

space X, and if every if-cover of X has a finite subcover, then X is

compact.

proof. Assume X is not compact. We will deduce from this that X

has an 5^-cover f without finite subcover.

Let & be the collection of all open covers of X that have no

finite subcover. By assumption, 9 ^ 0. Partially order 9 by

inclusion, let Q be a maximal totally ordered subcollection of ^, and let T

be the union of all members of Q. Then

(a) T is an open cover of X,

(b) T has no finite subcover, but

(c) r u {V) has a finite subcover, for every open V $ V.

Of these, (a) is obvious. Since Q is totally ordered, any finite

subfamily of V lies in some member of Q, hence cannot cover X; this

gives (b), and (c) follows from the maximality of Q.

Put f = rny. Since fcT, (b) implies that f has no finite

subcover. To complete the proof, we show that f covers X.

If not, some xelis not covered by f. By (a), x g W for some

W g T. Since if is a subbase, there are sets Vi9 ..., Vn e if such that

x g f] Vtc: W. Since x is not covered by f, no V{ belongs to T. Hence

(c) implies that there are sets Yu ..., Yn, each a finite union of

members of T, such that X = Vt u Y{ for 1 < i < n. Hence

n

X = Y1 u
• • •

u Y„ u 0 Vt c Y1 u
• • •

u Y„ u W,
i=l

which contradicts (b). ////

A3 Tychonoff 's theorem // X is the cartesian product of any nonempty

collection of compact spaces Xa9 then X is compact.

proof. If 7ca(x) denotes the Xa-coordinate of a point xel, then, by

definition, the topology of X is the weakest one that makes each

7ca: X -? Xa continuous; see Section 3.8. Let Sf^ be the collection of all
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sets n~ 1(Va)9 where Va is any open subset of Xa. If ¥ is the union of all

¥\, it follows that £f is a subbase for the topology of X.

Suppose T is an ^-cover of X. Put ra = T n «^a. Assume (to

get a contradiction) that no ra covers X. Then there corresponds to

each a a point xa g Xa such that ra covers no point of the set n~ 1(xa)9
and if x g X is chosen so that na(x) =

xa, then x is not covered by T.

But T is a cover of X.

Hence at least one ra covers X. Since Xa is compact, some finite

subcollection of ra covers X. Since ra c r, r has a finite subcover,

and now Alexander's theorem implies that X is compact. ////

A4 Theorem // K is a closed subset of a complete metric space X, then

the following three properties are equivalent:

(a) K is compact.

(b) Every infinite subset ofK has a limit point in K.

(c) K is totally bounded.

Recall that (c) means that K can be covered by finitely many balls of

radius e, for every e > 0.

proof. Assume (a). If E c K is infinite and no point of K is a limit

point of E, there is an open cover {J^} of K such that each Va contains

at most one point of E. Therefore {Va} has no finite subcover, a

contradiction. Thus (a) implies (b).
Assume (b), fix e > 0, and let d be the metric of X. Pick x1 g K.

Suppose xl9 ..., xn are chosen in K so that d(xt, Xj) > e if i ^ j. If

possible, choose xn + 1
g K so that d(xi9 xn + 1) > e for 1 < i < n. This

process must stop after a finite number of steps, because of (b). The

e-balls centered at xl9..., xn then cover K. Thus (b) implies (c).
Assume (c), let T be an open cover of K, and suppose (to reach a

contradiction) that no finite subcollection of T covers K. By (c), K is a

union of finitely many closed sets of diameter < 1. One of these, say

Kl9 cannot be covered by finitely many members of T. Do the same

with Kx in place of K, and continue. The result is a sequence of closed

sets K{ such that

(0 *=>*! =>#r23---,

(if) diam Kn < l/n9 and

(Hi) no Kn can be covered by finitely many members of T.

Choose xn g Kn. By (i) and (ii), {xn} is a Cauchy sequence which

(since X is complete and each Kn is closed) converges to a point
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x g f] Kn. Hence x g V for some V eT. By (ii), Kna V when n is

sufficiently large. This contradicts (in). Thus (c) implies (a). ////

Note that the completeness of X was used only in going from (c) to (a). In

fact, (a) and (b) are equivalent in any metric space.

A5 Ascoli's theorem Suppose X is a compact space, C(X) is the sup-

normed Banach space of all continuous complex functions on X, and

<D c C(X) is pointwise bounded and equicontinuous. More explicitly,

(a) sup {| f(x) |: / g 0} < oo for every x e X, and

(b) if e > 0, every x g X has a neighborhood V such that \f(y) —f(x) | < e

for all y e V and for allf e <D.

T/i^n O is totally bounded in C(X).

Corollary. Since C(X) is complete, the closure of <D is compact, and

every sequence in <D contains a uniformly convergent subsequence.

proof. Fix e > 0. Since X is compact, (b) shows that there are points

xls ..., xn g X, with neighborhoods Vl9 ..., Vn, such that X = (J Vt
and such that

(1) |/(x) -f(x()\ <s (/6 *, x g Vi9 1 < i < n).

If (a) is applied to xl9 ..., xn in place of x, it follows from (1) that <D is

uniformly bounded:

(2) sup {|/(x)|: xe X,fe<&} = M < oo.

Put D = {k g £: |2| < M}, and associate to each/G O a point p(f) g

Dn c <T, by setting

(3) P(/) = (/(x1),...,/(xJ).

Since Dn is a finite union of sets of diameter <e. there exist fl9 ...,

/meO such that every p(f) lies within e of some p(/fc).

If/ g <D, there exists k,\ <k<m, such that

(4) |/(xf)-A(*f)l<£ (\<i<n).

Every x g X lies in some Vx, and for this i

(5) I /(x) -f(xd \<e and | A(x) -fk(Xi) \ < e.

Thus | f(x) —fk(x) | < 3e for every xel

The 3e-balls centered at/l9 ...,/fc therefore cover <D. Since e was

arbitrary, <D is totally bounded. ////
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A6 Sequential continuity If X and Y are Hausdorff spaces and if

/ maps X into Y, then / is said to be sequentially continuous provided
that lim,,^ f(xn) =f(x) for every sequence {xn} in X that satisfies

Theorem

(a) Iff: X -? Y is continuous, thenf is sequentially continuous.

(b) Iff: X -? Y is sequentially continuous, and if every point ofX has a

countable local base (in particular, if X is metrizable), then f is

continuous.

proof, (a) Suppose xn-^xinl, V is a neighborhood off(x) in Y,

and U =f~1(V). Since/is continuous, U is a neighborhood of x, and

therefore xne U for all but finitely many n. For these n, f(xn) g V.

Thus/(xn) -»/(x) as n -? oo.

(b) Fix x e X, let {£/„} be a countable local base for the

topology of X at x, and assume that/is not continuous at x. Then there is

a neighborhood V of f(x) in 7 such that/_1(F) is not a

neighborhood of x. Hence there is a sequence xn, such that xn e C/n, x„ -? x as

n-» oo, and x„ £/_1(F). Thus/(x„) £ V, so that/is not sequentially
continuous. ////

A7 Totally disconnected compact spaces A topological space X is

said to be totally disconnected if none of its connected subsets contains

more than one point.
A set E c X is said to be connected if there exists no pair of open sets

Vl9 V2 such that

Ec:V1kjV2, EnV1*0, EnV2*0,

but E n Vl n V2 = 0.

Theorem. Suppose K c V c X, where X is a compact Hausdorff

space, V is open, and K is a component of X. Then there is a compact

open set A such that K c A c V.

Corollary. // X is a totally disconnected compact Hausdorff space, then

the compact open subsets of X form a base for its topology.

proof. Let T be the collection of all compact open subsets of X that

contain K. Since X e T, V ^ 0. Let H be the intersection of all

members of T.

Suppose H c W, where W is open. The complements of the

members of T form an open cover of the compact complement of W.
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Since T is closed under finite intersections, it follows that A a W for

some A g T.

We claim that H is connected. To see this, assume H = H0 u

Hl9 where H0 and Hl are disjoint compact sets. Since K a H and K is

connected, K lies in one of these. Say K a H0. By Urysohn's lemma,

there are disjoint open sets W0, Wl such that H0 a W0, Hl a Wu and

the preceding paragraph shows that some A g V satisfies A a W0 u

Wv Put i40 = ^nlf0. Then KaA0, A0 is open, and A0 is

compact, because A n W0 = A n W0. Thus A0 g T. Since // c A0, it

follows that H1 = 0.
Thus // is connected. Since K a H and K is a component, we

see that K = H. The preceding argument, with K and F in place of H

and W, shows that A c V for some A g T. ////
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NOTES AND

COMMENTS

The abstract tendency in analysis which developed into what is now known

as functional analysis began at the turn of the century with the work of

Volterra, Fredholm, Hilbert, Frechet, and F. Riesz, to mention only some of

the principal figures. They studied integral equations, eigenvalue problems,

orthogonal expansions, and linear operations in general. It is of course no

accident that the Lebesgue integral was born in the same period.
The normed space axioms appear in F. Riesz' work on compact

operators in C([a, £]) {Acta Math., vol. 41, pp. 71-98, 1918), but the first abstract

treatment of the subject is in Banach's 1920 thesis (Fundam. Math., vol. 3,

pp. 133-181, 1922). His book [2], published in 1932, was tremendously
influential. It contains what is still the basic theory of Banach spaces, but

with some omissions which, from our vantage point, seem curious.

One of these is the complete absence of complex scalars, in spite of

Wiener's observation (Fundam. Math., vol. 4, pp. 136-143, 1923) that the

axioms can be formulated just as well over (fi, and, more importantly, that a

theory of Banach-space-valued holomorphic functions can then be

developed whose basic features are very similar to the classical complex-valued
case. Very little (if anything) was done with this until 1938. (See the notes

for Chapter 3 in this appendix.)
Even more puzzling, in retrospect, is Banach's treatment of weak

convergence—surely one of his most important contributions to the subject.

397
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In spite of the vigorous development of topology in the twenties, and in

spite of von Neumann's explicit description of weak neighborhoods in a

Hilbert space and in operator algebras (Math. Ann., vol. 102, pp. 370-427,

1930; see p. 379), Banach deals only with weakly convergent sequences.

Since the adjunction of all limits of weakly convergent subsequences of a set

need not lead to a weakly sequentially closed set (see Exercise 9, Chapter 3),
he is forced into complicated notations such as transfinite closures, but he

never uses the much simpler and more satisfactory concept of weak

topologies.1

Occasionally, unnecessary separability assumptions are made in [2].
This is also true of von Neumann's axiomatization of Hilbert space (Math.

Ann., vol. 102, pp. 49-131, 1930), where separability is included among the

defining properties. In this fundamental paper on unbounded operators, he

establishes the spectral theorem for them, thus generalizing what Hilbert

had done for the bounded ones more than 20 years earlier. Another basic

contribution to operator theory was M. H. Stone's 1932 book [28].

Although continuous functions obviously play an important role in

Banach's book, he considers only their vector space structure. They are

never multiplied. But multiplication was not neglected for very long. In his

work on the tauberian theorem (Ann. Math., vol. 33, pp. 1-100, 1932)
Wiener stated and used the fact that the Banach space of absolutely

convergent Fourier series satisfies the multiplicative inequality \\xy\\ < \\x\\\\y\\.
M. H. Stone's generalization of the Weierstrass approximation theorem

(Trans. Amer. Math. Soc, vol. 41, pp. 375—481, 1937; especially pp. 453^481)
is undoubtedly the best-known instance of the explicit use of the ring
structure of spaces of continuous functions. Von Neumann's interest in operator

theory, which stemmed from quantum mechanics, led him to a systematic

study of operator algebras. M. Nagumo (Jap. J. Math., vol. 13, pp. 61-80,

1936) initiated the abstract study of normed rings. But what really got this

subject off the ground was Gelfand's discovery of the important role played

by the maximal ideals of a commutative algebra (Mat. Sbornik N. S., vol. 9,

pp. 3-24, 1941) and his construction of what is now known as the Gelfand

transform.

Before the middle forties, the interest of functional analysts was

focused almost exclusively on normed spaces. The first major paper on the

general theory of locally convex spaces is that of J. Dieudonne and L.

Schwartz in Ann. Inst. Fourier (Grenoble), vol. 1, pp. 61-101, 1949. One of

1
Banach is obviously one of the major heroes of this story. The preceding remarks are not

intended to be in any way derogatory (as some readers of the first edition thought) or to

belittle the importance and originality of his work. Their intent is merely to contrast our

present mathematical environment with what it was then.
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its principal motivations was Schwartz' construction of the theory of

distributions [26]. (The first version of this book appeared in 1950.) Just as

Banach and Gelfand had predecessors, so did Schwartz. As Bochner points
out in his review of Schwartz' book (Bull Amer. Math. Soc, vol. 58, pp.

78-85, 1952), the idea of "generalized functions" goes back at least as far as

Riemann. It was applied in Bochner's Vorlesungen uber Fouriersche

Integrate (Leipzig, 1932), a book that played a very important role in the

development of harmonic analysis. Sobolev's work also predates Schwartz. But it

was Schwartz who built all this into a smoothly operating very general
structure that turned out to have many applications, especially to partial
differential equations.

The following expository articles describe some of the history of our

subject in greater detail.

Bonsall, F. F.: "A Survey of Banach Algebra Theory," Bull. London Math.

Soc, vol. 2, pp. 257-274, 1970.

Hildebrandt, T. H.: "Integration in Abstract Spaces," Bull. Amer. Math.

Soc, vol. 59, pp. 111-139, 1953.

Horvath, J.: "An Introduction to Distributions," Amer. Math. Monthly, vol.

77, pp. 227-240, 1970.

Lorch, E. R.:
"

The Structure of Normed Abelian Rings," Bull. Amer. Math.

Soc, vol. 50, pp. 447^63, 1944.

Taylor, A. E.:
"

Notes on the History and Uses of Analyticity in Operator

Theory," Amer. Math. Monthly, vol. 78, pp. 331-342, 1971.

Treves, F.: "Applications of Distributions to PDE Theory," Amer. Math.

Monthly, vol. 77, pp. 241-248, 1970.

Volume 1 of the series Studies in Mathematics (published by the

Mathematical Association of America, 1962, edited by R. C. Buck) contains

articles by

Goffman, C.:
"

Preliminaries to Functional Analysis
"

Lorch, E. R.: "The Spectral Theorem"

McShane, E. J.: "A Theory of Limits
"

Stone, M. H.: "A Generalized Weierstrass Approximation Theorem
"

There are two special issues of Bull. Amer. Math. Soc: One (May

1958) is devoted to the work of John von Neumann; the other (January

1966) to that of Norbert Wiener.

The origins of functional analysis are well described in Dieudonne's

book [36].
We now give detailed references to some items in the text.
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Chapter 1

For the general theory of topological vector spaces, see [5], [14], [15],

[31], [32].
Section 1.8 (e). In Banach's definition of an F-space, he postulated

only the separate continuity of scalar multiplication and proved that joint

continuity was a consequence. See [4], pp. 51-53, for a proof based on

Baire's theorem. Another proof (due to S. Kakutani) does not require

completeness of X but uses Lebesgue measure in the scalar field; see [33],

pp. 31-32.

Theorem 1.24. This metrization theorem was first proved (in the more

general context of topological groups) by G. Birkhoff (Compositio Math.,

vol. 3, pp. 427^430, 1936) and by S. Kakutani (Proc. Imp. Acad. Tokyo, vol.

12, pp. 128-142, 1936). Part (d) of the theorem is perhaps new.

Section 1.33. The Minkowski functional of a convex set is sometimes

called its support function.
Theorem 1.39 is due to A. Kolmogorov (Studia Math., vol. 5, pp.

29-33, 1934). It may well be the first theorem about locally convex spaces.

Section 1.46. The construction of the function g by repeated

averaging may be found on pp. 80-84 of S. Mandelbrojt's 1942 Rice Institute

Pamphlet "Analytic Functions and Classes of Infinitely Differentiable

Functions," where it is credited to H. E. Bray.
Section 1.47. Of particular interest among the F-spaces that are not

locally convex but have enough continuous linear functionals to separate

points are certain subspaces of IF, the //^-spaces (with 0 < p < 1). For a

detailed study of these, see the paper by P. L. Duren, B. W. Romberg, and

A. L. Shields in J. Reine Angew. Math., vol. 238, pp. 32-60, 1969, and those

by Duren and Shields in Trans. Amer. Math. Soc, vol. 141, pp. 255-262,

1969, and in Pac. J. Math., vol. 32, pp. 69-78, 1970, as well as [40].

Chapter 2

Basically, all results of this chapter are in [2].
Exercise 11. Charles Horowitz constructed a bilinear map from

R3 x R3 onto R4 which is not open at (0, 0), in Proc. Amer. Math. Soc, vol.

53, pp. 293-294, 1975. P. J. Cohen (J. Func Anal, vol. 16, pp. 235-239,

1974) had earlier constructed a much more complicated example, mapping
t1 x t1 onto t1.

Exercise 13. A barrel is a closed, convex, balanced, absorbing set. A

space is barreled if every barrel contains a neighborhood of 0. Exercise 13

asserts: Topological vector spaces of the second category are barreled.

There exist barreled spaces of the first category, and certain versions of the

Banach-Steinhaus theorem are valid for them. See [14], p. 104; also [15].
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Barreled spaces with the Heine-Borel property are often called Montel

spaces; see Sec. 1.45.

Chapter 3

Theorem 3.2 is in [2]. Its complex version, Theorem 3.3, was proved by
H. F. Bohnenblust and A. Sobczyk, Bull. Amer. Math. Soc, vol. 44, pp.

91-93, 1938, and by G. A. Soukhomlinoff, Mat. Sbornik, vol. 3, pp. 353-358,

1938. The latter also considered quaternion scalars. In Proc. Amer. Math.

Soc, vol. 50, pp. 322-327, 1975, J. A. R. Holbrook presents a proof in which

real scalars are not treated separately, and he includes a simplified version

of Nachbin's work on Hahn-Banach extensions of linear transformations

(in place of linear functionals); see Trans. Amer. Math. Soc, vol. 68, pp.

28^6, 1950

Theorem 3.6. For a partial converse, see J. H. Shapiro, Duke Math. J.,

vol. 37, pp. 639-645, 1970

Theorem 3.15. See L. Alaoglu, Ann. Math., vol. 41, pp. 252-267, 1940

For separable Banach spaces, the theorem is in [2], p. 123.

Theorem 3.18. A shorter proof, based on seminorms, may be found

on p. 223 of [32].
Section 3.22. Compact convex sets with no extreme point exist in

some F-spaces. See [40].
Theorem 3.23 was proved, for weak*-compact convex subsets of the

dual of a Banach space, by M. Krein and D. Milman, in Studia Math., vol.

9, pp. 133-1940

Theorem 3.25 appeared in Dokl. Akad. Nauk SSSR, vol. 57, pp. 119—

122, 1947.

The history of vector-valued integration is described by T. H. Hilde-

brandt in Bull. Amer. Math. Soc, vol. 59, pp. 111-139, 1953. The "weak"

integral of Definition 3.26 was developed by B. J. Pettis, Trans. Amer. Math.

Soc, vol. 44, pp. 277-304, 1938.

The history of vector-valued holomorphic functions is described by
A. E. Taylor in Amer. Math. Monthly, vol. 78, pp. 331-342, 1971.

Theorem 3.31. That weakly holomorphic functions (with values in

a complex Banach space) are strongly holomorphic was proved by
N. Dunford in Trans. Amer. Math. Soc, vol. 44, pp. 304-356, 1938.

Theorem 3.32 was used by A. E. Taylor to prove that the spectrum of

every bounded linear operator on a complex Banach space is nonempty

(Bull. Amer. Math. Soc, vol. 44, pp. 70-74, 1938). Since every Banach

algebra A is isomorphic to a subalgebra of &(A) (see the proof of Theorem

10.2), Taylor's result contains (a) of Theorem 10.13.

Exercise 9 is due to von Neumann, Math. Ann., vol. 102, pp. 370-427,

1930; see p. 380
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Exercise 10 is patterned after a construction in the appendix of [2].
Exercise 25. If K is also separable and metric, then such a \i exists

even on E, rather than on E. This is Choquet's theorem. See [20]. For a

recent paper on this, see R. D. Bourgin, Trans. Amer. Math. Soc, vol. 154,

pp. 323-340, 1971.

Exercise 28 (c). This is the easy part of the Eberlein-Smulian theorem.

See [4], pp. 430-433 and p. 466. Another characterization of weak

compactness has been given by R. C. James, Trans. Amer. Math. Soc, vol. 113,

pp. 129-140, 1964: A weakly closed set S in a Banach space X is weakly

compact if and only if every x* g X* attains its supremum on S.

Exercise 33. See [14], p. 133.

Chapter 4

A large part of this chapter is in [2].

Compact operators used to be called completely continuous. As defined

by Hilbert (in f2) this means that weakly convergent sequences are mapped
to strongly convergent ones. The presently used definition was given by
F. Riesz (Acta Math., vol. 41, pp. 71-98, 1918). In reflexive spaces, the two

definitions coincide (Exercise 18).
Section 4.5. R. C. James has constructed a nonreflexive Banach space

X which is isometrically isomorphic with X** (Proc. Natl. Acad. Sci. USA,

vol. 37, pp. 174-177,1951).
Theorems 4.19 and 4.25 were proved by J. Schauder (Studia Math.,

vol. 2, pp. 183-196, 1930). For generalizations to arbitrary topological
vector spaces, see J. H. Williamson, J. London Math. Soc, vol. 29, pp. 149—

156, 1954; also [5], chap. 9.

Exercise 13. It was a problem of long-standing whether every

compact operator in every separable Banach space can be approximated (in
the operator norm) by operators with finite-dimensional ranges. The first

counterexample was constructed by P. Enflo, in Acta Math., vol. 130, pp.

309-317, 1973. (This also gave a negative solution to the so-called basis

problem.) Ramifications of this approximation problem are discussed in

[41].
Exercise 15. These operators are usually called Hilbert-Schmidt

operators. See [4], chap. XL

Exercise 17. Operators of this type are discussed by A. Brown, P. R.

Halmos, and A. L. Shields in Acta Sci. Math. Szeged., vol. 26, pp. 125-137,

1965.

Exercise 19. This "max-min duality" was exploited by W. W. Rogo-

sinski and H. S. Shapiro to obtain very detailed information about certain

extremum problems for holomorphic functions. See Acta Math., vol. 90, pp.

287-318, 1953.
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Exercise 21. This was proved by M. Krein and V. Smulian in Ann.

Math., vol. 41, pp. 556-583, 1940. See also [4], pp. 427^429.

Chapter 5

Theorem 5.1. For a more general version, see R. E. Edwards, J. London

Math. Soc, vol. 32, pp. 499-501, 1957.

Theorem 5.2 is due to A. Grothendieck, Can. J. Math., vol. 6, pp.

158-160, 1954. His proof is less elementary than the one given here.

Theorem 5.3. For more on trigonometric series with gaps, see J.

Math. Mech., vol. 9, pp. 203-228, 1960; also, sec. 5.7 of [24], J. P. Kahane's

article in Bull. Amer. Math. Soc, vol. 70, pp. 199-213, 1964, and [42].
Theorem 5.5 was first proved by A. Liapounoff, Bull. Acad. Sci. USSR,

vol. 4, pp. 465-478, 1940. The proof of the text is due to J. Lindenstrauss, J.

Math. Mech., vol. 15, pp. 971-972, 1966. J. J. Uhl (Proc Amer. Math. Soc,

vol. 23, pp. 158-163, 1969) generalized the theorem to measures whose

values lie in a reflexive Banach space or in a separable dual space.

Theorem 5.7. The idea to use Krein-Milman to prove Stone-

Weierstrass is due to L. de Branges, Proc. Amer. Math. Soc, vol. 10, pp.

822-824, 1959. E. Bishop's generalization is in Pac J. Math., vol. 11, pp.

777-783, 1961. The proof given here is that of I. Glicksberg, Trans. Amer.

Math. Soc, vol. 105, pp. 415-435, 1962. C. Hamburger pointed out to me

that one does not need to assume that A contains the constants. A very

elementary approach to Bishop's theorem was found by Mao Chao-Lin, C.

R. Acad. Sci. Paris, vol. 301, pp. 349-350, 1985.

Theorem 5.9. Bishop proved this in Proc. Amer. Math. Soc, vol. 13,

pp. 140-143, 1962. For the special case of the disc algebra, see Proc. Amer.

Math. Soc, vol. 7, pp. 808-811, 1956, and L. Carleson's paper in Math Z.,

vol. 66, pp. 447-451, 1957. Other applications occur in Chapter 6 of [25]
and in Chapter 10 of [45]. See also [29].

Theorem 5.10. The proof follows that of M. Heins, Ann. Math., vol.

52, pp. 568-573, 1950, where the same method is applied to a large class of

interpolation problems.
Theorem 5.11 was proved by S. Kakutani in Proc. Imp. Acad. Tokyo,

vol. 14, pp. 242-245, 1938. The proof given here was communicated to me

by Isaac Namioka and is due to F. Hahn, Math. Systems Theory, vol. 1, pp.

55-57, 1968. The lemma avoids the use of nets and subnets at the end of the

proof.
Theorem 5.14. This simple construction of the Haar measure of a

compact group is essentially that of von Neumann (Compositio Math., vol.

1, pp. 106-114, 1934). His is even more elementary and self-contained,

though a little longer, since he uses no fixed point theorem. (In Trans.

Amer. Math. Soc, vol. 36, pp. 445-492, 1934, he uses the same method to

construct mean values of almost periodic functions.) If compactness is
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replaced by local compactness, the construction of Haar measure becomes

more difficult. See [18], [11], [16].
Theorem 5.18 was proved (for Banach spaces) in Proc. Amer. Math.

Soc, vol. 13, pp. 429-432, 1962. For further results on uncomplemented

subspaces, see H. P. Rosenthal's 1966 AMS Memoir Projections onto

Translation-Invariant Subspaces of U(G) and his paper in Acta Math., vol.

124, pp. 205-248, 1970. There are also positive results. For example c0 is

complemented in any separable Banach space which contains it

(isomorphically) as a closed subspace. A very short proof of this theorem of

A. Sobczyk was obtained by W. A. Veech in Proc. Amer. Math. Soc, vol. 28,

pp. 627-628, 1971.

Section 5.19. That H1 is uncomplemented in L1 was first proved by
D. J. Newman, Proc. Amer. Math. Soc, vol. 12, pp. 98-99, 1961. The proof

given here is in Proc. Amer. Math. Soc, vol. 13, pp. 429-432, 1962.

Theorem 5.21. F. F. Bonsall's paper in Quart. J. Math. Oxford, vol.

37, pp. 129-136, 1986, contains this and further applications of Theorem

5.22.

Theorems 5.23, 5.28. The history of these fixed point theorems is

described on pp. 470-471 of [4]. A proof of Brouwer's theorem that is both

elementary and simple may be found on pp. 38-40 of Dimension Theory by
Hurewicz and Wallman, Princeton University Press, Princeton, N.J., 1948.

Chapter 6

The standard reference is, of course, [26]. See also [5], [8], [27], [31]. [13]
contains a very concise introduction to the subject.

Definition 6.3. ^(Q) is here topologized as the inductive limit of the

Frechet spaces ^K{0). See [15], pp. 217-225, for a systematic discussion of

this notion in an abstract setting.

Chapter 7

For those aspects of Fourier analysis that are related to distributions, we

refer to [26] and [13]. The group-theoretic aspects of the subject are

discussed in [11] and [24]. The standard work on Fourier series is [34].
Theorem 7.4. The intimate relation between Fourier transforms and

differentiation is no accident; Fourier series were invented, in the eighteenth

century, as tools to solve differential equations.
Theorem 7.5 is sometimes called the Riemann-Lebesgue lemma.

Theorem 7.9 was originally proved by M. Plancherel in Rend.

Palermo., vol. 30, pp. 289-335, 1910.
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Theorems 7.22 and 7.23. These proofs are as in [13] but contain more

details.

Theorem 7.25 is due to S. L. Sobolev, Mat. Sbornik, vol. 4, pp. 471—

497, 1938.

Exercise 16. This is taken from L. Schwartz' first counterexample to

the spectral synthesis problem (C. R. Acad. Sci. Paris, vol. 227, pp. 424—426,

1948). For further information on this problem, see C. S. Herz (Trans.
Amer. Math. Soc, vol. 94, pp. 181-232, 1960) and chap. 7 of [24].

Exercise 17. See C. S. Herz, Ann. Math., vol. 68, pp. 709-712, 1958.

Chapter 8

General references: [1], [13], [27], [30].
The existence of fundamental solutions (Theorem 8.5) was established

independently by L. Ehrenpreis (Amer. J. Math., vol. 76, pp. 883-903, 1954)
and by B. Malgrange in his thesis (Ann. Inst. Fourier, vol. 6, pp. 271-355,

1955-1956). Lemma 8.3 is Malgrange's. He proves it for Fourier transforms

/of test functions. He integrates over a ball where we have used a torus. As

far as applications are concerned, this makes hardly any difference. The

point is to get some useful majorization of f by fP, that is, to have division

by P under control. Ehrenpreis solved this division problem in a different

way and went on to solve more general division problems of this type. See

[13] and [30] for further references and more detailed results.

It is essential in Theorem 8.5 that the coefficients of the differential

operator under consideration be constant. This follows from an equation
constructed by H. Lewy (Ann. Math., vol. 66, pp. 155-158, 1957), which has

C coefficients but no solution. Hormander ([13], chap. VI) has investigated
this nonexistence phenomenon very completely.

Section 8.8. Many other types of Sobolev spaces have been studied.

See [13], chap. II.

Theorem 8.12. See K. O. Friedrichs, Comm. Pure Appl. Math., vol. 6,

pp. 299-325, 1953, and P. D. Lax, Comm. Pure Appl. Math., vol. 8, pp.

615-633, 1955. Lax treats the periodic case first, via Fourier series, and then

uses the bootstrap proposition to obtain the general case. He does not

assume that the highest-order terms are constant. See also [4], pp. 1703—

1708.

Exercise 10. G is the so-called
"

Green's function
"

of P(D).
Exercise 16. This is a theorem about zero sets of homogeneous

polynomials (with complex coefficients) in Rn. See [1], p. 46.

Chapter 9

Section 9.1. See A. Tauber, Monatsh. Math., vol. 8, pp. 273-277, 1897, and

J. E. Littlewood, Proc. London Math. Soc, vol. 9, pp. 434-448, 1910.
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Theorem 9.3. The use of distributions in this proof is as in J.

Korevaar's paper in Proc. Amer. Math. Soc, vol. 16, pp. 353-355, 1965.

Theorem 9.4 to Theorem 9.7. N. Wiener, Ann. Math., vol. 33, pp.

1-100, 1932, and H. R. Pitt, Proc. London Math. Soc, vol. 44, pp. 243-288,

1938. Later proofs gave various generalizations; see [24], p. 159, for further

references. See also A. Beurling, Acta Math., vol. 77, pp.. 127-136, 1945.

Section 9.9. The prime number theorem was first proved,

independently, by J. Hadamard {Bull. Soc. Math. France, vol. 24, pp. 199-220, 1896)
and by Ch. J. de la Vallee-Poussin (Ann. Soc. Sci. Bruxelles, vol. 20, pp.

183-256, 1896). Both used complex variable methods. Wiener gave the first

tauberian proof, as an application of his general theorem.
"

Elementary"

proofs were found in 1949 by A. Selberg and by P. Erdos. For a simpler

elementary proof, see N. Levinson, Amer. Math. Monthly, vol. 76, pp. 225-

245, 1969. The complex variable proofs still give the best error estimates;

see W. J. Le Veque, Topics in Number Theory, vol. II, p. 251, Addison-

Wesley Publishing Company, Reading, Mass., 1956.

Theorem 9.12. A. E. Ingham, J. London Math. Soc, vol. 20, pp. 171-

180, 1945.

The material on the renewal equation is from S. Karlin, Pac. J. Math.,

vol. 5, pp. 229-257, 1955, where references to earlier work may be found.

Nonlinear versions of the renewal equation are discussed by J. Chover and

P. Ney in J. d'Analyse Math., vol. 21, pp. 381^413, 1968; see also B. Henry,
Duke Math. J., vol. 36, pp. 547-558, 1969.

Exercise 7. This approximation problem is much less delicate in L2.

See [23], sec. 9.16.

Chapter 10

General references: [7], [12], [16], [19], [21]. In [16] and [21], a great

deal of basic theory is developed without assuming the presence of a unit.

[21] contains some material about real algebras.
Gelfand's paper (Mat. Sbornik, vol. 9, pp. 3-24, 1941) contains

Theorems 10.2, 10.13, and 10.14, some symbolic calculus, and Theorem 11.9. For

Fourier transforms of measures, the spectral radius formula (b) of Theorem

10.13 had been obtained earlier by A. Beurling (Proc. IX Congres de Math.

Scandinaves, Helsingfors, pp. 345-366, 1938). See also the note to Theorem

3.32.

Theorem 10.9. The commutative case was obtained independently by
A. M. Gleason (J. Anal Math., vol. 19, pp. 171-172, 1967) and by J. P.

Kahane and W. Zelazko (Studia Math., vol. 29, pp. 339-343, 1968). W.

Zelazko (Studia Math., vol. 30, pp. 83-85, 1968) removed the commutativity

hypothesis. The proof given in the text contains some simplifications. See

also Theorem 1.4.4 of [3], and J. A. Siddiqi, Can. Math. Bull, vol. 13, pp.
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219-220, 1970. M. Roitman and Y. Sternfeld (Trans. Amer. Math. Soc, vol.

267, pp. 111-124, 1981) found a more algebraic proof, which uses no

function theory. Related results concerning ideals of finite codimension were

found by N. V. Rao (J. Func. Anal, vol. 82, pp. 237-258, 1989).
Theorem 10.19. H. A. Seid (Amer. Math. Monthly, vol. 77, pp. 282-

283, 1970) obtains the same conclusions, without assuming that A has a

unit, if M = 1.

Theorem 10.20 says that a(x) is an upper semicontinuous function of

x. An example of Kakutani ([21], p. 282) shows that o(z) is not, in general, a

continuous function of x. See also Exercise 20.

Section 10.21. The terms operational calculus or functional calculus are

also frequently used. [12] contains a very thorough treatment of the

symbolic calculus in Banach algebras.
Theorem 10.34 (d) is due to E. R. Lorch (Trans. Amer. Math. Soc, vol.

52, pp. 238-248, 1942).
Theorem 10.35. Lomonosov's proof was published in Func. Anal, and

Appl., vol. 7, pp. 55-56, 1973. Even for a single operator it is much simpler
and more far-reaching than anything that was known before. A. J. Michaels

gave an account of Hilden's contribution in Adv. in Math., vol. 25, pp.

56-58, 1977.

As regards earlier work, N. Aronszajn and K. T. Smith (Ann. Math.,

vol. 60, pp. 345-350, 1954) proved that every compact operator on a

Banach space has a proper invariant subspace. A. R. Bernstein and A.

Robinson (Pac. J. Math., vol. 16, pp. 421-431, 1966) obtained the same

conclusion for bounded operators T on a Hilbert space that have p(T)

compact for some polynomial p. Their proof uses nonstandard analysis;
P. R. Halmos converted it into one that uses only classical concepts (Pac. J.

Math., vol. 16, pp. 433^37, 1966).
Since some operators, even on a Hilbert space, commute with no

compact one (Exercise 26), Lomonosov's theorem does not settle the

invariant subspace problem. In fact, operators without invariant subspaces have

been found in certain nonreflexive Banach spaces (P. Enflo, Acta Math., vol.

158, pp. 213-313, 1987), and even in Z1 and c0 (C. J. Read, Proc. London

Math. Soc, vol. 53, pp. 583-607, 1989). See also Section 12.27.

Exercise 22. This is one of the simplest cases of the Arens-Royden
theorem for commutative Banach algebras. It relates the group G/G1 to the

topological structure of the maximal ideal space of A. See H. L. Royden's
article in Bull. Amer. Math. Soc, vol. 69, pp. 281-298, 1963, that by R.

Arens in F. T. Birtel, ed., Function Algebras, pp. 164-168, Scott, Foresman

and Company, Glen view, III, 1966, and [6] and [29].
Exercise 23. For the precise structure of G/G1 in this case, see J. L.

Taylor, Acta Math., vol. 126, pp. 195-225, 1971.

Exercise 24. See C. Le Page, C. R. Acad. Sci. Paris, vol. 265, pp.

A235-A237, 1967.
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Exercise 26. The invariant subspaces of this shift operator are

completely known. This is Beurling's theorem (Acta Math., vol. 81, pp. 239-255,

1949). Helson and Lowdenslager {Acta Math., vol. 99, pp. 165-202, 1958)
used different methods and extended Beurling's theorem to other settings.

Chapter 11

Theorem 11.7. The case n = 1 was proved in elementary fashion by P. J.

Cohen in Proc. Amer. Math. Soc, vol. 12, pp. 159-163, 1961. For n > 1, the

proof of the text seems to be the only one that is known.

Theorem 11.9. When A has no unit, then A is locally compact (but
not compact) and A c C0(A); the origin of A* is then in the closure of A.

See [16], pp. 52-53.

Theorem 11.10 is what has been called an "automatic continuity"
theorem. (Theorems 10.7 and 11.31 are other examples.) This is a concept

which brings classical analysis into contact with axiomatic set theory. For

example, "Kaplansky's problem" is the following: Is it true, for every

compact Hausdorff space X and every Banach algebra A, that every homo-

morphism from C(X) into A is continuous? The work of Dales, Esterle,

Solovay, and Woodin has shown that this question is undecidable in ZFC

(Zermelo-Frankel set theory plus the axiom of choice). See [38] for details.

Example 11.13 (d) shows why there are very close relations between

commutative Banach algebras, on the one hand, and holomorphic functions

of several complex variables on the other. This topic is not at all pursued in

the present book. Very good, up-to-date accounts of it may be found in the

books by Browder [3]. Gamelin [6], Stout [29], and Wermer [47]. A

symbolic calculus for functions of several Banach algebra elements can be

developed. See R. Arens and A. P. Calderon, Ann. Math., vol. 62, pp. 204-

216, 1955, and J. L. Taylor, Acta Math., vol. 125, pp. 1-38, 1970.

Example 11.13 (e) shows why certain parts of Fourier analysis may be

derived easily from the theory of Banach algebras. This is done in [16] and

[24].
Theorem 11.18 was proved by Gelfand and Naimark in Mat. Sbornik,

vol. 12, pp. 197-213, 1943. In the same paper they also proved that every

B*-algebra A (commutative or not) is isometrically *-isomorphic to an

algebra of bounded operators on some Hilbert space (Theorem 12.41), if
e + x*x is invertible for every x e A. That this additional hypothesis is

redundant was proved 15 years later by I. Kaplansky [(/) of Theorem

11.28]. See [21], p. 248, for references to the rather tangled history of this

theorem. B. J. Glickfeld (///. J. Math., vol. 10, pp. 547-556, 1966) has shown

that A is a B*-algebra if ||exp (ix)\\ = 1 for every hermitian x e A.

Theorem 11.20. The idea to pass from A to A/R, in order to prove the

theorem without assuming the involution to be continuous, is due to J. W.

M. Ford (J. London Math. Soc, vol. 42, pp. 521-522, 1967).
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Theorem 11.23. See R. S. Foguel, Ark. Mat., vol. 3, pp. 449^461, 1957.

Theorem 11.25. See P. Civin and B. Yood, Pac J. Math., vol. 9, pp.

415^436, 1959; especially p. 420. Also [21], p. 182.

Theorem 11.28. A recent treatment of these matters was given by V.

Ptak, Bull. London Math. Soc, vol. 2, pp. 327-334, 1970. Also, see the note

to Theorem 11.18.

Theorem 11.31. See [19], [21]. H. F. Bohnenblust and S. Karlin (Ann.

Math., vol. 62, pp. 217-229, 1955) have found relations between positive

functionals, on the one hand, and the geometry of the unit ball of a Banach

algebra on the other.

Theorem 11.32. See [7]. Also [16], p. 97, and [21], p. 230.

Theorem 11.33 is in [20], for continuous involutions.

Exercise 13. Part (g) contradicts the second half of corollary (4.5.3) in

[21]. It also affects Theorem (4.8.16) of [21].
Exercise 14. This was first proved by S. Bochner (Math. Ann., vol.

108, pp. 378-410, 1933; especially p. 407), using essentially the same

machinery that we used in Theorem 7.7. See [24] for a somewhat different

proof. The proof that is suggested here shows that the presence or absence

of a unit element makes a difference in studying positive functionals. See

[16], p. 96, and [21], p. 219.

Chapter 12

General references: [4], [9], [10], [17], [22].
Theorem 12.16. B. Fuglede proved the case M = N in Proc. Natl.

Acad. Sci. USA, vol. 36, pp. 35-40, 1950, including the unbounded case

(Chapter 13, Exercise 15). His proof used the spectral theorem and was

extended to the case M ^ N by C. R. Putnam (Amer. J. Math., vol. 73, pp.

357-362, 1951), who also obtained Theorem 12.36. The short proof of the

text is due to M. Rosenblum, J. London Math. Soc, vol. 33, pp. 376-377,

1958.

Theorem 12.22. The extension process that is used here to go from

continuous functions to bounded ones is as in [16], pp. 93-94.

Theorem 12.23. See [4], pp. 926-936, for historical remarks about the

spectral theorem. See also P. R. Halmos' article in Amer. Math. Monthly,
vol. 70, pp. 241-247, 1963, for a different description of the spectral
theorem.

Theorem 12.38 was proved by P. R. Halmos, G. Lumer, and J.

Schaffer, in Proc. Amer. Math. Soc, vol. 4, pp. 142-149, 1953. D. Deckard

and C Pearcy (Acta Sci., Math. Szeged., vol. 28, pp. 1-7, 1967) went further

and proved that the range of the exponential function is neither open nor

closed in the group of invertible operators. Their paper contains several

references to intermediate results.

Theorem 12.39. See [21], p. 227.
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Theorem 12.41. Closed *-subalgebras of @(H) are called C*-algebras.
Before Theorem 12.41 was known (see the note to Theorem 11.18),

J3*-algebras were studied separately, but now the term B*-algebra is no

longer used much.

Theorems 12.43, 12.44. Several types of ergodic theorems are

discussed in [4] and [43].
Exercise 2 is very familiar if N = 4.

Exercise 18. The relation between shift operators and the invariant

subspace problem is discussed by P. R. Halmos in J. Reine Angew. Math.,

vol. 208, pp. 102-112, 1961.

Exercise 27. See P. Civin and B. Yood, Pac. J. Math., vol. 9, pp. 415—

436, 1959, for many results about involutions.

Exercise 32. Part (c) implies that every uniformly convex Banach

space is reflexive. See Exercise 1 of Chapter 4 and the note to Exercise 28 of

Chapter 3. All Zf-spaces (with 1 < p < oo) are uniformly convex. See J. A.

Clarkson, Trans. Amer. Math. Soc, vol. 40, pp. 396-^14, 1936, or [15], pp.

355-359.

Chapter 13

General references: [4], [12], [22].
Theorem 13.6 was first proved by A. Wintner, Phys. Rev., vol. 71, pp.

738-739, 1947. The more algebraic proof of the text is H. Wielandt's, Math.

Ann., vol. 121, p. 21, 1949. It was generalized by D. C. Kleinecke (Proc.
Amer. Math. Soc, vol. 8, pp. 535-536, 1957), to yield the following theorem

about derivations: If D is a continuous linear operator in a Banach algebra
A such that D(xy) = xDy + (Dx)y for all x, y e A, then the spectral radius of

Dx is 0 for every x that commutes with Dx. This was also proved by Shiro-

kov (Uspehi, vol. 11, no. 4, pp. 167-168, 1956) and, in commutative Banach

algebras, by Singer and Wermer (Math. Ann., vol. 129, pp. 260-264, 1955).
See p. 20 of I. Kaplansky's article

"

Functional Analysis
"

in Some Aspects of

Analysis and Probability, John Wiley & Sons, New York, 1958.

A. Brown and C. Pearcy (Ann. Math., vol. 82, pp. 112-127, 1965) have

proved, for separable H, that an operator T g @(H) is a commutator if and

only if T is not of the form M + C, where X ^ 0 and C is compact. See also

C. Schneeberger, Proc. Amer. Math. Soc, vol. 28, pp. 464-472, 1971.

The Cayley transform, its relation to deficiency indices, and the proof
of Theorem 13.30 are in von Neumann's paper in Math. Ann., vol. 102, pp.

49-131, 1929-1930, and so is the spectral theorem for normal unbounded

operators. The material on graphs is in his paper in Ann. Math., vol. 33, pp.

294-310, 1932. Our proof of Theorem 13.33 is like that of F. Riesz and E. R.

Lorch, Trans. Amer. Math. Soc, vol. 39, pp. 331-340, 1936. See also [4],

chap. XII.
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Definition 13.34. The continuity condition we impose can be

weakened: if (a) and (b) hold, and if Q(t)x^x weakly, as £-»0, for every

x s X, then (c) holds. See [33], pp. 233-234. The proof uses more from the

theory of vector-valued integration than the present book contains.

Theorems 13.35-13.37 are proved in [4], [12], [22], [33], and [46].
Theorem 13.38. This is due to M. H. Stone, Ann. Math., vol. 33, pp.

643-648, 1932; see also B. Sz. Nagy, Math. Ann. vol. 112, pp. 286-296, 1936.

Exercise 25 was pointed out to me by Sheldon Axler. It corrects an

error made on p. 341 of the first edition of this book.

Appendix A

Section A2. J. W. Alexander, Proc. Natl. Acad. Sci. USA, vol. 25, pp. 296-

298, 1939.

Section A3. A. Tychonoff proved this for cartesian products of

intervals (Math. Ann., vol. 102, pp. 544-561, 1930) and used it to construct what

is now known as the Cech (or Stone-Cech) compactification of a completely

regular space. E. Cech (Ann. Math., vol. 38, pp. 823-844, 1937; especially

p. 830) proved the general case of the theorem and studied properties of the

compactification. Thus it appears that Cech proved the Tychonoff theorem,

whereas Tychonoff found the Cech compactification—a good illustration of

the historical reliability of mathematical nomenclature.
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LIST OF

SPECIAL

SYMBOLS

The numbers that follow the symbols indicate the sections where their

meanings are explained.

Spaces

C(Q)

H{Q)
/^OO

jV(A)
Rn

(p1

X/N
E

@K

C°°(Q)

Lip a

P

X*

Xw
^00

1.3

1.3

1.3

1.16

1.19

1.19

1.40

1.43

1.46

1.46

Exercise 22, Chapter 1

Exercise 5,

3.1

3.11

Exercise 4,

Chapter 2

Chapter 3

&(X9 Y)

@(X)
j^**

M1

LN

JT(T)

mj)
H1

3>

0(Q)

&(Cl)

Vn

C0(R")

V.

C(P,(Q)

4.1

4.1

4.5

4.6,

4.6

4.11

4.11

5.19

6.1

6.2

6.7

7.3

7.5

7.11

7.24
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rrn

Hs

H(A^

A{U")
rad A

A

D*

T*

I

R,

Ls

ts

8,

A,
K
Tx

8.2

8.8

10.26

11.7

11.8

11.8

1.46

4.10, 13.1

4.17

5.12

5.12

5.19

6.9

6.11

6.11

6.29

H

L°°{E)

®(T)

<0(T)

®f

Operators

£>*

P(D)

Dl
A

8

8

Mx

sL

sR
V

12.1

12.20

13.1

13.1

13.23

7.1

7.1

7.24

8.5

Exercise 8, Chapter 8

Exercise 8, Chapter 8

10.2

Exercise 2, Chapter 10

Exercise 2, Chapter 10

13.7

Number Theoretic Functions and Symbols

n{x)

M

d\n

A(n)

<P
R

11*11
dim*

0
E

E°

f'-X^Y

f(A)

f~\B)
Va

?N

9.9

9.10

9.10

9.10

1.1

1.1

1.2

1.4

1.4

1.5

1.5

1.16

1.16

1.16

1.33

1.40

<AM

F(x)

C(s)

Other Symbols

complex field

real field

norm

dimension

empty set

closure

interior

function

notation

image
inverse image
Minkowski

functional

quotient

topology

M

PNif)

An)

co(E)

co(E)

Indr (z)

<x, x*>

<x(T)

e

Ul

f\E

9.10

9.10

9.11

1.46

1.46

order of

multi-index

seminorm

Exercise 6, Chap. 2

3.19

3.19

3.30

4.2

4.17,

4.20

5.5

5.6

Fourier

coefficient

convex hull

closed convex hull

index

value of x* at x

13.26 spectrum

direct sum

total variation

of measure

restriction
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W\N
x- y

\x\
X*

Sa
u

U * V

™n

*t

At)

ez

rB

E

°n

Vs

Z(Y)

Va>Vs

e

6.2

6.10

6.10

6.10

6.24

6.29

6.29,

7.1

7.1

7.1

7.20

7.22

8.1

8.2

8.8

9.3

9.14

10.1

norm in ^(Q)
scalar product

length of vector

monomial

support

ii(x) = u(
—

x)

6.34, 6.37, 7.1

convolution

Lebesgue
measure on Rn

character

Fourier

transform

exponential
ball of radius r

fundamental

solution

Haar measure

on Tn

measure related

to Hs

zero set

Lebesgue

decomposition

of//
unit element

G(A)

a(x)

p(x)

Aa

f

A

V

x

T(S)

(*,y)
i

E

Ex,y

TcS

10.10

10.10

10.10

group of

invertible elements

spectrum

spectral radius

10.26 members of A
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