

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41 October/November 2016

www.mymathscloud.com

Paper 4 (Extended) MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

			MMW. MJ Mains <u>41</u> MMW. MJ Mains <u>41</u> MMW. MJ Mains Cloud. com
Page 2	2 Mark Scheme	Syllabus	P. n. Mar
	Cambridge IGCSE – October/November 2016	0607	41 4th 75
Abbrevi	ations		SCIOUD,
awrt	answers which round to		CON
cao	correct answer only		
den	dependent		

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

	Qu.	Answer	Mark	Part Marks
1	(a)	201	2	M1 for 2500 ÷ 12.43 (implied by 201.1)
	(b) (i)	783 or 782.5 to 783.3	3	B1 for 10h 40min oe 10.66, 10.67, $10\frac{2}{3}$, 640 M1 for 8350 ÷ <i>their</i> journey time
	(ii)	[0]805 oe	1	
	(iii)	7	3	M2 for $(36.8 - 20) \div 2.4$ oe or M1 for $20 + 2.4 \times \text{distance} = 36.8$ oe
2	(a) (i)	$\begin{pmatrix} -8\\ -5 \end{pmatrix}$	1	
	(ii)	Image at $(-4, -1)$, $(2, -1)$, $(2, 3)$	2FT	SC1FT for translation $\begin{pmatrix} -8\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -5 \end{pmatrix}$
	(iii)	9.43 or 9.433 to 9.434	2	M1 for $(their(-8))^2 + (their(-5))^2$ oe
	(b) (i)	Reflection y-axis oe	1 1	
	(ii)	Enlargement 0.5 oe (10, -10)	1 1 1	
	(iii)	Stretch [factor] 0.25 oe <i>x</i> -axis oe invariant	1 1 1	
3	(a)	Correct sketch	3	B1 for shape including 2 minimum points and 2 maximum pointsB1 for all above <i>x</i>-axis
	(b)	$0.5 \leq f(x) \leq 2$	2	Allow written separately or in words B1 for each SC1 for $0.5 \le x \le 2$

Page 3		Mark SchemeSyllabusP. 40Cambridge IGCSE – October/November 2016060741		
Qu.		Answer	Mark	Syllabus P. Marks ber 2016 0607 41
(c) (i	i)	1	1	
(ii	i)	2	1	
(d) (i	i)	-90, 270, 630, 990	2	B1 for -90 and 270 with no others from -360 to 360
(ii	i)	360 <i>n</i> – 450 oe	2FT	FT only if clear linear sequence B1FT for $360n + k$ or $kn - 450$
(e) (i	i)	Correct sketch	2	B1 for parabola vertex upwards
(ii	i)	122.4 or 122 or 122.4 326.2 or 326 or 326.2	1 1	
(a)		$\frac{\frac{2}{3}\pi \times 9^3}{\frac{1}{3}\pi \times 9^2}$ or equation with parts clearly	M2	M1 for $\frac{1}{3}\pi \times 9^2 \times h = \frac{2}{3}\pi \times 9^3$ oe
(b) (i	i)	cancelled leaving 2 and 9 763 or 764 or 763.4 to 763.5	2	M1 for $\pi \times 9^2 + 2\pi \times 9^2$ or SC1 for 509 or 508.9 to 509.0 or 162π
(ii	i)	569 or 569.0 to 569.1	3	M2 for $\pi \times 9 \times \sqrt{9^2 + 18^2}$
, , , , , , , , , , , , , , , , , , ,	,			or M1 for $9^2 + 18^2$
(c)		45	3	M2 for $\frac{\frac{2}{3}\pi \times 9^3}{\frac{4}{3}\pi \times 2^3}$ or equation with parts clearly cancelled (implied by 45.56 to 46)
				or M1 for $\frac{4}{3}\pi \times 2^3 \times n = \frac{2}{3}\pi \times 9^3$
(a)		18 - x + x + 12 - x + 3 = 25 oe	M1	B1 for Venn diagram completed with the 10, 8,
		Completion to $x = 8$ with at least one step	A1	4 and 3
(b) (i	i)	$\frac{22}{25}$ oe	1	0.88
	i)	$\frac{21}{25}$ oe	1	0.84

	Page 4	Mark Schem Cambridge IGCSE – Octobe	ber 2016 Syllabus P. Unatification Syllabus P. Unatification Structure Struc	
	Qu.	Answer	Mark	Syllabus P. ber 2016 0607 41 Part Marks 4/2 0.4444
((c)	$\frac{8}{18}$ oe	1	$\frac{4}{9}$, 0.4444
	(d)	element chosen from Q is also in P oe	1	
j ((a)	$y = \frac{2}{3}x + \frac{5}{3}$ oe	5	B1 for (2, 3) seen B1 for gradient of $AB = -\frac{3}{2}$ B1FT for gradient $=\frac{2}{3}$ M1 for correct method in finding <i>c</i> .
ſ	(b)	$1\frac{1}{3}$ oe	2	FT 3 – <i>their</i> $\frac{5}{3}$ in (a) (but not if 0) M1 for 3 – <i>their</i> $\frac{5}{3}$ in (a)
	(a)	42.[0] or 41.98 to 41.99	2	M1 for $\tan = \frac{9}{10}$ oe
	(b)	$\tan = \frac{\sqrt{9^2 + 10^2}}{20} \text{ oe}$ 33.91 to 33.93	M2 A1	or M1 for $\sqrt{9^2 + 10^2}$ or $\sqrt{9^2 + 10^2 + 20^2}$
((c)	12.4 or 12.39 to 12.40 nfww	3	M1 for $20^2 + 22^2 - 2 \times 20 \times 22\cos 33.9$ A1 for 153 to 154
; ((a)	Correct sketch	2	B1 for one correct branch
((b)	-2.62 or -2.618 -0.382 or -0.3820 to -0.3819	1 1	If 0 scored, M1 for correct use of quadratic formula oe
	(c)	$ x < -2.62 \\ -0.382 < x < 0 $	1FT 2FT	FT only if 2 negative roots in (b) FT only if 2 negative roots in (b) B1 each
((d)	[a=] 0 [b=] 3	1 1	
	(e)	Translation	1	
		$\begin{pmatrix} 0\\ -3 \end{pmatrix}$ oe	1	

	Page 5		Scheme	Syllabus P. Jns. Mar
		Cambridge IGCSE –	October/Novem	ber 2016 0607 41 13.5 C
	Qu.	Answer	Mark	Syllabus PL ber 2016 0607 Part Marks
	(a)	18, 20, 15, 20, 20	3	B2 for 4 correct B1 for 3 correct
	(b)	3.3[0] or 3.295 to 3.296	2FT	M1 for at least 3 mid-values seen, 0.5, 1.5, 2.5, 4, 7.5 If 0 scored, SC1 for 2.26 or 2.258 or for 4.33 or 4.333 or 4.3
	(c)	0.649 cao	2	M1 for $\frac{their75}{their93} \times \frac{their74}{their92}$ (implied by $\frac{5550}{8556}$ or 0.6486 to 0.6487 oe)
10	(a)	$\frac{9}{7}$ oe	2	M1 for $7x = 11 - 2$ oe
	(b)	$\frac{5x+1}{6}$ final answer	2	M1 for $3(x + 1) + 2(x - 1)$ seen
	(c) (i)	$\frac{2x}{y^2}$ final answer	2	B1 for 2 terms correct
	(ii)	$\frac{x+3}{x+1}$ final answer	4	B1 for $(x - 3)(x + 3)$
				B2 for $(x - 3)(x + 1)$ or or SC1 for $(x + a)(x + b)$ where $ab = -3$ or a + b = -2
1	(a)	2	2	B1 for [f(33) =] 100 or M1 for log(3 <i>x</i> +1)
	(b)	$\frac{1}{100}$ or [0].01	2	M1 for $g(x) = 3(-1) + 1$ oe
	(c) (i)	$\frac{x-1}{3}$ oe	2	M1 for $x = 3y + 1$ or $y - 1 = 3x$
	(ii)	10 ^x	2	M1 for $x = \log y$ or $10^y = x$
2	(a) (i)	12	3	M2 for $\frac{1540 - 1375}{1375} \times 100$ oe or M1 for $\frac{1540}{1375} \times 100$ or for $\frac{1540 - 1375}{1375}$
	(ii)	89.3 or 89.28 to 89.29	1	
	(iii)	1250	3	M2 for 1375 ÷ 1.1 oe or M1 for associating 1375 with 110%

Page 6	Mark Scheme Cambridge IGCSE – October/November 2016		Syllabus P. nber 2016 0607 Part Marks
Qu.	Answer	Mark	Part Marks
(b) (i)	$500 + \frac{500 \times 3 \times 5}{100}$ oe 500 × 1.025 ⁵	M2 and M1 or	or M1 for $\frac{500 \times 3 \times 5}{100}$ oe (575, 565.704)
	$\frac{500 \times 1.025^{5} - 500}{\frac{500 \times 3 \times 5}{100}}$	M2 and M1	or M1 for 500×1.025^5 (65.704, 75)
	amount – amount or interest – interest 9.3[0] or 9.295 to 9.296	M1 A1	
(ii)	16	4	B3 for final answer of 15 or 15.28 to 15.29 seen or 15 reached by trial and improvement
			or M2 for sketch leading to answer or trial and improvement with at least two steps beyond 5 years or M1 for $500 + \frac{500 \times 3 \times x}{100} = 500 \times 1.025^{x}$ oe,
			years