

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/21 May/June 2018

www.mymathscloud.com

Paper 2 (Extended) MARK SCHEME Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the May/June 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

IGCSE[™] is a registered trademark.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Cambridge IGCSE - Mark Scheme PUBLISHED

May/, Mymainscioud.com The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method marks, awarded for a valid method applied to the problem.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy А marks to be given, the associated Method mark must be earned or implied.
- В Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

Cambridge IGCSE – Mark Scheme PUBLISHED

0607/21	Cambridge IG(PU	CSE – Ma BLISHED	rk Scheme May/s Ma
Question	Answer	Marks	Partial Marks
1(a)	- 1	1	
1(b)	[0].1 or $\frac{1}{10}$	1	
2(a)	232 to 236	1	
2(b)	100	1	
2(c)	20	2	M1 for $\frac{360}{18}$ oe If 0 scored SC1 for 160 seen
3	[x =] 1[y =] - 2	2	B1 for each If 0 scored SC1 for correct substitution and evaluation to find the other variable
4(a)	$\frac{17}{25}$	1	
4(b)	$\frac{27}{56}$	2	M1 for $\frac{3}{7} \times \frac{9}{8}$ oe
5	$(n-2)^2$ oe	2	M1 for a quadratic expression
6(a)	$2p^2 - 5pq - 7q^2$ final answer	2	B1 for three terms of $2p^2 - 7pq + 2pq - 7q^2$ correct
6(b)	(1-a)(2-t) oe	2	M1 for $2 - t - a(2 - t)$ or $2(1 - a) - t(1 - a)$
7	[x =] 70 [y =] 110	2	B1 for each If 0 scored SC1 for <i>their</i> $x + their y = 180$
8	$\frac{36}{x^2}$	2	M1 for $y = \frac{k}{x^2}$ oe or $yx^2 = k$
9(a)	9	1	
9(b)	6 <i>h</i> ¹⁵	2	B1 for kh^{15} or $6h^k$
10	$\frac{u^2 - v^2}{2a} \text{ oe}$	2	M1 for correct rearrangement to isolate the <i>s</i> term or M1 for correct division by $2a$ or $-2a$
11		2	B1 for each

0607/21

Cambridge IGCSE – Mark Scheme PUBLISHED

0607/21	Cambridge IGCSE – Mark Scheme PUBLISHEDMay/sMay/sMay/sMarksPartial Marks $10\sqrt{7}$ 1				
Question	Answer	Marks	Partial Marks	Cloud.	
12(a)	$10\sqrt{7}$	1		COM	
12(b)	$\frac{7+\sqrt{2}}{47}$	2	M1 for $\frac{7+\sqrt{2}}{7+\sqrt{2}}$		
13	$\frac{t}{3+t}$ final answer	3	B1 for $t(3 - t)$ B1 for $(3 - t)(3 + t)$		
14(a)	$\frac{1}{2}$ or 0.5	1			
14(b)	44	2	M1 for correct use of $2\log 2 = \log 2^2$ oe or for correct use of $\log p + \log q = \log pq$		
15	$\frac{64}{12}$ oe	3	M1 for $\frac{x}{360} \times \pi \times 16 = \frac{4\pi}{3}$ oe M1 for $\frac{y}{360} \times \pi \times 8^2 = k\pi$ oe		
			OR M1 for $\frac{4\pi}{3}$ oe $k\pi$ x x^{2} $k\pi$		
			M1 for $\frac{k\pi}{8^2\pi}$ or $\frac{x}{360} \times \pi \times 8^2 = k\pi$ oe		