MARK SCHEME for the October/November 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41

Paper 4 (Extended), maximum raw mark 120

www.nymathscloud.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Decis O I	Mark Scheme Syllabus Pa				- my
Page 2	Mark S Cambridge IGCSE – C		lovember 2014	Syllabus 0607	PENAR
		clobel/h		0007	41
1 (a)	x = -2 drawn and ruled y = 2x + 3 drawn and ruled	1 2	B1 for ruled line with posit (0, 3) or ruled line gradient	\mathcal{O}	
	Correct region clearly indicated	1	freehand		
(b)	4.52	3	B2 if given in co-ordinates or M1 for substituting $y =$ or y coefficients correctly e A1 for $x = 0.7619$ to 0.762 or M2 for x coefficients cor- or M1 for $y = \frac{40-5x}{8}$ oe SC2 for $\frac{95}{21}$ oe	liminated	-
2 (a)	Plotting 4 points correctly	2	B1 for 2 or 3 correct		
(b)	Negative	1	Ignore comment on strengt	h	
(c)	[y =] -0.429x + 72.2	2	a = -0.4295 to -0.4294 b B1 for either a or b correct or SC1 for $y = -0.43x + 72$	= 72.17 to 72	.18
(d) (i)	61 [.0]	1FT	FT <i>their</i> equation. Allow in	nteger.	
(ii)	Weak correlation oe	1	Allow "no correlation" if a correlation	nswer to (b) is	s no

Page 3	Mark Scheme			Syllabus	P. J. M
	Cambridge IGCSE – Oc		lovember 2014	0607	41 Ath
3 (a)	Cubic (positive <i>x</i> ³) with turning points in correct quadrants.	2	B1 for any cubic (positive x		MMW. Mynathscio
(b)	Rotational order 2 about (0, 4)	1 1 1			
(c)	(-1, 6) (1, 2)	1 1	SC1 answers reversed		
(d)	$\begin{array}{ll} x < -1.53 & \text{or} -1.532 \\ x > -0.347 & \text{or} -0.3473 \text{ to} -0.3472, \\ x < 1.88 & \text{or} \ 1.879 \end{array}$	1 1 1			
4 (a) (i)	28 4 n 13 2 $n-1$ oe	1 1 1 2	B1 for 2 <i>n</i> + <i>k</i>		
(ii)	199	1FT	FT from <i>their</i> $2n - 1$ (not <i>r</i>)	<i>i</i> +2)	
(b) (i)	40	1			
(ii)	$n^2 + 3n$ oe	3	M2 for $n^2 + bn$ or M1 for 2nd differences f or $an^2 + bn + c$, $a \neq 0$	ound	

Page 4	Mark S Cambridge IGCSE – Oo	$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	
5 (a)	2.83 or 2.828	4	M2 for $\sqrt{0.9^2 - 0.7^2}$ or M1 for $x^2 + 0.7^2 = 0.9^2$ or better and M1 FT for <i>their</i> 0.5657 × 2 × 2.5 oe
(b)	$\cos[\theta] = \frac{0.7}{0.9}$ oe ×2 77.85 to 77.89	M1 M1 A1	or M2 for $\cos[\theta] = \frac{0.9^2 + 0.9^2 - (their AB)^2}{2 \times 0.9 \times 0.9}$ or M1 for their $AB^2 = 0.9^2 + 0.9^2 - 2 \times 0.9 \times 0.9 \times \cos\theta$
(c)	5980 or 5975 to 5976	5	M1 for correct method for triangle <i>OAB</i> and M1 for correct method for either sector and M1 for completion to volume of prism and M1 for their volume $(m^3) \times 1000$
6 (a) (i) (ii)	$\mathbf{a} + \mathbf{b}$ $-\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ oe	1	B1 unsimplified
(b)	Correct route for <i>EB</i> Completion to $-\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$	M1 A1	
(c) (i)	AD = EB $AD // EB$	1	Accept in words Not $\overrightarrow{AD} = \overrightarrow{EB}$
(ii)	Parallelogram	1	

				mm. m. M.	
Page	9 5	Mark S Cambridge IGCSE – Od	Syllabus P. The Syllabus P. Th	ths.	
				Schould State	
7 (a)		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	Syllabus P. M.	d.com
(b)	(i)	$\frac{42}{200}$ oe	1FT	FT their 42	
	(ii)	$\frac{9}{200}$ oe	1FT	FT their 9	
(c)	(i)	$\frac{870}{39800}$ oe	2	M1 for $\frac{30}{200} \times \frac{29}{199}$ oe	
	(ii)	$\frac{1920}{39800}$ oe	3	M2 FT for $\frac{60}{200} \times \frac{16}{199} + \frac{16}{200} \times \frac{60}{199}$ oe M1 FT for one of above products	
8 (a)	(i)	58	1		
	(ii)	67	2	B1 for $ABC = 125$ or $ADE = 67$	
(b)	(i)	2 from PXS = QXR ([vertically] opposite angles) SPX = RQX ([angles in] same segment) oe PSX = QRX ([angles in] same segment) oe	2	B1 for one of these or 2 pairs of angles identified as equal	
	(ii)	7.5	2	M1 for $\frac{8}{12} = \frac{5}{x}$ or better	
	(iii)	$\frac{64}{144}$ oe	1	0.444(4)	

						mm. n. M.	
Page	96	Mark Scheme Syllabus P. Mark			A Star		
		Cambridge IGCSE – Oc	ctober/N	ovember 2014	0607	41 ×1	S. S.
9 (a)	(i)	23	1			Mun Mynath	cloud.com
	(ii)	17	1				
	(iii)	10	1				
(b)		[14] 16 [28] 42 60	3	B1 for each			
(c)		Bar heights 1.4, 3.2, 5.6, 8.4, 6 Bar widths correct with no gaps	2FT 1	FT <i>their</i> frequencies B1 for independent	2 correct		
10(a)	(i)		2	Correct curve B1 correct shape			
	(ii)	<i>y</i> = -3	1				
(b)	(i)		3	B1 for each branch			
	(ii)	$x = \pm 3$	2	B1 for each			
(c)		-2.38 or -2.384 to -2.385 0.515 or 0.5154	1 1				

Page 7	Mark S	cheme		Syllabus	P. M. M.
l uge l	Cambridge IGCSE – Oc		lovember 2014	0607	41 Ath
11(a)	53 000 42 400	2	B1 for each or M1 for 95400 ÷ 9		P. 41
(b) (i)	5:4 cao	1			
(ii)	90 000	3	M2 for 95 400 ÷ 1.06 oe or M1 for 95 400 = 106%		
(c)	5300	3	M1 FT for $\frac{53000 + x}{42400 + x} = \frac{11}{9}$ M1 FT for $9(53\ 000 + x) =$:) oe
(d)	Decrease 0.64%	3	B2 for figs 9936 oe M1 for [×] 1.08 × 0.92 of	e	
12(a)	$25^{2} = 35^{2} + x^{2} - 2 \times 35 \times x \times \cos 20$ Isolating <i>x</i> terms Completion with no errors	1 M1FT A1	FT from reasonable attemp	t at cosine rul	e
(b) (i)	sketch of parabola, positive x^2 , two positive zeros	M1	or $\frac{65.78 \pm \sqrt{\left[\left(-65.78\right)^2 - 4\right]}}{2(1)}$	(1)(600)]	
	10.94 54.84	B1 B1	SC1 for 10.9 and 54.8		
(ii)	54.84	1FT	FT <i>their</i> larger solution to (b)(i)	
(c)	1 hour 28 mins	3	M1 for (<i>their</i> (54.84 – 10.94 A1 FT for 1.46[3] If 0, B1 for decimal in hour and minutes		nto hours

			mn n				
Page 8		Scheme	Syllabus P. May				
	Cambridge IGCSE – October/November 2014 0607 41						
13(a)	42	1	Syllabus P. Muninginating cloud com				
(b)	3x + 7	2	B1 for $3(x + 3) - 2$				
(c)	$\frac{x+2}{3}$ oe	2	B1 for $y + 2 = 3x$ or $\frac{y}{3} = x - \frac{2}{3}$ or $x = 3y - 2$ or inverse flow diagram				
(d)	$\frac{1}{2x+1}$ final answer	3	B2 for $h(x) = (2x + 1)(x + 3)$ or SC1 for $h(x) = (2x + a)(x + b)$ where $ab = 3$ or $a + 2b = 7$ with <i>a</i> , <i>b</i> integers				