hun man hall

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/04

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		nn	
Page 2	Mark Scheme	Syllabus '%	7
	IGCSE – October/November 2012	0607	3.0
<u> </u>			

				PH, OX
1	(a)	50	1	Pathschoud
	(b)	2	1	90
	(c)	1.88 o.e.	1	Seen and not spoiled
	(d)	3	1	
	(e)	6	1	
	(f)	1	1	
2	(a) (i)	1.5 o.e.	1	
	(ii)	$200 \div (3+2) \times 3$ o.e.	1	If work backwards M1 for $3:2 = 120:80$ and for $120 + 80 = 200$, either order. Allow 5 for $3 + 2$.
	(iii)	129.6(0) final answer	2	M1 for $\frac{120 \times 4 \times 2}{100}$ o.e. (9.6)
	(iv)	86.44 (or 86.4(0) or 86.444 to 86.445)	2	M1 for 80(1.0395) ² o.e. not spoiled
	(v)	1.0395 ² = 1.08056 i.e. 8.056 interest > 8% o.e.	2	Any full and accurate explanation — will often use values from earlier working. Must compare interest with interest or amount with amount. If 0, M1 for method but lacking accuracy or full details and methods may be seen in (iii) and/or (iv). Use of different principals 0 (unless finding interest or amount as percentage of each principal)
	(b) (i)	19 440	2	M1 for 24 000 × 0.9 ² o.e. Allow 19 400 full marks
	(ii)	9	M1 A1	M1 for 24000 × 0.9 ⁿ = 10000 o.e. including repeated multiplication by 0.9 8.31 or 8.309 or 10330 to 10331 or 9298 imply M1 SC1 for answer 9 without working or without wrong working
3	(a) (i)	1947	4	M1 for $\frac{2}{3}\pi 4.8^3$, M1 for $\pi 4.8^2.23.7$, A1 for 1947 or 1950, B1 for <i>their</i> volume rounded to nearest cubic centimetre.
	(ii)	0.001947 (0.00195 or 0.001947)	1 FT	FT their (i) ÷ 100 ³
	(iii)	1.6[0] (1.596 to 1.599)	1 FT	FT <i>their</i> (ii) × 820

		nn	1
Page 3	Mark Scheme	Syllabus	
	IGCSE – October/November 2012	0607	(3. E)
•			

		I	1	P/X OX
	(b)	1.40 www	5	M1 for $2\pi 4.8^2$ (144.7 to 144.8 M1 for $\pi 9.6 \times 23.7$ o.e. (714.7 to or 715) M1 for $\pi 4.8^2$ (72.38 to 72.40) not subtracted M1 for \times 0.15 and \div 100 1.4 or 1.397 to 1.400 implies M4 figs 14 or 1397 to 1400 or total surface area = 931.4 to 932.4 or 296.64 π or 296.6 π or 297 π implies M3
4	(a)	72	2	M1 for 360 ÷ their (180 – 175) (not 175 or negative) or for $\frac{180(n-2)}{n} = 175$ o.e.
	(b) (i) (ii)	58 Clear explanation using correct vocabulary	3 2 FT	B1 for $x = 32$, M1 for $0.5(180 - 2 \text{ their } x)$ Allow on diagram
	()	supported by values in working or on diagram. allied o.e. angles not 180° , alternate angles not equal, corresponding angles not equal etc. e.g $74 + 96 \neq 180$, $74 \neq 64$ etc.		FT x only B1 for values of angles being used stated or seen in diagram.
	(c) (i)	75	1	Allow on diagram B1 for angle $CAB = 27$. Allow on diagram.
	(ii)	12	3	B1 for angle OAB or angle $OBA = 15$. Allow on diagram
5	(a)	16.9 (16.87)	2	M1 for $0.5 \times 7 \times 7.5 \sin 40$ Any other method must be complete Must see method if grads or radians used.
	(b)	4.98 (4.981)	3	M1 for $7^2 + 7.5^2 - 2 \times 7 \times 7.5 \cos 40$ A1 for 24.81 to 24.82 or 24.8 Must see method if grads or radians used.

		why.	
Page 4	Mark Scheme	Syllabus	7
	IGCSE – October/November 2012	0607	3.0
		1/2	

6 (a) 5 B1 for branch approx to left of correct shape B1 for branch approx to right of $x = 0$ correct shape B1 for branch approx to right of $x = 0$ correct shape B1 for branch approx between $x = -2, x = 3$ correct shape B1dependent if outside branches approach x -axis from above B1dependent if middle branch below x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis at ends x -axis x -axis Allow touching x -axis x -axis Allow touching x -axis Al	A.com	B1 for branch approx to left of correct shape	5		(a)	6
(c) $y \le -0.64$ $y > 0$ 3 M1 for finding max point, implied by -0.64 . condone < Allow $f(x)$ or x for y and ignore inclusion of -2 and/or 2 condone \ge (d) $y > 0$ 1 Condone \ge B1 for correct shape cutting x -axis y and y a		B1dependent if outside branches approach x-axis from above B1dependent if middle branch below x-axis Allow touching x-axis at ends				
$y > 0$ $-0.64. \text{ condone} < \text{Allow } f(x) \text{ or } x \text{ for } y \text{ and ignore inclusion of } -2 \text{ and/or } 2 \text{ condone} \ge$ $(e) (i)$ $1 \qquad \qquad$		B1 B1 B1	3	x = -2, x = 3, y = 0	(b)	
(e) (i) B1 for correct shape cutting x-axis B1dependent for nothing to left of		-0.64. condone < Allow f(x) or x for y and ignore	3		(c)	
B1 for correct shape cutting x-axis B1dependent for nothing to left of	ļ	Condone ≥	1	y > 0	(d)	
J-uxis			2		(e) (i)	
(ii) 0.225 (0.2249 to 0.2250), 4.08 (4.078) 2 B1 B1	ļ	B1 B1	2	0.225 (0.2249 to 0.2250), 4.08 (4.078)	(ii)	
(iii) 4.08 (4.078) 1 FT B1 FT their relevant root from (e)(ii)		B1 FT their relevant root from (e)(ii)	1 FT	4.08 (4.078)	(iii)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		(a) (i)	7
(ii)			1	\subset or \subseteq	(ii)	
(iii) ϕ or $\{$			1	φ or { }	(iii)	
(iv) U			1	U	(iv)	
(b) (i) t, u, v, w, x 1 Lists can be in any order		Lists can be in any order	1	t, u, v, w, x	(b) (i)	
(ii) t, w 1			1	t, w	(ii)	
(iii) l, m 1			1	l, m	(iii)	
$(iv) n, t, u, w, y \qquad \qquad 1$	1		1	n, t, u, w, y	(iv)	

		hun 1	
Page 5	Mark Scheme	Syllabus 2	
	IGCSE – October/November 2012	0607	
			w—

				Ox. Com
8	(a) (i) (ii)		1	line through approx $(0, 1)$ and $(1, 2)$ condone freehand line through approx $(0, 2)$ and $(1, 1\frac{2}{3})$ condone freehand
	(b)	(0.75, 1.75) o.e.	1	
	(c)	0.375 o.e.	2 FT	M1 for $0.5 \times (1) \times their 0.75$ o.e. FT their <i>x</i> -coordinate only
	(d)	y = -x + 2.5 o.e. (e.g. $2x + 2y = 5$) cao	3 FT	FT their (b) B1 for gradient = -1, implied by $y = -x + c$ M1 for correct use of their (0.75, 1.75) in linear equation e.g. $\frac{y - their 1.75}{x - their 0.75} = -1$ or their 1.75 = -1 (their 0.75) + c
9	(a)	330 (330.125, 330.1, 330.12, 330.13)	2	M1 for at least 3 mid-values soi (100, 250, 325, 375, 450)
	(b)	4 correct widths Heights 0.065, 0.19, 1.66, 1.4	1 3	B2 for 3 correct, B1 for 2 correct. Accuracy – touching line of 1.4 and $0.05 \le h < 0.1$, $0.15 < h \le 0.2$, $1.65 \le h < 1.7$ i.e. only touching nearest horizontal line. Condone freehand If no diagram, SC2 for 4 correct frequency densities.
10	(a)	$-4.37 (-4.372)$, 1.37 (1.372) or $\frac{-3 \pm \sqrt{33}}{2}$ o.e. Mark final answer	M1 B1B1	Full method e.g. graph showing intersections with <i>x</i> -axis or full explicit formula correctly applied No working can only score B1B1
	(b)	$x \le -4.37 (-4.372), x \ge 1.37 (1.372)$	2 FT	FT only if outside parts of a parabola. Condone <, >. Allow in words if clear. If B0, SC1 for region shown on sketch

		ny	
Page 6	Mark Scheme	Syllabus	7
	IGCSE – October/November 2012	0607	3.

		<u></u>		Dr. Car
11	(a)	19	2	B1 for $[g(2)] = 2^2 + 2 + 2$ soi
	(b)	$4x^2 + 14x + 14$ o.e. final answer	3	B1 for $[g(2)] = 2^2 + 2 + 2$ soi M1 for $(2x+3)^2 + (2x+3) + 2$ soi B1 for $(2x+3)^2 = 4x^2 + 6x + 6x + 9$ soi
	(c)	$\frac{x-3}{2}$ o.e. final answer	2	M1 for swapping x and y or $y-3=2x$ or $\frac{y}{2} = x + \frac{3}{2}$ i.e. correct first step
	(d) (i)	13	1	
	(ii)	-3	2	M1 for $2(2x+3)+3=2x+3$ or $f(x) = x$ or $2x+3=x$
12	(a) (i)	Reflection only, $y = -x$ o.e.	2	Extra transformations invalidate all marks
	(ii)	Stretch only, y-axis o.e. invariant, (factor) 3	3	B1 B1 B1 Extra transformations invalidate all marks
	(b)	Correct rotation	2	SC1 for rotation clockwise 90° about other point or 90° anti-clockwise about $(1, -1)$
13	(a) (i) (ii)	$\frac{10}{x+3}$ $\frac{10}{x+3} + \frac{4}{x} = 1 \text{ o.e.}$ $10x + 4(x+3) = x(x+3) \text{ or}$ $10x + 4x + 12 = x^2 + 3x \text{ o.e.}$ $x^2 - 11x - 12 = 0$	1 M1 E2	Final equation reached with at least 1 intermediate step with brackets or 5 terms without any errors or omissions E1 if one error or omission but still at least 1 intermediate step with brackets or 5 terms
	(b)	(x-12)(x+1)	2	SC1 for $(x+a)(x+b)$ where $ab = -12$ or $a+b=-11$ isw solutions
	(c)	40	2 FT	FT $10 \div (a \text{ positive } x + 3) \times 60 \text{ but } x$ from <i>their</i> factors . M1 for $10 \div (a \text{ positive } x + 3) \times 60 \text{ but}$ must be correct from (b) If two positive roots, allow either. If only negative roots M0

		hun 1	1
Page 7	Mark Scheme	Syllabus	
	IGCSE – October/November 2012	0607	
			•

14 (a) (i)		2	Translated by approx 60° to right B1 for translation of middle branch approx. 60° to right	OM
(ii)	Translation only $\begin{pmatrix} 60 \\ 0 \end{pmatrix}$ o.e.	B1 B1	B 's independent Allow in words e.g. 60 ^(o) to right	
(b)	$-120^{(\circ)}$, $60^{(\circ)}$ final answers	2	- 1 each incorrect extra but isw any answers outside domain SC1 for $(-120, \sqrt{3})$ and $(60, \sqrt{3})$ o.e.	