MARK SCHEME for the October/November 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/23

Paper 2 (Extended), maximum raw mark 40

www.nymathscloud.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			WWW. MY MARINE 23 23 23 23 23 23 23 23 23 23 23 23 23
Page 2	Mark Scheme	Syllabus	P. M. Mar
	Cambridge IGCSE – October/November 2015	0607	23 41/2 75
Abbreviations			Cloud.co
cao	correct answer only		m
dep	dependent		

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

seen or implied soi

Question	Answer	Mark	Part Marks
1	30	1	
2	$5 - (2 + 3) \times 2 = -5$	1	
3	$\begin{pmatrix} 1\\ -12 \end{pmatrix}$	2	B1 for each component
4	$\frac{18}{25}$	1	
5	1	2	M1 for $10 \times 5.5 - 9 \times 6$
6	3	2	M1 for $\sqrt{(\sqrt{3})^2 + (\sqrt{6})^2}$
7	7 -2	1 1	If 0 scored SC1 for correct substitution and evaluation to find the other variable
8	105	2	M1 for 42 × 2.5 oe or SC1 for figs 105
9	-3	1	
10 (a)	-8	1	
(b)	-7n + 27 oe	2	SC1 for $-7n + k$ or $27 + kn$, $k \neq 0$
11	$\sqrt{v^2 - 2as}$	2	M1 for correct rearrangement for <i>u</i> term M1 for correct square root
12	(2a-b)(1+x)	2	M1 for $2a - b + x(2a - b)$ or 2a(1 + x) - b(1 + x)
13 (a)	$\frac{1}{27}$	1	
(b)	8	1	
(c)	$\frac{\sqrt{3}}{2}$	1	

			Mum. Mum.	12
Page 3	Mark Schen		Syllabus P. M.	Mar III
	Cambridge IGCSE – Octobe	nber 2015 0607 23	The is	
14	$2x^2$	2	SC1 for kx^2 or $2x^k$, $k \neq 0$	JOUD.COM
15		1		_ ″
		1		
16	y = x - 2 oe	3	B2 for $y = x + k$ oe or $y = kx - 2$ oe or M1 for gradient $= \frac{2-0}{0-2}$ or better or M1 for substituting co-ordinates of one point into <i>their</i> $y = mx + c$	-
17	$3(\sqrt{5}-2)$ oe	2	M1 for $\times \frac{\sqrt{5}-2}{\sqrt{5}-2}$	
18 (a)	y(3-y)	1		
(b)	$\frac{y}{3+y}$ final answer	2FT	FT only if $(3 - y)$ or $(3 + y)$ is cancelled B1 for $[9 - y^2 =](3 - y)(3 + y)$	
19 (a)	$\frac{2}{3}$	2	M1 for $\frac{2\log 2}{3\log 2}$ or $\log_8 4$	
(b)	1.5 oe	1		
20	5	1		1