

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/62 May/June 2016

www.mymathscloud.com

Paper 6 (Extended) MARK SCHEME Maximum Mark: 40

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

		Syllabus P. Mainscioud.com
Page 2	2 Mark Scheme	Syllabus P. The State
	Cambridge IGCSE – May/June 2016	0607 62 475
Abbrevi		-cloud,
awrt	answers which round to	· on
cao	correct answer only	
den	dependent	

٦

Abbreviations

ſ

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

A	INVES	TIGATION		SUMS O	F CONSEC	CUTIVE IN	TEGERS
(Question	A	Answe	r		Marks	Part Marks
1		27				1	C opportunity
2	(a)	Sequence		Mean	Sum	5	B1 for each row
		5, 6, 7, 8, 9, 10	6	7.5	45	_ 3	
		10, 11, 12,, 40	31	25	775		C opportunity
		2, 3, 4, 5, 6, 7, 8	7	5	35		
		9, 10, 11, 12	4	10.5	42		
		4, 5, 6, 7, 8, 9, 10 OR 24, 25	7 2	7 24.5	49		
	(b)	add and divide by 2 oe				1	
3	(a)	100				1	
	(b)	$\frac{2k+99}{2}$ oe final answer				1	
	(c)	their (a) \times their (b) isw				1FT	50(2k+99) oe
4		number of terms $= n$				2	B1 for each statement
		mean = $\frac{2k+n-1}{2}$ or [mean =] $\frac{k+k+n-1}{2}$					
5	(a)	[2k +] n - 1 is even and even + even = even or ev	ven / 2	is an integ	ger	1	
	(b)	[2k +] n - 1 is odd and odd + even = odd or odd	/2 = .	. 5		1	

Page 3	Mark Scheme Cambridge IGCSE – May/Ju	Www.mymains Syllabus P. mains 0607 62 Part Marks	
Question	Answer	Marks	Part Marks
6 (a)	[1 and 84] 3 and 28 7 and 12 8 and 10.5 [12 and 7] [28 and 3] [84 and 1] [21 and 4] [4 and 21]	3	B1 for each pair, allowing reversed order
(b)	for any 2 correct sequences	1	27, 28, 29 9, 10, 11, 12, 13, 14, 15 7, 8, 9, 10, 11, 12, 13, 14
7	Any one of 32, 64, 128,	1	C opportunity
Communicati	on seen in one of 1, 2(a), 2(b), 7	1	

Mark Scheme Cambridge IGCSE – May/June 2016

Ρ	age 4	Mark Scheme		Syllabus	Pumar
		Cambridge IGCSE – May/June 2016		0607	62 %
	MODE	CLLING TRAFFIC FLOW			Mun Math
Q	uestion	Answer	Marks	Part Ma	
ļ	(a)	15	1	C opportunity	
	(b)	$\frac{1000x}{60 \times 60} $ oe	1		
		$\frac{1}{125}x^2 \text{ or } 0.008x^2 \text{ or } 8 \times 10^{-3} x^2 \text{ oe}$	2	M1 20 = $k 50^2$ or	better
;	(a)	1000 <i>x</i>	1		
	(b)	Numerator = distance in one hour Denominator = distance between cars oe	1		
	(c)	Correct shape	2	B1 for a curve with max turning point x -axis at $x = 60$ s C opportunity	t, above the
	(d)	1570 or 1572 to 1573	1FT	FT <i>their k</i> , 0.002	$\leq k \leq 0.8$
	(e) (i)	22.3 to 22.4 [km/h]	1FT	FT <i>their k</i> , 0.002	$\leq k \leq 0.8$
	(ii)	It is a low speed oe	1	Dependent on (e)	(i) < 45
	(f) (i)	decreases oe	1		
	(ii)	increases oe	1		

Page 5	Mark Scheme Cambridge IGCSE – May/June 2016	Syllabus P. M. 0607 62 Part Marks	
Question	Answer	Marks	Part Marks
(a)	$\frac{1000x}{4+0.556x} \text{ oe isw}$	1	C opportunity
(b)		1	correct shape, through $(0,0)$ implied, and reaching $x = 50$
(c)	$1000x = 7200 + (1800 \times their \ 0.556)x$ or $\frac{1000x}{1800} = their \ 0.556x + 4 \text{ (or better)}$	M1FT	FT $\frac{1000x}{4 + their 0.556x}$ only
	No, and <i>their</i> correct <i>x</i> given	A1	C opportunity
	or No, and correct working leading to " <i>x</i> is negative" or No, and correct working leading to an impossible equation		If <i>x</i> found then must be correct.
5	Anything which rounds to 35 [km/h]	1FT	FT their k, $0.002 \le k \le 0.1$ and $\frac{1000x}{4 + their 0.556x}$
Communicati	on in three of 1(a), 3(c), 4(a) and 4(c).	2	C1 if seen in two of them.