1) Simplify the following:
a) $\sqrt{7} \times \sqrt{7}$
b) $\sqrt{3} \times \sqrt{3}$
c) $\sqrt{20}$
d) $\sqrt{24}$
e) $\sqrt{72}$
f) $\sqrt{200}$
g) $\sqrt{\frac{2}{25}}$
2) Simplify the following:
a) $\sqrt{2} \times \sqrt{18}$
b) $\sqrt{8} \times \sqrt{32}$
c) $\sqrt{99} \times \sqrt{22}$
d) $\sqrt{45} \times \sqrt{20}$
e) $\sqrt{18} \times \sqrt{128}$
f) $\sqrt{28} \times \sqrt{175}$
3) Expand and simplify where possible:
a) $\sqrt{3}(3-\sqrt{3})$
b) $\sqrt{2}(6+2 \sqrt{2})$
c) $\sqrt{7}(2+3 \sqrt{7})$
d) $\sqrt{2}(\sqrt{32}-\sqrt{8})$

Surds

4) Expand and simplify where possible:
a) $(1+\sqrt{2})(1-\sqrt{2})$
b) $(3+\sqrt{5})(2-\sqrt{5})$
c) $(\sqrt{3}+2)(\sqrt{3}+4)$
d) $(\sqrt{5}-3)(\sqrt{5}+1)$
e) $(2+\sqrt{7})(2-\sqrt{7})$
f) $(\sqrt{6}-3)^{2}$
5) Work out the following, giving your answer in its simplest form:
a) $\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}$
b) $\frac{(4-\sqrt{5})(4+\sqrt{5})}{\sqrt{11}}$
c) $\frac{(3-\sqrt{2})(3+\sqrt{2})}{\sqrt{14}}$
d) $\frac{(\sqrt{3}+1)^{2}}{\sqrt{3}}$
e) $\frac{(\sqrt{5}+3)^{2}}{\sqrt{20}}$
f) $\frac{(5-\sqrt{5})(2+2 \sqrt{5})}{\sqrt{20}}$
6) $\sqrt{5}=5^{k}$
a) Write down the value of k.
b) Expand and simplify $(2+\sqrt{ } 5)(1+\sqrt{ })$

Give your answer in the form $a+b / c$ where a, b and c are integers.
2) The diagram shows a right-angled triangle with lengths of sides as indicated.

The area of the triangle is $A \mathrm{~cm}^{2}$
Show that $A=k \sqrt{2}$ giving the value of k.

3) Given that

$$
\frac{8-\sqrt{18}}{\sqrt{2}}=a+b \sqrt{2}, \text { where } a \text { and } b \text { are integers, }
$$

find the value of a and the value of b.
4) Work out $(2+\sqrt{ } 3)(2-\sqrt{ } 3)$

Give your answer in its simplest form.

1) Rationalise the denominator, simplifying where possible:
a) $\frac{3}{\sqrt{2}}$
b) $\frac{2}{\sqrt{2}}$
c) $\frac{3 \sqrt{2}}{\sqrt{7}}$
d) $\frac{\sqrt{5}}{\sqrt{10}}$
e) $\frac{1}{4 \sqrt{8}}$
f) $\frac{\sqrt{15}}{\sqrt{3}}$
g) $\frac{1}{\sqrt{27}}$
2) Rationalise the denominator of $\frac{1}{\sqrt{3}}$
3) Rationalise the denominator of $\frac{1}{8 \sqrt{8}}$ giving the
answer in the form $\frac{\sqrt{2}}{p}$

Manipulating Surds

Do these questions without using a calculator.

They're actually not as bad as they might look because you can leave $\sqrt{ }$ or π in your answe
Q1 Simplify:
a) $\sqrt{5} \times \sqrt{3}$
b) $\frac{\sqrt{20}}{\sqrt{5}}$
c) $(\sqrt{x})^{2}$
d) $\sqrt{x^{2}}$
e) $\sqrt{8} \times \sqrt{8}$
f) $\frac{\sqrt{30}}{\sqrt{6}}$

Q2 A circle has a radius of $\sqrt{3} \mathrm{~cm}$. What is its exact area? (Area of circle $=\pi r^{2}$.)

Q3 Simplify these expressions:
Remember $-\sqrt{a} \times \sqrt{b}=\sqrt{(a b)}=$
a) $\sqrt{4}-\sqrt{1}$
b) $2 \sqrt{3}+3 \sqrt{3}$
c) $\sqrt{8}$
d) $(2+\sqrt{3})^{2}$
e) $4 \sqrt{5}-\sqrt{5}$
f) $\sqrt{50}$
g) $\sqrt{8}-\sqrt{2}$
h) $\sqrt{18}-\sqrt{9}$

Q4 Are the following expressions rational or irrational?
a) $(1+\sqrt{5})(1-\sqrt{5})$
b) $\frac{1+\sqrt{5}}{1-\sqrt{5}}$

Q5 If $x=1$ and $y=\sqrt{2}$, are the following expressions rational or irrational?
a) $(x+y)(x-y)$
b) $\frac{x+y}{x-y}$

Q6 Rationalise the denominators of the following expressions, and then simplify if necessa
a) $\frac{1}{\sqrt{2}}$
b) $\frac{2}{\sqrt{8}}$
c) $\frac{a}{\frac{\sqrt{40}}{2}}$
d) $\frac{x}{\sqrt{x y}}$
e) $\frac{1}{1+\sqrt{2}}$
f) $\frac{6}{3+\sqrt{3}}$
g) $\frac{2}{1+\sqrt{6}}$
h) $\frac{5+\sqrt{5}}{5-\sqrt{5}}$

[^0]1 Find the value of the integer k.
a $\sqrt{8}=k \sqrt{2}$
b $\sqrt{18}=k \sqrt{2}$
c $\sqrt{50}=k \sqrt{2}$
d $\sqrt{80}=k \sqrt{5}$

2 Simplify
a $\sqrt{200}$
b $\sqrt{32}$
c $\sqrt{20}$
d $\sqrt{28}$

3 Solve the equation $x^{2}=30$, leaving your answer in surd form.

4 Expand these expressions. Write your answers in the form $a+b \sqrt{c}$ where a, b and c are integers.
a $\sqrt{3}(2+\sqrt{3})$
b $(\sqrt{3}+1)(2+\sqrt{3})$
c $(\sqrt{5}-1)(2+\sqrt{5})$
d $(\sqrt{7}+1)(2-\sqrt{7})$
e $(2-\sqrt{3})^{2}$
f $(\sqrt{2}+5)^{2}$

5 The area of a square is $40 \mathrm{~cm}^{2}$. Find the length of one side of the square. Give your answer as a surd in its simplest form.

6 The lengths of the sides of a rectangle are $(3+\sqrt{5}) \mathrm{cm}$ and $(3-\sqrt{5}) \mathrm{cm}$. Work out, in their simplified forms:
a the perimeter of the rectangle
b the area of the rectangle.

7 The length of the side of a square is $(1+\sqrt{2}) \mathrm{cm}$. Work out the area of the square. Give your answer in the form $(a+b \sqrt{2}) \mathrm{cm}^{2}$ where a and b are integers.

1 Rationalise the denominators and simplify your answers, if possible.
a $\frac{1}{\sqrt{2}}$
b $\frac{1}{\sqrt{5}}$
c $\frac{5}{\sqrt{10}}$
d $\frac{2}{\sqrt{2}}$
e $\frac{4}{\sqrt{12}}$

2 Rationalise the denominators and give your answers in the form $a+b \sqrt{c}$ where a, b and c are integers.
a $\frac{2+\sqrt{2}}{\sqrt{2}}$
b $\frac{6-\sqrt{2}}{\sqrt{2}}$
c $\frac{10+\sqrt{5}}{\sqrt{5}}$
d $\frac{12-\sqrt{3}}{\sqrt{3}}$
e $\frac{14+\sqrt{7}}{\sqrt{7}}$

3 The diagram shows a right-angled triangle.
The lengths are given in centimetres.
Work out the area of the triangle.
Give your answer in the form $a+b \sqrt{c}$ where a, b and c are integers.
$\frac{9}{\sqrt{2}}$
4 Solve these equations leaving your answers in surd form.
a $x^{2}-6 x+2=0$
b $x^{2}+10 x+14=0$

5 The diagram represents a right-angled triangle $A B C$. $A B=(\sqrt{7}+2) \mathrm{cm} \quad A C=(\sqrt{7}-2) \mathrm{cm}$.
Work out, leaving any appropriate answers in surd form:

a the area of triangle $A B C$
h tha lonath of Rr

Simplifying Square Roots

1. Simplify the following as far as possible:
(a) $\sqrt{18}$
(b) $\sqrt{8}$
(c) $\sqrt{12}$
(d) $\sqrt{50}$
(e) $\sqrt{45}$
(f) $\sqrt{44}$
(g) $\sqrt{75}$
(h) $\sqrt{63}$
(i) $\sqrt{72}$
2. Simplify the following as far as possible:
(a) $\sqrt{320}$
(b) $\sqrt{180}$
(c) $\sqrt{300}$
(d) $\sqrt{245}$
(e) $\sqrt{200}$
(f) $\sqrt{343}$
(g) $\sqrt{135}$
(h) $\sqrt{150}$
(i) $\sqrt{216}$
3. Find the following in the form \sqrt{n} :
(a) $7 \sqrt{2}$
(b) $3 \sqrt{3}$
(c) $2 \sqrt{7}$
(d) $3 \sqrt{7}$
(e) $2 \sqrt{2}$
(f) $5 \sqrt{5}$
4. Simplify the following as far as possible, leaving your answer in the form $a \sqrt{b}$:
(a) $2 \sqrt{3}+5 \sqrt{3}$
(b) $7 \sqrt{2}-3 \sqrt{2}$
(c) $\sqrt{3}+\sqrt{12}$
(d) $\sqrt{27}+2 \sqrt{3}$
(e) $5 \sqrt{5}+\sqrt{45}$
(f) $7 \sqrt{2}+\sqrt{50}$
(g) $\sqrt{18}+\sqrt{200}$
(h) $\sqrt{60}+\sqrt{135}$
(i) $\sqrt{180}-\sqrt{20}$
5. Simplify the following as far as possible:
(a) $2 \sqrt{3} \times 5 \sqrt{3}$
(b) $5 \sqrt{2} \times 2 \sqrt{2}$
(c) $\sqrt{3} \times \sqrt{27}$
(d) $\sqrt{50} \times 2 \sqrt{2}$
(e) $2 \sqrt{7} \times 3 \sqrt{28}$
(f) $3 \sqrt{3} \times 5 \sqrt{75}$
(g) $\frac{4 \sqrt{2}}{\sqrt{8}}$
(h) $\frac{12 \sqrt{3}}{\sqrt{48}}$
(i) $\frac{10 \sqrt{6}}{\sqrt{150}}$
(j) $\frac{\sqrt{12}}{\sqrt{300}}$
(k) $\frac{3 \sqrt{28}}{\sqrt{7}}$
(1) $\frac{\sqrt{8}+\sqrt{12}}{\sqrt{2}+\sqrt{3}}$

Simplifying Square Roots

1. Simplify the following as far as possible:
(a) $(\sqrt{5}+2)^{2}$
(b) $(\sqrt{2}+\sqrt{3})^{2}$
(c) $\quad(\sqrt{7}-\sqrt{3})^{2}$
(d) $(\sqrt{5}+2)(\sqrt{5}-2)$
(e) $(\sqrt{11}+\sqrt{7})(\sqrt{11}-\sqrt{7})$
(f) $(\sqrt{5}+2)^{3}$
2. Write the following, in the simplest possible form:
(a) $\sqrt{50}+\sqrt{18}$
(b) $\sqrt{75}-\sqrt{12}$
(c) $\sqrt{300}-\sqrt{48}$
(d) $\frac{\sqrt{72}}{\sqrt{8}}$
(e) $\frac{\sqrt{45}}{\sqrt{20}}$
(f) $\frac{8}{\sqrt{2}}$
3. Write the following, in the simplest possible form (in the form $a \sqrt{b}$):
(a) $\frac{6}{\sqrt{2}}$
(b) $\frac{3}{\sqrt{3}}$
(c) $\frac{10}{\sqrt{5}}$
(d) $\frac{21}{\sqrt{7}}$
(e) $\frac{15}{\sqrt{5}}$
(f) $\frac{33}{\sqrt{11}}$
(g) $\sqrt{8}-\frac{2}{\sqrt{2}}$
(h) $\sqrt{20}+\frac{15}{\sqrt{5}}$
(i) $\sqrt{300}-\frac{15}{\sqrt{3}}$
(j) $\sqrt{28}-\frac{14}{\sqrt{7}}$
(k) $\sqrt{12}+\frac{9}{\sqrt{3}}$
(1) $\sqrt{44}+\frac{22}{\sqrt{11}}$
4. (a) Express $\frac{10}{\sqrt{2}}$ in the form $a \sqrt{b}$, where a and b are positive integers.

An isosceles right-angled triangle ABC has a right angle at B . The length of its equal sides is $\frac{10}{\sqrt{2}} \mathrm{~cm}$.

(b) Find the area of the triangle. Give your answer as an integer.
(c) Find also the hypotenuse of the triangle. Give your answer as an integer.
(i) $3 \sqrt{2}+2 \sqrt{8}$
(ii) $\frac{21}{\sqrt{7}}$
(iii) $(\sqrt{5}+2 \sqrt{3})(\sqrt{5}-2 \sqrt{3})$

23 Express $\sqrt{48}+\sqrt{108}$ in the form $k \sqrt{6}$ where k is a surd.
(b) Given that $\frac{8-\sqrt{18}}{\sqrt{2}}=a+b \sqrt{2}$, where a and b are integers,
find the value of a and the value of b.

$$
\begin{aligned}
& a= \\
& b=
\end{aligned}
$$

19 （a）Show that $(5-\sqrt{8})(7+\sqrt{2})=31-9 \sqrt{2}$
Show each stage of your working．

Given that c is a prime number，
（b）rationalise the denominator of $\frac{3 c-\sqrt{c}}{\sqrt{c}}$
Simplify your answer．

C1 ALGEBRA

1 Evaluate
a $\sqrt{49}$
b $\sqrt{121}$
c $\sqrt{\frac{1}{9}}$
d $\sqrt{\frac{4}{25}}$
e $\sqrt{0.01}$
f $\sqrt{0.09}$
g $\sqrt[3]{8}$
h $\sqrt[3]{1000}$
i $\sqrt[4]{81}$
j $\sqrt{1 \frac{9}{16}}$
k $\sqrt[3]{0.125}$
l $\sqrt[3]{15 \frac{5}{8}}$

2 Simplify
a $\sqrt{7} \times \sqrt{7}$
b $4 \sqrt{5} \times \sqrt{5}$
c $(3 \sqrt{3})^{2}$
d $(\sqrt{6})^{4}$
e $(\sqrt{2})^{5}$
f $(2 \sqrt{3})^{3}$
g $\sqrt{2} \times \sqrt{8}$
h $2 \sqrt{3} \times \sqrt{27}$
i $\frac{\sqrt{32}}{\sqrt{2}}$
j $\frac{\sqrt{3}}{\sqrt{12}}$
k $(\sqrt[3]{6})^{3}$
l $(3 \sqrt[3]{2})^{3}$

3 Express in the form $k \sqrt{2}$
a $\sqrt{18}$
b $\sqrt{50}$
c $\sqrt{8}$
d $\sqrt{98}$
e $\sqrt{200}$
f $\sqrt{162}$

4 Simplify
a $\sqrt{12}$
b $\sqrt{28}$
c $\sqrt{80}$
d $\sqrt{27}$
e $\sqrt{24}$
f $\sqrt{128}$
g $\sqrt{45}$
h $\sqrt{40}$
i $\sqrt{75}$
j $\sqrt{112}$
k $\sqrt{99}$
l $\sqrt{147}$
m $\sqrt{216}$
n $\sqrt{800}$
o $\sqrt{180}$
p $\sqrt{60}$
q $\sqrt{363}$
r $\sqrt{208}$

5 Simplify
a $\sqrt{18}+\sqrt{50}$
b $\sqrt{48}-\sqrt{27}$
c $2 \sqrt{8}+\sqrt{72}$
d $\sqrt{360}-2 \sqrt{40}$
e $2 \sqrt{5}-\sqrt{45}+3 \sqrt{20}$
f $\sqrt{24}+\sqrt{150}-2 \sqrt{96}$

6 Express in the form $a+b \sqrt{3}$
a $\sqrt{3}(2+\sqrt{3})$
b $4-\sqrt{3}-2(1-\sqrt{3})$
c $(1+\sqrt{3})(2+\sqrt{3})$
d $(4+\sqrt{3})(1+2 \sqrt{3})$
e $(3 \sqrt{3}-4)^{2}$
f $(3 \sqrt{3}+1)(2-5 \sqrt{3})$

7 Simplify
a $(\sqrt{5}+1)(2 \sqrt{5}+3)$
b $(1-\sqrt{2})(4 \sqrt{2}-3)$
c $(2 \sqrt{7}+3)^{2}$
d $(3 \sqrt{2}-1)(2 \sqrt{2}+5)$
e $(\sqrt{5}-\sqrt{2})(\sqrt{5}+2 \sqrt{2})$
f $(3-\sqrt{8})(4+\sqrt{2})$

8 Express each of the following as simply as possible with a rational denominator.
a $\frac{1}{\sqrt{5}}$
b $\frac{2}{\sqrt{3}}$
c $\frac{1}{\sqrt{8}}$
d $\frac{14}{\sqrt{7}}$
e $\frac{3 \sqrt{2}}{\sqrt{3}}$
f $\frac{\sqrt{5}}{\sqrt{15}}$
g $\frac{1}{3 \sqrt{7}}$
h $\frac{12}{\sqrt{72}}$
i $\frac{1}{\sqrt{80}}$
j $\frac{3}{2 \sqrt{54}}$
k $\frac{4 \sqrt{20}}{3 \sqrt{18}}$
l $\frac{3 \sqrt{175}}{2 \sqrt{27}}$

C1 Algebra

9 Simplify
a $\sqrt{8}+\frac{6}{\sqrt{2}}$
b $\sqrt{48}-\frac{10}{\sqrt{3}}$
c $\frac{6-\sqrt{8}}{\sqrt{2}}$
d $\frac{\sqrt{45}-5}{\sqrt{20}}$
e $\frac{1}{\sqrt{18}}+\frac{1}{\sqrt{32}}$
f $\frac{2}{\sqrt{3}}-\frac{\sqrt{6}}{\sqrt{72}}$

10 Solve each equation, giving your answers as simply as possible in terms of surds.
a $x(x+4)=4(x+8)$
b $x-\sqrt{48}=2 \sqrt{3}-2 x$
c $x \sqrt{18}-4=\sqrt{8}$
d $x \sqrt{5}+2=\sqrt{20}(x-1)$

11 a Simplify $(2-\sqrt{3})(2+\sqrt{3})$.
b Express $\frac{2}{2-\sqrt{3}}$ in the form $a+b \sqrt{3}$.
12 Express each of the following as simply as possible with a rational denominator.
a $\frac{1}{\sqrt{2}+1}$
b $\frac{4}{\sqrt{3}-1}$
c $\frac{1}{\sqrt{6}-2}$
d $\frac{3}{2+\sqrt{3}}$
e $\frac{1}{2+\sqrt{5}}$
f $\frac{\sqrt{2}}{\sqrt{2}-1}$
g $\frac{6}{\sqrt{7}+3}$
h $\frac{1}{3+2 \sqrt{2}}$
i $\frac{1}{4-2 \sqrt{3}}$
j $\frac{3}{3 \sqrt{2}+4}$
k $\frac{2 \sqrt{3}}{7-4 \sqrt{3}}$
l $\frac{6}{\sqrt{5}-\sqrt{3}}$

13 Solve the equation

$$
3 x=\sqrt{5}(x+2)
$$

giving your answer in the form $a+b \sqrt{5}$, where a and b are rational.
14

The diagram shows a rectangle measuring $(3 \sqrt{2}-3) \mathrm{cm}$ by $l \mathrm{~cm}$.
Given that the area of the rectangle is $6 \mathrm{~cm}^{2}$, find the exact value of l in its simplest form.
15 Express each of the following as simply as possible with a rational denominator.
a $\frac{\sqrt{2}}{\sqrt{2}+\sqrt{6}}$
b $\frac{1+\sqrt{3}}{2+\sqrt{3}}$
c $\frac{1+\sqrt{10}}{\sqrt{10}-3}$
d $\frac{3-\sqrt{2}}{4+3 \sqrt{2}}$
e $\frac{1-\sqrt{2}}{3-\sqrt{8}}$
f $\frac{\sqrt{3}-5}{2 \sqrt{3}-4}$
g $\frac{\sqrt{12}+3}{3-\sqrt{3}}$
h $\frac{3 \sqrt{7}-2}{2 \sqrt{7}-5}$

[^0]: - Remember: rationalising the denominator means getting rid of the square root signs on the bottom of fractions.

