©MathsWatch	Clip 207		
Grade 8 and	9 questions		

1) Simplify the following:

- a) $\sqrt{7} \times \sqrt{7}$ b) $\sqrt{3} \times \sqrt{3}$ c) $\sqrt{20}$ d) $\sqrt{24}$
- e) √72
- f) $\sqrt{200}$
- g) $\sqrt{\frac{2}{25}}$

2) Simplify the following:

- a) $\sqrt{2} \times \sqrt{18}$
- b) $\sqrt{8} \times \sqrt{32}$
- c) $\sqrt{99} \times \sqrt{22}$
- d) $\sqrt{45} \times \sqrt{20}$
- e) $\sqrt{18} \times \sqrt{128}$
- f) $\sqrt{28} \times \sqrt{175}$
- 3) Expand and simplify where possible:
 - a) $\sqrt{3}(3-\sqrt{3})$
 - b) $\sqrt{2}(6+2\sqrt{2})$
 - c) $\sqrt{7}(2+3\sqrt{7})$
 - d) $\sqrt{2}(\sqrt{32}-\sqrt{8})$

4) Expand and simplify where possible: a) $(1+\sqrt{2})(1-\sqrt{2})$

b)
$$(3+\sqrt{5})(2-\sqrt{5})$$

c) $(\sqrt{3}+2)(\sqrt{3}+4)$

- d) $(\sqrt{5}-3)(\sqrt{5}+1)$
- e) $(2+\sqrt{7})(2-\sqrt{7})$
- f) $(\sqrt{6}-3)^2$
- 5) Work out the following, giving your answer in its simplest form:

a)
$$\frac{(5+\sqrt{3})(5-\sqrt{3})}{\sqrt{22}}$$

b)
$$\frac{(4-\sqrt{5})(4+\sqrt{5})}{\sqrt{11}}$$

c)
$$\frac{(3-\sqrt{2})(3+\sqrt{2})}{\sqrt{14}}$$

d)
$$\frac{\left(\sqrt{3}+1\right)^2}{\sqrt{3}}$$

e)
$$\frac{\left(\sqrt{5}+3\right)^2}{\sqrt{20}}$$

f)
$$\frac{(5-\sqrt{5})(2+2\sqrt{5})}{\sqrt{20}}$$

Surds

- 1) $\sqrt{5} = 5^k$
 - a) Write down the value of k.
 - b) Expand and simplify $(2 \pm \sqrt{5})(1 \pm \sqrt{5})$ Give your answer in the form $a \pm b\sqrt{c}$ where *a*, *b* and *c* are integers.
- 2) The diagram shows a right-angled triangle with lengths of sides as indicated.

The area of the triangle is $A \,\mathrm{cm}^2$

Show that $A = k\sqrt{2}$ giving the value of k.

3) Given that

 $\frac{8 - \sqrt{18}}{\sqrt{2}} = a + b\sqrt{2}$, where a and b are integers,

find the value of *a* and the value of *b*.

4) Work out $(2 + \sqrt{3})(2 - \sqrt{3})$

Give your answer in its simplest form.

Surds

1) Rationalise the denominator, simplifying where possible:

a)
$$\frac{3}{\sqrt{2}}$$

b) $\frac{2}{\sqrt{2}}$
c) $\frac{3\sqrt{2}}{\sqrt{7}}$
d) $\frac{\sqrt{5}}{\sqrt{10}}$
e) $\frac{1}{4\sqrt{8}}$
f) $\frac{\sqrt{15}}{\sqrt{3}}$
g) $\frac{1}{\sqrt{27}}$

2) Rationalise the denominator of $\frac{1}{\sqrt{3}}$

3) Rationalise the denominator of
$$\frac{1}{8\sqrt{8}}$$
 giving the answer in the form $\frac{\sqrt{2}}{p}$

1	Find the value of the interaction $\sqrt{8} = k\sqrt{2}$	•	c $\sqrt{50} = k\sqrt{2}$	d $\sqrt{80} = k\sqrt{5}$
2	Simplify a $\sqrt{200}$	b √32	c $\sqrt{20}$	d $\sqrt{28}$
3	Solve the equation $x^2 =$	30, leaving your answer i	n surd form.	
4	a $\sqrt{3}(2+\sqrt{3})$	ns. Write your answers in b $(\sqrt{3} + 1)(2 + \sqrt{3})^2$ e $(2 - \sqrt{3})^2$	the form $a + b\sqrt{c}$ where c $(\sqrt{5} - 1)(2 - 1)(1 - 1)$	a, b and c are integers. + $\sqrt{5}$)
5	The area of a square is a Give your answer as a s	40 cm². Find the length of a urd in its simplest form.	one side of the square.	
6	The lengths of the sides Work out, in their simpli a the perimeter of the r		5) cm and (3 − √5) cm. b the area of the recta	ngle.
7	The length of the side of	a square is (1 + $\sqrt{2}$) cm.	Work out the area of the s	square.

Give your answer in the form ($a + b\sqrt{2}$) cm² where a and b are integers.

LIAC.	
1	Rationalise the denominators and simplify your answers, if possible. a $\frac{1}{\sqrt{2}}$ b $\frac{1}{\sqrt{5}}$ c $\frac{5}{\sqrt{10}}$ d $\frac{2}{\sqrt{2}}$ e $\frac{4}{\sqrt{12}}$
2	Rationalise the denominators and give your answers in the form $a + b\sqrt{c}$ where a, b and c are integers. a $\frac{2+\sqrt{2}}{\sqrt{2}}$ b $\frac{6-\sqrt{2}}{\sqrt{2}}$ c $\frac{10+\sqrt{5}}{\sqrt{5}}$ d $\frac{12-\sqrt{3}}{\sqrt{3}}$ e $\frac{14+\sqrt{7}}{\sqrt{7}}$
3	The diagram shows a right-angled triangle. $\frac{2}{\sqrt{3}}$ The lengths are given in centimetres. $\frac{2}{\sqrt{3}}$ Work out the area of the triangle. $\frac{9}{\sqrt{2}}$ Give your answer in the form $a + b\sqrt{c}$ where a, b and c are integers. $\frac{9}{\sqrt{2}}$
4	Solve these equations leaving your answers in surd form. a $x^2 - 6x + 2 = 0$ b $x^2 + 10x + 14 = 0$
5	The diagram represents a right-angled triangle ABC.C $AB = (\sqrt{7} + 2)$ cm $AC = (\sqrt{7} - 2)$ cm.Work out, leaving any appropriate answers in surd form: $(\sqrt{7} - 2)$ a the area of triangle ABC A

h the length of RC

For use only by Francesca Foster (private tutor)

1.

3.

January 2012 GCSE-H2-03n-01 Surds

Simplifying Square Roots

Simp	lify the foll	lowing as far	as possi	ble:	
(a)	$\sqrt{18}$	(b)	$\sqrt{8}$	(c)	$\sqrt{12}$
(d)	$\sqrt{50}$	(e)	$\sqrt{45}$	(f)	$\sqrt{44}$
(g)	$\sqrt{75}$	(h)	$\sqrt{63}$	(i)	$\sqrt{72}$

2. Simplify the following as far as possible:

(a)	√320	(b)	√ 180	(c)	√ 300
(d)	$\sqrt{245}$	(e)	$\sqrt{200}$	(f)	$\sqrt{343}$
(g)	$\sqrt{135}$	(h)	$\sqrt{150}$	(i)	$\sqrt{216}$

F	Find the following in the form \sqrt{n} :							
(a)	$7\sqrt{2}$	(b)	$3\sqrt{3}$	(c)	$2\sqrt{7}$		
(d)	$3\sqrt{7}$	(e)	$2\sqrt{2}$	(f)	$5\sqrt{5}$		

4. Simplify the following as far as possible, leaving your answer in the form $a\sqrt{b}$:

(a)	$2\sqrt{3} + 5\sqrt{3}$	(b)	$7\sqrt{2} - 3\sqrt{2}$	(c)	$\sqrt{3} + \sqrt{12}$
(d)	$\sqrt{27} + 2\sqrt{3}$	(e)	$5\sqrt{5} + \sqrt{45}$	(f)	$7\sqrt{2} + \sqrt{50}$
(g)	$\sqrt{18} + \sqrt{200}$	(h)	$\sqrt{60} + \sqrt{135}$	(i)	$\sqrt{180} - \sqrt{20}$

5. Simplify the following as far as possible: (a) $2\sqrt{3} \times 5\sqrt{3}$ (b) $5\sqrt{2} \times 2\sqrt{2}$ (c) $\sqrt{3} \times \sqrt{27}$ (d) $\sqrt{50} \times 2\sqrt{2}$ (e) $2\sqrt{7} \times 3\sqrt{28}$ (f) $3\sqrt{3} \times 5\sqrt{75}$ (g) $\frac{4\sqrt{2}}{\sqrt{2}}$ (h) $\frac{12\sqrt{3}}{\sqrt{3}}$ (i) $\frac{10\sqrt{6}}{\sqrt{6}}$

(g)
$$\frac{\sqrt{8}}{\sqrt{8}}$$
 (h) $\frac{\sqrt{48}}{\sqrt{48}}$ (l) $\frac{\sqrt{150}}{\sqrt{150}}$
(j) $\frac{\sqrt{12}}{\sqrt{300}}$ (k) $\frac{3\sqrt{28}}{\sqrt{7}}$ (l) $\frac{\sqrt{8} + \sqrt{12}}{\sqrt{2} + \sqrt{3}}$

Copyright www.pgmaths.co.uk - for GCSE, IGCSE, AS and A2 notes

For use only by Francesca Foster (private tutor)

January 2012 GCSE-H2-03n-02 Surds

Simplifying Square Roots

- 1. Simplify the following as far as possible:
 - (a) $(\sqrt{5}+2)^2$ (b) $(\sqrt{2}+\sqrt{3})^2$ (c) $(\sqrt{7}-\sqrt{3})^2$ (d) $(\sqrt{5}+2)(\sqrt{5}-2)$

(e)
$$(\sqrt{11} + \sqrt{7})(\sqrt{11} - \sqrt{7})$$
 (f) $(\sqrt{5} + 2)^3$

2. Write the following, in the simplest possible form:

(a)
$$\sqrt{50} + \sqrt{18}$$
 (b) $\sqrt{75} - \sqrt{12}$ (c) $\sqrt{300} - \sqrt{48}$
(d) $\frac{\sqrt{72}}{\sqrt{8}}$ (e) $\frac{\sqrt{45}}{\sqrt{20}}$ (f) $\frac{8}{\sqrt{2}}$

3. Write the following, in the simplest possible form (in the form $a\sqrt{b}$):

(a) $\frac{6}{\sqrt{2}}$ (b) $\frac{3}{\sqrt{3}}$ (c) $\frac{10}{\sqrt{5}}$ (d) $\frac{21}{\sqrt{7}}$ (e) $\frac{15}{\sqrt{5}}$ (f) $\frac{33}{\sqrt{11}}$ (g) $\sqrt{8} - \frac{2}{\sqrt{2}}$ (h) $\sqrt{20} + \frac{15}{\sqrt{5}}$ (i) $\sqrt{300} - \frac{15}{\sqrt{3}}$

(j)
$$\sqrt{28} - \frac{14}{\sqrt{7}}$$
 (k) $\sqrt{12} + \frac{9}{\sqrt{3}}$ (l) $\sqrt{44} + \frac{22}{\sqrt{11}}$

4. (a) Express $\frac{10}{\sqrt{2}}$ in the form $a\sqrt{b}$, where *a* and *b* are positive integers. An isosceles right-angled triangle ABC has a right angle at B. The length of its equal sides is $\frac{10}{\sqrt{2}}$ cm.

(b) Find the area of the triangle. Give your answer as an integer.

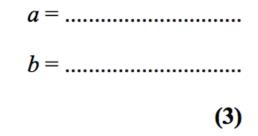
(c) Find also the hypotenuse of the triangle. Give your answer as an integer.

Copyright www.pgmaths.co.uk - for GCSE, IGCSE, AS and A2 notes

(i)
$$3\sqrt{2} + 2\sqrt{8}$$

(ii) $\frac{21}{\sqrt{7}}$ [1]

[2]


(iii) $(\sqrt{5} + 2\sqrt{3})(\sqrt{5} - 2\sqrt{3})$

AMAY 2011 4H.pdf (page 20 of 24))			
2	~	♪	Ē	Q Search

23 Express $\sqrt{48} + \sqrt{108}$ in the form $k\sqrt{6}$ where k is a surd.
(Total for Question 23 is 3 marks)
(Total for Question 23 is 3 marks)

(b) Given that
$$\frac{8-\sqrt{18}}{\sqrt{2}} = a+b\sqrt{2}$$
, where a and b are integers,

find the value of *a* and the value of *b*.

C 1		BRA			Worksheet A
1	Evaluate				
		b $\sqrt{121}$	$\mathbf{c} = \sqrt{\frac{1}{9}}$	d $\sqrt{\frac{4}{25}}$	e $\sqrt{0.01}$ f $\sqrt{0.09}$
	$\mathbf{g} \sqrt[3]{8}$	h $\sqrt[3]{1000}$	i $\sqrt[4]{81}$	$\mathbf{j} \sqrt{1\frac{9}{16}}$	k $\sqrt[3]{0.125}$ l $\sqrt[3]{15\frac{5}{8}}$
2	Simplify				
	a $\sqrt{7} \times \sqrt{7}$	b 4√	$\overline{5} \times \sqrt{5}$	c $(3\sqrt{3})^2$	d $(\sqrt{6})^4$
	e $(\sqrt{2})^5$	f (2~	$(\overline{3})^{3}$	$\mathbf{g} \sqrt{2} \times \sqrt{8}$	h $2\sqrt{3} \times \sqrt{27}$
	i $\frac{\sqrt{32}}{\sqrt{2}}$	$\mathbf{j} = \frac{\sqrt{2}}{\sqrt{1}}$	$\overline{\overline{2}}$	k $(\sqrt[3]{6})^3$	1 $(3\sqrt[3]{2})^3$
3	Express in the	form $k\sqrt{2}$			
	a $\sqrt{18}$	b $\sqrt{50}$	c $\sqrt{8}$	d $\sqrt{98}$	e $\sqrt{200}$ f $\sqrt{162}$
4	Simplify				
	a $\sqrt{12}$	b $\sqrt{28}$	$\mathbf{c} \sqrt{80}$	d $\sqrt{27}$	e $\sqrt{24}$ f $\sqrt{128}$
	$\mathbf{g} \sqrt{45}$	h $\sqrt{40}$	i $\sqrt{75}$	j $\sqrt{112}$	k $\sqrt{99}$ l $\sqrt{147}$
	$\mathbf{m} \sqrt{216}$	n $\sqrt{800}$	\mathbf{o} $\sqrt{180}$	p √60	q $\sqrt{363}$ r $\sqrt{208}$
5	Simplify				
	a $\sqrt{18} + \sqrt{50}$	0	b $\sqrt{48} - \sqrt{2}$	7	c $2\sqrt{8} + \sqrt{72}$
	d $\sqrt{360} - 2\sqrt{3}$	$\sqrt{40}$	e $2\sqrt{5} - \sqrt{4}$	$\overline{5}$ + 3 $\sqrt{20}$	f $\sqrt{24} + \sqrt{150} - 2\sqrt{96}$
6	Express in the	form $a + b\sqrt{3}$			
	a $\sqrt{3}(2+\sqrt{3})$	3)	b $4 - \sqrt{3} - 2$	$2(1-\sqrt{3})$	c $(1+\sqrt{3})(2+\sqrt{3})$
	d $(4 + \sqrt{3})(1$	$(+2\sqrt{3})$	e $(3\sqrt{3} - 4)^2$	2	f $(3\sqrt{3} + 1)(2 - 5\sqrt{3})$
7	Simplify				
	a $(\sqrt{5} + 1)(2$	$2\sqrt{5} + 3)$	b $(1-\sqrt{2})(4)$	$(4\sqrt{2} - 3)$	c $(2\sqrt{7} + 3)^2$
	d $(3\sqrt{2} - 1)$	$(2\sqrt{2} + 5)$	e $(\sqrt{5} - \sqrt{2})$	$)(\sqrt{5} + 2\sqrt{2})$	f $(3-\sqrt{8})(4+\sqrt{2})$
8	Express each o	of the following	as simply as pos	ssible with a rati	onal denominator.
	a $\frac{1}{\sqrt{5}}$	b $\frac{2}{\sqrt{3}}$	$\mathbf{c} \frac{1}{\sqrt{8}}$	d $\frac{14}{\sqrt{7}}$	e $\frac{3\sqrt{2}}{\sqrt{3}}$ f $\frac{\sqrt{5}}{\sqrt{15}}$

$$\mathbf{g} \quad \frac{1}{3\sqrt{7}} \qquad \mathbf{h} \quad \frac{12}{\sqrt{72}} \qquad \mathbf{i} \quad \frac{1}{\sqrt{80}} \qquad \mathbf{j} \quad \frac{3}{2\sqrt{54}} \qquad \mathbf{k} \quad \frac{4\sqrt{20}}{3\sqrt{18}} \qquad \mathbf{l} \quad \frac{3\sqrt{175}}{2\sqrt{27}}$$

© Solomon Press

9 Simplify

a
$$\sqrt{8} + \frac{6}{\sqrt{2}}$$

b $\sqrt{48} - \frac{10}{\sqrt{3}}$
c $\frac{6 - \sqrt{8}}{\sqrt{2}}$
d $\frac{\sqrt{45} - 5}{\sqrt{20}}$
e $\frac{1}{\sqrt{18}} + \frac{1}{\sqrt{32}}$
f $\frac{2}{\sqrt{3}} - \frac{\sqrt{6}}{\sqrt{72}}$

- 10 Solve each equation, giving your answers as simply as possible in terms of surds.
 - **a** x(x+4) = 4(x+8) **b** $x - \sqrt{48} = 2\sqrt{3} - 2x$ **c** $x\sqrt{18} - 4 = \sqrt{8}$ **d** $x\sqrt{5} + 2 = \sqrt{20}(x-1)$
- **11 a** Simplify $(2 \sqrt{3})(2 + \sqrt{3})$. **b** Express $\frac{2}{2 - \sqrt{3}}$ in the form $a + b\sqrt{3}$.
- 12 Express each of the following as simply as possible with a rational denominator.

a

$$\frac{1}{\sqrt{2}+1}$$
 b
 $\frac{4}{\sqrt{3}-1}$
 c
 $\frac{1}{\sqrt{6}-2}$
 d
 $\frac{3}{2+\sqrt{3}}$

 e
 $\frac{1}{2+\sqrt{5}}$
 f
 $\frac{\sqrt{2}}{\sqrt{2}-1}$
 g
 $\frac{6}{\sqrt{7}+3}$
 h
 $\frac{1}{3+2\sqrt{2}}$

 i
 $\frac{1}{4-2\sqrt{3}}$
 j
 $\frac{3}{3\sqrt{2}+4}$
 k
 $\frac{2\sqrt{3}}{7-4\sqrt{3}}$
 l
 $\frac{6}{\sqrt{5}-\sqrt{3}}$

13 Solve the equation

$$3x = \sqrt{5} (x+2),$$

giving your answer in the form $a + b\sqrt{5}$, where a and b are rational.

14

$$(3\sqrt{2} - 3) \text{ cm}$$

The diagram shows a rectangle measuring $(3\sqrt{2} - 3)$ cm by *l* cm. Given that the area of the rectangle is 6 cm², find the exact value of *l* in its simplest form.

15 Express each of the following as simply as possible with a rational denominator.

a
$$\frac{\sqrt{2}}{\sqrt{2} + \sqrt{6}}$$
 b $\frac{1 + \sqrt{3}}{2 + \sqrt{3}}$ **c** $\frac{1 + \sqrt{10}}{\sqrt{10} - 3}$ **d** $\frac{3 - \sqrt{2}}{4 + 3\sqrt{2}}$
e $\frac{1 - \sqrt{2}}{3 - \sqrt{8}}$ **f** $\frac{\sqrt{3} - 5}{2\sqrt{3} - 4}$ **g** $\frac{\sqrt{12} + 3}{3 - \sqrt{3}}$ **h** $\frac{3\sqrt{7} - 2}{2\sqrt{7} - 5}$

© Solomon Press