CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

BB CAMBRIDGE

Page 2		Mark Scheme		Syllabus
9		IGCSE – October/November	2013	0607
				734
1	(a) (i)	5272.65 (allow 5270, 5272 to 5273)	2	Syllabus 0607 M1 for 8000×0.92^5 oe M1 for $8000 \times 0.92^n = 4000$ oe or SC1 for 9 or 8 31 or 8 312 to 8 313
	(ii)	4 (allow 3.31, 3.312 to 3.313) nfww	2	M1 for $8000 \times 0.92^n = 4000$ oe or SC1 for 9 or 8.31 or 8.312 to 8.313
	(b) (i)	72.3 (72.30 to 72.31)	2	M1 for 235 ÷ 3.25 oe
	(ii)	8.38 (8.382 to 8.383)	1	
2	(a) (i)	Triangle at $(1, -1)$, $(4, -1)$, $(4, -2)$	2	SC1 for reflection in y-axis
	(ii)	Triangle at (-1, -1), (-1, -4), (-2, -4)	2 FT	FT SC case only SC1 for anti-clockwise rotation of 90° about (0, 0)
	(iii)	Reflection $y = -x$ oe	B1FT B1FT	FT the transformation FT full description B's independent but both marks lost if more than one transformation stated
	(b)	Enlargement (or reduction) (0, 2) [factor] 0.5	B1 B1 B1	B's independent but all 3 marks lost if more than one transformation stated No ratios
3	(a)	147 nfww	4	B3 for $[A =]$ 31.9 to 32.1 nfww or M2 for [cos angle $A =]$ $\frac{346^2 + 493^2 - 271^2}{2 \times 346 \times 493}$ oe or M1 for correct implicit expression with angle A
	(b)	4.52 (4.519 to 4.520)	3	M2 for $0.5 \times 4.93 \times 3.46 \times \sin(their A)$ oe e.g. $0.5 \times 493 \times 346 \times \sin(their A) \div 100^2$ or use of Hero's formula or M1 for scale correctly applied or correct use of $0.5ab \sin C$ or correct use of Hero's formula figs 4519 to 4520 imply M1

		"h	1-2-0/
Page 3	Mark Scheme	Syllabus	2
	IGCSE – October/November 2013	0607	12 3.
-			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

			Ox.
4 (a) (i)	7.21 (7.211) or $2\sqrt{13}$	3	M2 for $\sqrt{14^2 - 12^2}$ or M1 for $r^2 + 12^2 = 14^2$ oe
(ii)	653 (653.2 to 653.5) or 208π	2FT	FT their (a)(i) M1 for $\frac{1}{3}\pi(their(a)(i))^2$ (12)
(b) (i)	317.1 to 317.2	2	M1 for $\pi(their(a)(i))(14)$
(ii)	185 (185.3 to 185.5)	3	M2 for $\frac{their(b)(i)}{\pi(14)^2} \times 360$ oe
			or M1 for $\frac{their(b)(i)}{\pi(14)^2}$ oe or correct
			implicit statement e.g.
			$\frac{x}{360} \times \pi \times 14^2 = 317 \text{ or } 317.1 \text{ to } 317.2$
5 (a) (i)	20	1	
(ii)	16	1	
(iii)	9	1	
(iv)	29	1	
(v)	180	2	M1 for 20 indicated e.g. on y-axis or SC1 for answer of 20
(b) (i)	60, 50	1, 1	
(ii)		2FT	FT their (b)(i) only if answers add to 110 M1 for at least 3 mid-values seen or implied
(iii)	2.67 (2.666 to 2.667) oe 12 5	1 1FT 1FT	FT their (b)(i) FT their (b)(i)
6 (a)		3	M1 for reasonable rectangular hyperbola shape A1 for asymptotes approximately $x = -2$ and $y = 2$ (soi) A1 for x-intersection positive and y-intersection negative
(b)	– 1.5 oe	1	Do not allow co-ordinates
(c)	1.5 oe	1	Do not allow co-ordinates
(d)	$x = -2, \ y = 2$	1,1	

						ny	1
Page 4		Mark Sche	me		Syllabus	· /2	
		IGCSE – October/No	vember 2013		0607	1/2	3.0
							Dr. Colon
(e)	-1.5	$\leq f(x) \leq 1.3$ oe	2	ends	t inequality at ei scores only 1 w in words but '		NSC/OUNT

			1	Q ₁
	(e)	$-1.5 \le f(x) \le 1.3$ oe	2	Strict inequality at either end ends scores only 1 Allow in words but "between -1.5 1.3" scores only 1 B1 for -1.5 and 1.3 seen or for $f(x) \ge -1.5$ or for $f(x) \le 1.3$
	(f) (i)	Reasonable $y = 3 - x$ added to sketch	1	
	(ii)	-3.54 (-3.541), 2.54 (2.541)	1, 1	
	(iii)	2x - 3 = (x + 2)(3 - x)	M1	Allow $2x - 3 = 3(x - 2) - x(x - 2)$ or $2x - 3 = x(3 - x) + 2(3 - x)$
		$[(x+2)(3-x)] = 3x - x^2 + 6 - 2x$	B1	Allow $x + 6 - x^2$
		$x^2 + x - 9 = 0$	E1	No errors or omissions
	(iv)	37	2	M1 for $b^2 - 4ac = 1^2 - 4(1)(-9)$ seen or $(x + \frac{1}{2})^2 - \frac{1}{4} = 9$ or better
7	(a)	5.66 (5.656 to 5.657) or $4\sqrt{2}$	3	M2 for $\sqrt{(5-1)^2 + (6-2)^2}$ oe or better or M1 for $5-1$ and $6-2$ (or $2-6$) soi
	(b)	x + y = 7 oe	3	M1 for gradient = $\frac{2-6}{5-1}$ oe
				M1 for using (1, 6) or (5, 2) in $y = mx + c$ oe
	(c) (i)	y = x	2 FT	M1 for gradient = $\frac{-1}{their\ gradient\ in\ (b)}$
	(ii)	(3.5, 3.5) oe cao	1	
8	(a)	25 - 4n oe	2	M1 for answer of $-4n+c$
	(b)	$3 \times 2^{n-1}$ oe	2	M1 for 3×2^q seen and with no other terms
	(c)	$\frac{n^2}{n+3}$ oe	2	B1 for fraction with either numerator or denominator correct
	(d)	$n^3 - n$ oe	4	M3 for comparing sequence with values of n^3 or $an^3 + bn^2 + cn + d$ with 4 values of n substituted correctly oe or M2 for attempting cubic expression oe or listing values of n^3 or M1 for reaching equal third differences

		W.	1-2 30/
Page 5	Mark Scheme	Syllabus	7
	IGCSE – October/November 2013	0607	3.

				Ox.
9	(a)	$\frac{5}{6}, \frac{1}{6}, \frac{9}{10}, \frac{1}{10}, \frac{3}{10}, \frac{7}{10}$ oe all correctly placed	3	B1 for each pair correctly place
	(b)	$\frac{48}{60}$ oe $(\frac{16}{20}, 0.8 \text{ etc.})$	3	isw any cancelling or converting M2 for $\frac{5}{6} \times \frac{9}{10} + \frac{1}{6} \times \frac{3}{10}$ or M1 for one of the products by itself
	(c)	Fine weather but Alex does not go to the beach	1	
10	(a)	x + 3x + 6x = 180 or $10x = 180$	B1	
		x = 18	B1	
		angles in the same segment oe	B1	Allow angles subtended by the same arc or same chord
	(b) (i)	similar	1	No alternatives
	(ii)	3[.00] or 2.990 to 3.002	2	M1 for $\frac{8.55}{9.23} = \frac{2.78}{BX}$ oe allow s.f = 1.08 or 1.079 to 1.080
	(iii)	0.86	2	M1 for $\left(\frac{8.55}{9.23}\right)^2$ oe (implied by 0.857 to 0.859 or 1.16 to 1.17) or $\frac{0.5 \times 2.78 \times 8.55 \sin 54}{0.5 \times their BX \times 9.23 \sin 54}$ $\left(\frac{9.61476.}{11.2008}\right)$
11	(a)		2	M1 for shape A1 for through $(1, 0)$ and positive y-values approx. double those on $\log x$ graph

			4 1
Page 6	Mark Scheme	Syllabus	2
	IGCSE – October/November 2013	0607	12 3.
		·	Dx. Colo

		1	Pr. O.
(b)	$\log(x^5) = \log(16) \text{ or } x^5 = 16 \text{ or}$ $\log x^3 = \log\left(\frac{16}{x^2}\right) \text{ or } x^3 = \frac{16}{x^2} \qquad \text{or}$ appropriate sketch	M2	M1 for using a rule of logarith correctly
	1.74 (1.741) or $\sqrt[5]{16}$ or $2^{0.8}$ oe	B1	
(c)	$y\log 5 = \log 100 \text{ or } y = \log_5 100 \text{ or } \frac{\log 100}{\log 5}$	M1	e.g. for sketch $y = 5^x$ with $y = 100$
	or sketch 2.861	B2	B1 for 2.86 or 2.8613 to 2.8614
(a)	$10x^2 + \frac{1}{2}\pi x^2$ oe final answer	2	B1 for $10x^2$ or $\frac{1}{2}\pi x^2$ seen
(b)	$A = x^2 (10 + \frac{1}{2}\pi)$ or $2A = x^2 (20 + \pi)$	3	M1 for correctly taking x^2 as a factor from two terms, one containing π
	$x^2 = \frac{A}{10 + \frac{1}{2}\pi}$ or $\frac{2A}{20 + \pi}$		M1 for correct division by other factor which has two terms and no <i>x</i> in it
	$\sqrt{\frac{A}{10 + \frac{1}{2}\pi}}$ or $\sqrt{\frac{2A}{20 + \pi}}$ final answer		M1 for correct square root to give x
(c)	4.16 (4.157 to 4.158) cao	B1	
(a) (i)	(2x+1)(x-1)	2	SC1 for $(ax+1)(bx-1)$ where $ab = 2$ or $b-a = -1$ or for answer $x = -\frac{1}{2}$, $x = 1$ but only from factors
(ii)	$\frac{8x+5}{(2x+1)(x-1)}$ oe final answer	3	B2 for $8x + 5$ seen or M1 for $x - 1 + 4(2x^2 - x - 1)$ or better seen e.g. $1 + 4(2x + 1)$
			B1 for denominator $(2x+1)(x-1)$ oe in final answer
(b)	$\frac{p-5q}{1-t}$ oe nfww final answer	4	B1 for $(p+5q)(p-5q)$ B2 for $(p+5q)(1-t)$ or B1 for $p+5q-t(p+5q)$ or $p(1-t)+5q(1-t)$
	(c) (d) (c) (d) (ii)	$\log x^{3} = \log\left(\frac{16}{x^{2}}\right) \text{ or } x^{3} = \frac{16}{x^{2}} \text{ or appropriate sketch}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $y\log 5 = \log 100 \text{ or } y = \log_{5} 100 \text{ or } \frac{\log 100}{\log 5}$ or sketch 2.861 (a) $10x^{2} + \frac{1}{2}\pi x^{2} \text{ oe final answer}$ (b) $A = x^{2}(10 + \frac{1}{2}\pi) \text{ or } 2A = x^{2}(20 + \pi)$ $x^{2} = \frac{A}{10 + \frac{1}{2}\pi} \text{ or } \frac{2A}{20 + \pi}$ $\sqrt{\frac{A}{10 + \frac{1}{2}\pi}} \text{ or } \sqrt{\frac{2A}{20 + \pi}} \text{ final answer}$ (c) $4.16 \ (4.157 \text{ to } 4.158) \text{ cao}$ (d) $(2x + 1)(x - 1)$ (ii) $\frac{8x + 5}{(2x + 1)(x - 1)} \text{ oe final answer}$ (b) $\frac{p - 5q}{1 - t} \text{ oe nfww}$	$\log x^{3} = \log\left(\frac{16}{x^{2}}\right) \text{ or } x^{3} = \frac{16}{x^{2}} \text{ or appropriate sketch}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1.74 \ (1.741) \text{ or } \sqrt[5]{16} \text{ or } 2^{0.8} \text{ oe}$ $1000000000000000000000000000000000000$