

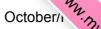
Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 October/November 2018

www.mymathscloud.com

Paper 4 (Extended) MARK SCHEME Maximum Mark: 120


Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

October/ Mymathscloud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit • is given for valid answers which go beyond the scope of the syllabus and mark scheme. referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors
- marks are not deducted for omissions •
- answers should only be judged on the quality of spelling, punctuation and grammar when these • features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the guality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

October/ Munu. My Mains Manaths Cloud. Com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

807/42	Cambridge IG PU	CSE – Mai BLISHED	K Scheme October/I WWW. Mymath Partial Marks M2 for $\frac{3800 - 3610}{2000}$ [× 100] oe
Question	Answer	Marks	Partial Marks
1(a)	5%	3	M2 for $\frac{3800 - 3610}{3800}$ [× 100] oe or $\frac{3610}{3800} \times 100$ or M1 for $\frac{3610}{3800}$ oe
1(b)(i)	7410 or 7407 to 7408	3	M2 for $6390 \times (1 + \frac{3}{100})^5$ oe or M1 for $6390 \times (1 + \frac{3}{100})^k$ oe, $k > 1$
1(ii)	12 nfww	4	M3 for $n\log 1.03 = \log\left(\frac{9000}{6390}\right)$ soi by 11.6 or 11.58 oe or correct trials as far as 11 and 12 oe or M2 for $1.03^n = \frac{9000}{6390}$ or at least 3 correct trials with $n \ge 5$ or M1 for $6390 \times 1.03^n = 9000$ soi.
2(a)(i)	15	1	
2(a)(ii)	6	1	
2(a)(iii)	11.5	1	
2(a)(iv)	11.6 or 11.58	1	
2(a)(v)	7.5	2	B1 for 7 or 14.5 seen
2(b)	$\frac{2}{12}$ oe	1	
3(a)	Triangle at (-5, 3), (-1, 3), (-1, 5)	2	B1 translation $\begin{pmatrix} -5\\k \end{pmatrix}$ or $\begin{pmatrix} k\\3 \end{pmatrix}$
3(b)	Enlargement [Scale factor] $-\frac{1}{2}$ [Centre] (6, 4)	3	B1 for each
3(c)	Rotation 90° clockwise oe (0, 0)	3	B1 for each
4(a)(i)	$y = 4(x+2)^2$	2	B1 for $y = k(x+2)^2$
4(a)(ii)	1600	1	FT (<i>their k</i>) × 20^2 dep on $k(x + 2)^2$

607/42	Cambridge IG PU	CSE – Ma BLISHED	Partial Marks B1 for 0.5 or $-\frac{9}{2}$ oe
Question	Answer	Marks	Partial Marks
4(a)(iii)	$\frac{1}{2}$ oe, $-\frac{9}{2}$ oe	2	B1 for 0.5 or $-\frac{9}{2}$ oe or M1 for 25 = (<i>their k</i>)(x + 2) ²
4(b)	54	2	B1 for 3 soi by answer 6
5(a)	Correct sketch	2	B1 for any cubic with max on left of min
5(b)	0.511 or 0.5111 3.18 or 3.180	2	B1 for each
5(c)(i)	(-2, 22)	1	
5(c)(ii)	(2, -10)	1	
5(d)	Rotation[al] [Order] 2 [About] (0, 6)	3	B1 for each
6(a)	36 or 54 or 72 or 108 or 540 seen	B1	
	5 ÷ cos 54 oe	M2	or M1 for $\cos 54 = \frac{5}{r}$ oe Starting with 8.51 is M0
	8.506 to 8.507	A1	
6(b)(i)	20.7 or 20.68 to 20.70	3	M2 for $\frac{72}{360} \times 2 \times \pi \times 8.51 + 10$ oe or M1 for $\frac{72}{360}$ oe soi by $\div 5$
6(b)(ii)	11.0 or 11.1 or 11.02 to 11.10	3	M1 for $\frac{72}{360} \times \pi \times 8.51^2$ oe M1 for $0.5 \times 8.51^2 \times \sin 72$ oe
7(a)	18 03	4	M1 for 1318 ÷ 252 A1 for 5.23 or 5.230 M1 for converting <i>their</i> time in hours to hours and minutes
7(b)(i)	70	2	M1 for $252 \times \frac{1000}{60 \times 60}$ oe

0607/42

0607/42	Cambridge IG0 PUI	CSE – Mai BLISHED	The Scheme $\frac{h_{MM}}{October/l}$ h_{MM} $h_{$
Question	Answer	Marks	Partial Marks
7(b)(ii)	102 s or 102.4 to 102.5	2	FT 7173 ÷ <i>their</i> 70 M1 for (6772 + 401) ÷ <i>their</i> 70
8(a)	16	1	
8(b)(i)	$\frac{7}{745}$ oe	2	M1 for $\frac{15}{150} \times \frac{14}{149}$ oe with no extra products
8(b)(ii)	497 2235 oe	3	M2 for $\frac{71}{150} \times \frac{70}{149}$ oe with no extra products or M1 for 35 + 12 + 24 soi by 71
8(c)	$\frac{1640}{5673}$ oe	3	M2 for $\frac{42}{63} \times \frac{41}{62} \times \frac{40}{61}$ oe with no extra products or M1 for $\frac{15+27}{15+27+8+13}$ soi by $\frac{42}{63}$
9(a)	Correct cf curve through 7 more points	4	 B3 for curve through 5 or more correct points or B2 for curve through 4 correct points or correct cfs 2, 6, 12, 24, 46, 80, 108, 120 or B1 for curve through 3 correct points or 5,6 or 7 cfs
9(b)(i)	63 to 66	1	Only from increasing diagram
9(b)(ii)	17 to 23	2	B1 for $LQ = 52$ to 55 or $UQ = 72$ to 75 Only from increasing diagram
9(b)(iii)	4 to 8	2	B1 for 112 to 116 seen Only from increasing diagram
9(c)	Correct cumulative frequency curve	3	 B1 for lowest and highest points plotted correctly B1 for median and lower quartile plotted correctly B1 for upper quartile plotted correctly Maximum 2 marks if points not joined
10(a)	60.2 or 60.22 to 60.23.	4	B1 for angle $ACB = 95$ M2 for $\frac{120\sin(their CAB)}{\sin(their ACB)}$ oe or M1 for $\frac{BC}{\sin(their CAB)} = \frac{120}{\sin(their ACB)}$

607/42	Cambridge IG(PU I	CSE – Ma BLISHED	The Scheme October/1 With Minute Partial Marks M2 for $\cos[ABD] = \frac{120^2 + 90^2 - 80^2}{120^2 + 90^2 - 80^2}$
Question	Answer	Marks	Partial Marks
10(b)	228 or 228.1 to 228.2 nfww	4	M2 for $\cos[ABD] = \frac{120^2 + 90^2 - 80^2}{2 \times 120 \times 90}$ or M1 for $80^2 = 120^2 + 90^2 - 2 \times 120 \times 90 \cos ABD$ A1 for 41.8 or 41.80 to 41.81
11(a)	46.8 or 46.82 to 46.83	3	M1 for $\frac{1}{2} \times \pi \times 1.8^2 \times 8$ oe M1 for $\frac{1}{4} \times \frac{4}{3} \times \pi \times 1.8^3$ oe
11(b)	60.5 or 60.49 to 60.51	4	M1 for $\frac{1}{2} \times \pi \times 1.8^2$ oe M1 for $\frac{1}{2} \times 2 \times \pi \times 1.8 \times 8$ oe M1 for $\frac{1}{4} \times 4 \times \pi \times 1.8^2$ oe
12(a)	Correct sketch 15° y ((x)=(2x-3)((x+2)) 10° 5°	3	 B1 for correct left hand branch without serious curl back B2 for correct right-hand branch or B1 for correct shape right-hand branch but with clear intercepts but serious overlap or curl back
12(b)	x = -2 oe y = 2 oe	2	B1 for each
12(c)(i)	-2.81 or -2.812 to -2.811 2.31 or 2.311 to 2.312	2	B1 for each or for $2x^2 + x - 13 = 0$
12(c)(ii)	$\frac{x+16}{x+2}$	3	M2 for $\frac{5(x+2)-2(2x-3)}{x+2}$ or M1 for $5-2\left(\frac{2x-3}{x+2}\right)$ oe
13(a)(i)	$-\mathbf{a} + \mathbf{b}$	1	
13(a)(ii)	$\frac{2}{5}\mathbf{a} + \frac{3}{5}\mathbf{b}$	2	B1 for unsimplified seen or M1 for $\mathbf{a} + \frac{3}{5}\overrightarrow{AB}$ oe or $\mathbf{b} + \frac{2}{5}\overrightarrow{BA}$ oe
13(b)(i)	$\frac{2}{3}$ a	2	B1 for unsimplified seen or M1 for $-\mathbf{b} + \frac{5}{3}$ their (a)(ii)
13(b)(ii)	\overrightarrow{BQ} is a multiple of a oe	1	Dep on (b)(i) = $ka, k \neq 1$

0607/42	Cambridge IG(PU I	CSE – Ma BLISHED	The Scheme October/1 WWW. The Mathematical Scheme $M2$ for $\sqrt{6^2 + 8^2}$	AND THE STREET
Question	Answer	Marks	Partial Marks	HOUD
14(a)	10	3	M2 for $\sqrt{6^2 + 8^2}$ or B1 for 6 and 8 seen nfww	Com
14(b)	(4, 5)	2	B1 for each co-ordinate	
14(c)	$y = \frac{3}{4}x + 2 \text{ oe}$	4	Must be 3 term equation B2 for gradient = $\frac{3}{4}$ or B1 for gradient of $AB = -\frac{4}{3}$ M1 for substituting <i>their</i> (b) into y = (their m) x + c oe	