

www.mymathscloud.com

The key to success at logs is memorising the 5 rules and being good at algebra. Just know your rules and when to use them. It is just a process of elimination! If one rule doesn't work ask yourself, can I apply the other? Also remember that the rules work both ways, not only from left to right, hence the \Leftrightarrow sign below. A log has the form $log_ab = c$ where $log_ab = c$

Rule	In Words	Examples	Common Mistakes				
Logs							
$c \log_a b \Leftrightarrow \log_a b^c$ $\log x^n =$	we can bring the power up and down	Example 1: $2\log_3 5$ This is the same as writing $\log_3 5^2 = \log_3 25$ Example 2: $\log_4 9$ This is the same as writing $\log_4 3^2 = 2\log_4 3$	$(\log_a b)^c eq c \log_a b$ This is because $(\log_a b)^c$ is not the same as $\log_a b^c$ Instead, $\log_a b^c = c \log_a b$				
$\log_a b = c \Leftrightarrow a^c = b$	writing a log is the same as writing an index form, so we can get rid of log completely and write it in index form. This rule is used all the time, especially for solving when we want to get rid of the log.	Example 1: simplify/evaluate $\log_2 8$ we set this equal to x . If we can find what x is then we know the value of $\log_2 8$ $\log_2 8 = x$ $2^x = 8$ $x = 3$	Failure to realise the following extra cancellation laws resulting from this rule: $\log_a a^x = x \\ \log_a a = 1 \\ a^{\log_a x} = x$				
$\log_a b + \log_a c \Leftrightarrow \log_a bc$ The coefficients must be 1 to use this rule: $1 \log_a b + 1 \log_a c \Leftrightarrow \log_a bc$ If they aren't use rule $c \log_a b \Leftrightarrow \log_a b^c$	we can make two logs added into one multiplied and vice versa	Example 1: Simplify $4 \log_3 x^2 + 3\log_3 y^5 \log_3(x^2)^4 + \log_3(y^5)^3 = \log_3 x^8 + \log_3 y^{15} = \log_3 x^8 y^{15}$ Example 2: Given $\log_5 x = p, \log_5 q$, find $\log_{10} xy^3$ in terms of $p \& q \log_5 xy^3 = \log_5 x + \log_5 y^3 = \log_5 x + 3\log_5 y = p + 3q$	log(a ± b) ≠ loga ± logb You can't expand/distribute a log, it is fixed with its argument In(1+2+3) = In1 + In2 + In3 Remember ONE log multiplied goes to TWO				
$\log_a b - \log_a c \Leftrightarrow \log_a \frac{b}{c}$ The coefficients must be 1 to use this rule: $\log_a b - \log_a c \Leftrightarrow \log_a \frac{b}{c}$ If they aren't use rule $c \log_a b \Leftrightarrow \log_a b^c$	we can make two logs added into one divided and vice versa	Example 1: Simplify $5 \log_3 x^3 - 4\log_3 y^2$ $\log_3(x^3)^5 - \log_3(y^2)^4 = \log_3 x^{15} - \log_3 y^8 = \log_3 \frac{x^5}{y^8}$ Example 2: Given $\log_5 x = p$, $\log_5 = q$, find $\log_{10} \frac{x^4}{y^2}$ in terms of $p \& q$ $\log_5 \frac{x^4}{y^2} = \log_5 x^4 - \log_5 y^2 = 4\log_5 x - 2\log_5 y = 4p - 2q$	added, two logs do not go to two logs! $\frac{loga}{logb} \neq loga - logb$ $\frac{loga}{logb} \neq log \frac{a}{b}$ Remember ONE log divided goes to TWO subtracted, two logs do not go to two logs!				
$\log_a b \Leftrightarrow \frac{\log_c b}{\log_c a}$	we can change the base of any log if it isn't the base that we need/want	Example 1: $\log_a 2 = 2$, $\log_a 5 = y$. Find $\log_2 25 \otimes \log_2 20$ in terms of y $\log_2 25 = \frac{\log_a 25}{\log_a 2} = \frac{\log_a 5^2}{\log_a 2} = \frac{2\log_a 5}{\log_a 2} = \frac{2(y)}{2} = y$ $\log_2 20 = \frac{\log_a 20}{\log_a 2} = \frac{\log_a (4 \times 5)}{\log_a 2} = \frac{\log_a (2^2 \times 5)}{\log_a 2} = \frac{2\log_a 2 + \log_a 5}{\log_a 2} = \frac{2(2) + y}{2} = \frac{4 + y}{2}$	We only use this when the bases don't match. © MyMathsCloud				

Ln and Exponentials

The rules for $\ln x$ work the exact same way for $\log x \cdot \ln x$ is the same as $\log_e x$ $e^{\ln x} = x$ (e and \ln are inverses so cancel each other out - remember e takes a power) $\ln e^x = x$ (e and \ln are inverses so cancel each other out-remember \ln takes an argument)

4 Solving Types									
Solving with a power x and base other than e 1) Take the log of both sides if you can't make the bases the same (if have 2 terms, one on each side) 2) Use indices rules and then becomes a hidden quadratic if have 3 terms)		Solving with a power x and base e Take the natural log of both sides Example: $2e^{x-3} = 5$ $e^{x-3} = \frac{5}{2}$ $ln(e^{x-3}) = ln\left(\frac{5}{2}\right)$	Solving with the form $\log_a b = c$ Use Rule $\log_a b = c \Leftrightarrow a^c = b$ If you have more than one \log you will need to condense them into one \log using the rules: $\log_a b + \log_a c \Leftrightarrow \log_a bc$ $\log_a b - \log_a c \Leftrightarrow \log_a \frac{b}{c}$	Solving with the form $\ln x$ Either replace as $\log_e x$ and proceed as normal or raise both sides to the power e Example: $\ln(x-2)=5$					
Example 2: 2 $(2 \log (2 \log x))$ $x = \frac{2}{2}$	Example 1: $5^{x-2} = 7$ Log both sides $\log 5^{x-2} = \log 7$ $(x-2)\log 5 = \log 7$ $(\log 5)x - 2\log 5 = \log 7$ $(\log 5)x - 2\log 5 = \log 7$ $(\log 5)x = \log 7 + 2\log 5 = \log 7$ $(\log 5)x = \log 7 + 2\log 5^2 = \log 15$ $\log 5$ $2^{2x+3} = 3^{2x+2}.$ Give your answer in form $\frac{\log a}{\log b}$ $\log 2^{2x+3} = \log 3^{2x+2}$ $(2x+3)\log 2 = (2x+2)\log 3$ $g(2x+3)\log 2 = (2\log 3)x + 2\log 3$ $g(2x+3)\log 3 = (2\log 3)x + 2\log 3$ $g(2x+3)\log$	$x - 3 = \ln\left(\frac{5}{2}\right)$ $x = \ln\left(\frac{5}{2}\right) + 3$	Example 1: $\log_2 x + \log_2 (x - 2) = 3$ $\log_2 x (x - 2) = 3$ $\log_2 (x^2 - 2x) = 3$ $2^3 = x^2 - 2x$ $x^2 - 2x - 8 = 0$ $x = 4, x = -2$ Example 2: $\log_2 (11y - 5) - \log_2 3 = 2 \log_2 y + 1$ $\log_2 (11y - 5) - \log_2 3 - 2 \log_2 y = 1$ $\log_2 \frac{11y - 5}{3y^2} = 1$ $\frac{11y - 5}{3y^2} = 2^1 = 2$ $11y - 5 = 6y^2$ $6y^2 - 11y + 5 = 0 \Rightarrow y = 1, y = \frac{5}{7}$	Way 1: Raise e both sides $e^{\ln(x-2)} = e^5$ $x-2 = e^5$ $x = e^5 + 2$	Way 2: Replace with $\log_e x$ $\log_e (x-2) = 5$ $e^5 = x-2$ $x = e^5 + 2$				