

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41 October/November 2018

www.mymathscloud.com

Paper 4 (Extended) MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

October/ Mymathscloud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit • is given for valid answers which go beyond the scope of the syllabus and mark scheme. referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors
- marks are not deducted for omissions •
- answers should only be judged on the quality of spelling, punctuation and grammar when these • features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the guality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

October/ Munu. My Mains Manaths Cloud. Com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Cambridge IGCSE – Mark Scheme PUBLISHED

0607/41	Cambridge IGCSE – Mark Scheme PUBLISHED October/I Mun, mun, mun, mun, mun, mun, mun, mun, m		
Question	Answer	Marks	Partial Marks
1(a)(i)	8	1	Com
1(a)(ii)	4	2	M1 for correct 1st step
1(a)(iii)	3	2	M1 for correct 1st step
1(b)(i)	$[x =]\frac{1}{2}, \frac{1}{3}$ 30, 19.5 or 19.47	3	M2 for $(3x-1)(2x-1) [= 0]$ or M1 for $(ax \pm 1)(bx \pm 1)$ where $ab = 6$ or a + b = -5 or $3x(2x-1) - 1(2x-1)$ or 2x(3x-1) - 1(3x-1) OR M2 for correct sketch or M1 for any U-shaped parabola crossing x-axis twice OR M2 for $\frac{5 \pm \sqrt{(-5)^2 - 4 \times 6[\times 1]}}{2 \times 6}$ or M1 for $\frac{b}{2a}$ or $b^2 - 4ac$ correct B2 FT for one correct answer
			M1 for $\sin x = their\left(\frac{1}{2}\right)$ or $\sin x = their\left(\frac{1}{3}\right)$
2(a)	1	1	
2(b)	8	1	
2(c)	2	1	
2(d)	3	2	B1 for either $[LQ =] 1$, or $[UQ =] 4$
2(e)	2.93 or 2.933	2	M1 for ' $\sum fx$ ' values
2(f)	Assumed all scored 6 oe	1	
2(g)	0.182 or 0.1816 or $\frac{1008}{5550}$ oe	3	M2 for $\frac{16}{75} \times \frac{15}{74} + \frac{16}{75} \times \frac{24}{74} + \frac{24}{75} \times \frac{16}{74} \text{ oe}$ or M1 for one correct product SC1 for $\frac{1560}{5550} = \frac{52}{185} = 0.28108$

0607/41	Cambridge IGCSE – Mark Scheme PUBLISHED Octobern Mun, mun, mun, mun, mun, mun, mun, mun, m		
Question	Answer	Marks	Partial Marks
3(a)	Correct sketch	3	Intersections with x-axis both positive and not 90 and maximum below 4 B1 correct sine graph shape B1 max and min in correct quadrant
3(b)	(20, 0) (80, 0)	2	B1 for each
3(c)	(-40, 3)	1	
3(d)	-80.2 or -80.16 28.9 or 28.90 56.7 or 56.71 to 56.72	3	B1 for each
4(a)(i)	(0, 8)	1	
4(a)(ii)	(6, 0)	1	
4(a)(iii)	(3, 4)	2	FT <i>their</i> (i) and (ii) B1FT for each co-ordinate
4(b)	$[y=]-\frac{4}{3}x+8$ oe	2	M1 for correct isolating <i>y</i> term or for correct division
4(c)	$y = \frac{3}{4}x - 4.5$ oe	3	FT their (a)(ii) B2 for $y = \frac{3}{4}x + k$, $k \neq 0$ or M1 for gradient = 0.75 oe and M1 for correct subst of their (a)(ii) into $y = mx + c$
4(d)(i)	(0, -4.5)	1	Strict FT <i>their</i> (c) and only if in form $y = mx + c$
4(d)(ii)	(-6, 3.5)	3	FT their (a), (d)(i) B2 for one correct co-ordinate or M1 for $\begin{pmatrix} -6 \\ -4.5 \end{pmatrix}$ or $\begin{pmatrix} 6 \\ 4.5 \end{pmatrix}$ soi
5(a)(i)	28 800	2	M1 for $30000 \times \frac{100 - 4}{100}$ oe

0607/41		IGCSE – Mark Sc PUBLISHED	Cheme October/1 MMM. Mains Partial Marks FT their 0.96, must be <1 and not 0.04
Question	Answer	Marks	Partial Marks
5(a)(ii)	19147 or 19100 nfww	3	FT their 0.96, must be <1 and not 0.04 M2 for $30000 \times (their 0.96)^{11}$ or $28800 \times (their 0.96)^{10}$ or M1 for $30000 \times (their 0.96)^k$, $k > 1$ oe
5(a)(iii)	31 250	3	M2 for 30000 ÷ <i>their</i> (0.96) or M1 for 30000 = <i>their</i> 0.96[x]
5(b)	2005 nfww	4	M3 for $n \log(their 0.96) = \log \frac{30000}{50000}$ oe or M2 for $(their 0.96)^n = 0.6$ oe or M1 for $50000 \times (0.96)^n = 30000$ oe OR M3 for T and I with '12 and 13' seen or M2 for at least 3 correct trials or M1 for $50000 \times (0.96)^n = 30000$ oe
5(c)(i)	140 000	3	M2 for $800 \times 50 \times 3.5$ or M1 for multiplying any two
5(c)(ii)	25	3	M2 for $\frac{their(\mathbf{i}) - 2240 \times 50}{2240 \times 50} [\times 100]$ oe or $\frac{their(\mathbf{i})}{2240 \times 50} \times 100$ oe or $\frac{800 \times 3.5 - 2240}{2240} [\times 100]$ oe or $\frac{800 \times 3.5}{2240} [\times 100]$ oe or M1 for their(\mathbf{i}) - 2240 $\times 50$ or $\frac{their(\mathbf{i})}{2240 \times 50}$ or $800 \times 3.5 - 2240$ or $\frac{800 \times 3.5}{2240}$
5(d)	960	4	M3 for $\frac{2240 \times 1.08 \times 1.25}{3.5 \times 0.9}$ oe or for $\frac{x \times 3.5 \times 0.9 - 2240 \times 1.08}{2240 \times 1.08}$ $= \frac{their(\mathbf{c})(\mathbf{ii})}{100}$ oe or B1 for 3.15 or 157.50 and B1 for 2419.2 or 120 960 or 3024

Cambridge IGCSE – Mark Scheme PUBLISHED

0607/41	41Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/ October/ October/ OnmainsonAnswerMarksPartial MarksVertices (-5, 3) (-8, 3) (-8, 5)2B1 for reflection in $x = k, k \neq -2$ DM for all the interval		
Question	Answer	Marks	Partial Marks
6(a)	Vertices (-5, 3) (-8, 3) (-8, 5)	2	B1 for reflection in $x = k$, $k \neq -2$ or B1 for reflection in $y = -2$
6(b)	Vertices (-5, -5) (-8, -5) (-8, -7)	2	B1 for correct rotation with incorrect centre of rotation.
6(c)	Reflection $y = -1$ cao	2	B1 for each
6(d)	Vertices (1, 4) (7, 4) (7, 8)	2	M1 for enlargement SF2 different centre or for enlargement different SF, correct centre
7(a)(i)	-3n + 83 oe	2	B1 for $-3n + k$ or $-kn + 83$
7(a)(ii)	$128\left(\frac{1}{2}\right)^{n-1}$ oe or 2^{8-n} oe	2	B1 for $128\left(\frac{1}{2}\right)^k$ or 2^{k-n} or 2^{kn+c} oe
7(b)	0, 3, 8, 15	2	B1 for 3 correct no extras
7(c)	2, 1, 0, 1	2	B1 for 3 correct no extras
7(d)(i)	43, 47, 53	2	B1 for 2 correct no extras
7(d)(ii)	41(41 + 1 + 1) oe	1	
8(a)	90 Angle [between] tangent and radius oe	2	B1 for each
8(b)	60	4	B3 for angle $AOT = 60$
			or M2 for $\sin(OAT) = \frac{1}{2}$
			or $\cos(AOT) = \frac{1}{2}$ oe
			or M1 for $OT = 2OA$ oe
9(a)	Correct sketch	2	B1 for cubic graph with max/min incorrect
	/		
9(b)	(2.53, -12.1)	2	B1 for each co-ordinate
9(c)	k < -12.1 k > 2.13	2	B1 for each FT <i>their</i> –12.1

0607/41	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/IMun Mun		
Question	Answer	Marks	Partial Marks
9(d)	-0.726 < <i>x</i> < 1.26	2	B1 for both critical values seen or for $[k <] x < 1.26$ or for $-0.726 < x [< k]$
10(a)(i)	$-6\mathbf{a} + 6\mathbf{c}$ oe	1	
10(a)(ii)	$\frac{2}{3}(-6a+6c)$ oe	1	FT their (a)(i) if a vector
10(a)(iii)	-4 a	2	M1 for <i>their</i> (a)(ii) + $\frac{2}{3}\overrightarrow{CO}$ or correct unsimplified route
10(b)	Both multiples of a oe	1	Depends on (a)(iii) being a multiple of a
10(c)	Angle OAX = angle BDX Angle OXA = angle BXD	2	Two correct statements B1 for one correct statement
10(d)(i)	$-6\mathbf{a} + 2\mathbf{c}$ oe	2	B1 for a correct route eg $\overrightarrow{AO} + \overrightarrow{OD}$ or for -6 a + k c or for k a + 2 c , $k \neq 0$
10(d)(ii)	$\frac{1}{5}(-12a+4c)$ oe	2	M1 for $3\overrightarrow{XD} = 2(-6a + 2c - \overrightarrow{XD})$ or $\frac{2}{5}$ (<i>their</i> (d)(i))
10(e)	9:4 oe	2	B1 for 3 : 2 oe soi or for 1.5 ² or $\left(\frac{2}{3}\right)^2$ seen
11(a)	$0.5 \times 8.6 \times 9.3 \times \sin A = 23.5$	M1	
	35.99[=36.0]	A1	
11(b)	$[x=]\sqrt{8.6^2 + 9.3^2 - 2 \times 8.6 \times 9.3 \times \cos 36}$	M2	or M1 for $[x^2 =] 8.6^2 + 9.3^2 - 2 \times 8.6 \times 9.3 \times \cos 36$
	5.57 or 5.569 to 5.571	A1	M1 with correct answer scores full marks
11(c)	$\sin B = \frac{9.3 \times \sin 36}{their(\mathbf{b})}$	M2	or M1 for $\frac{9.3}{\sin B} = \frac{their(\mathbf{b})}{\sin 36}$
	78.8 or 78.9 or 79.[0] or 78.77 to 78.98	A1	M1 with correct answer scores full marks