

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/42 May/June 2016

www.mymathscloud.com

Paper 4 (Extended) MARK SCHEME Maximum Mark: 120

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

		mm. m. m.
Page 2	2 Mark Scheme	Syllabus P. The State
	Cambridge IGCSE – May/June 2016	0607 42 41%
Abbrevi awrt	ations answers which round to	Syllabus P. Mathsus 0607 42 Cloud.com
cao den	correct answer only dependent	

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

(Question	Answer	Mark	Part Marks
1	(a)	Image at (5, 5), (7, 5), (6, 6), (5, 6)	2	If 0 scored SC1 for translation $\begin{pmatrix} 3 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ 4 \end{pmatrix}$
	(b)	Image at (-1, -2), (-1, -4), (-2, -3), (-2, -2)	2	If 0 scored SC1 for reflection in line $y = x$
	(c)	Image at (-2, 5), (-2, 7), (-3, 5), (-3, 6)	3	If 0 scored SC2 for 90° clockwise about (-2, 1) or SC1 for 90° anticlockwise about other centre
	(d) (i)	Enlargement [scale factor] 3 [centre] (2, 4)	B1 B1 B1	If combined transformations, all three marks lost
	(ii)	Stretch [factor] 2 <i>y</i> -axis oe invariant	B1 B1 B1	If combined transformations, all three marks lost
2	(a)	$\frac{630}{9} \times 5$ and $\frac{630}{9} \times 4$ oe	M2	M1 for $630 \div 9$ [=70] or $\frac{5 \times 630 \text{ or } 3150}{9}$ or $\frac{4 \times 630 \text{ or } 2520}{9}$
	(b) (i)	120	3	M2 for 98.4[0] ÷ [0].82 oe or M1 for recognising 98.4[0] is 82%
	(ii)	69.5 or 69.51	3	M2 for $\frac{98.4[0]-30}{98.4[0]} \times 100$ oe or M1 for $\frac{98.4[0]-30}{98.4[0]}$ oe or $\frac{30}{98.4[0]} \times 100$ If 0 scored, SC1 for answer 75%
	(iii)	211.6[0] cao final answer	1	

			Syllabus P. M.
Page 3	Mark Sch	neme	Syllabus P. 72
	Cambridge IGCSE –	- May/June 2016	0607 42 diffe 75
	I.		
Question	Answer	Mark	Part Marks
(iv)	183	4	B3 for answers 182.8 or 182.84 to 182.85 or M2 for 150(1.02) ¹⁰ seen oe

				or $M2$ for $150(1.02)^{-1}$ seen oe
				or M1 for $150(1.02)^n$ seen oe
				where $n > 1$
	(c)	September or October 2035 nfww	5	B4 for 2035 or 19 years and 9 or 10 or 9.96 or 9.961 to 9.962 months nfww
				or B3 for 19.8 or 19.83 seen or M2 for $\frac{\log\left(\frac{500}{350}\right)}{\log(1.0015)}$ oe
				or $350 \times 1.0015^n = 500$ and at least two valid trials or sketch of appropriate graph
				or M1 for $350 \times 1.0015^{n} [= 500]$ or
				$350 \times \left(1 + \frac{0.15}{100}\right)^n [= 500]$
				If 0 scored SC2 for 24[.0] or 23.95 to 23.98 or 2.55 or 2.552 to 2.554 seen
3	(a) (i)	60	1	
	(ii)	8	2	B1 for [lq =] 56 or [uq =] 64
	(iii)	12	2	M1 for 188 seen
	(b)	68.6 or 68.57	3	M2 for 50 $\times \frac{2.4}{1.75}$ oe or M1 for <i>their</i> distance \div 1.75
				or B1 for distance = 120 or for 2.4 and 1.75 or 144 and 105 or 8640 and 6300 seen If 0 scored, SC1 for 77.2 or 77.24
4	(a)	24	3	M2 for $6w + 5(w + 30) = 414$ oe or better or B1 for $6w$ and $5(w + 30)$ oe
	(b)	$2x^2 + 4x - 7 = 0$ oe	B2	i.e. a correct simplified quadratic equation M1 for $x^2 + (x+1)(x+3)$ [=10] oe
		Sketch of appropriate graph or correct use of formula or completing square	M1 dep	Dep on a quadratic from addition of two areas. Must see some valid method
		4.48 or 4.49	B2	B1 for 4.484 to 4.485 or $6\sqrt{2} - 4$ or 1.12 or 1.121 or $1.5\sqrt{2} - 1$

Page 4	Mark Scheme	Syllabus	Put
	Cambridge IGCSE – May/June 2016	0607	42

	Page 4	Mark Scheme		Syllabus P. M.
l dgo l		Cambridge IGCSE – May/Jur	0607 42 9th Sci	
Ç	Juestion	Answer	Mark	Syllabus P. Mynainschor 0607 42 anschor Part Marks
5	(a)	Any 2 of the following		
		Angle ADX = Angle BCX and same segment oe Angle DAX = Angle CBX and same segment oe Angle AXD = Angle BXC and vertically opp oe	2	B1 for one of the three pairs or for at least two pairs of angles without reasons or with incorrect reasons
	(b)	7.5 oe	2	M1 for $\frac{2}{3} = \frac{5}{BX}$ oe
	(c)	67.2 or 67.20 to 67.21 nfww	3	M2 for [cos =] $\frac{2^2 + 5^2 - 4.61^2}{2 \times 2 \times 5}$
				or M1 for $4.61^2 = 2^2 + 5^2 - 2 \times 2 \times 5 \cos(AXD)$
6	(a)	Correct sketch		
			2	M1 for shape i.e. starting at origin then one maximum then one minimum A1 for two zeros to right of $x = 10$ and to the left of $x = 20$
	(b)	13.4 or 13.41 to 13.42 19[.0] or 18.97	1 1	
	(c)	(9.49, 1) or (9.486 to 9.487, 1)	B1 B1	
	(d)	(16.4, -1) or (16.43, -1)	B1 B1	
	(e)	$-1 \leq f(x) \leq 1$	1	
	(f)	Correct sketch of parabola shape from	B 1	
		approximately $y = -1$ 5.48 or 5.477	B1	
7	(a) (i)	576 or 575.8 to 576.0	3	M1 for $\frac{2}{3}\pi \times 5^3$ (262 or 261.7 to 261.8)
				M1 for $\frac{1}{3}\pi \times 5^2 \times 12$ (314 or 314.1 to 314.2)
	(ii)	0.547 or 0.5470 to 0.5472	2FT	FT <i>their</i> (a)(i) M1 for <i>their</i> (a)(i) × 0.95 ÷ 1000
	(iii)	1827 or 1828	2FT	 FT with consistent units usual accuracy and truncated M1 for 1000 ÷ <i>their</i> (a)(ii)

				Syllabus PL Mu Mu
	Page 5	Mark Scheme Cambridge IGCSE – May/Ju	ne 2016	Syllabus P. 173 345 3
				Cloud
	Question	Answer	Mark	Part Marks
	(iv) (b)	361 or 361.2 to 361.3 5.37 or 5.369	4	M1 for $2\pi \times 5^2$ (157 or 157.0 to 157.1) M2 for $\pi \times 5 \times \sqrt{5^2 + 12^2}$ (204 or 204.2) or M1 for $\sqrt{5^2 + 12^2}$ (13) M4 for $\sqrt{\frac{377}{\pi(1 + \sqrt{10})}}$
				$\sqrt[4]{\pi(1+\sqrt{10})}$ or M3 for $\frac{377}{\pi(1+\sqrt{10})}$ or M2 for $\pi r^2 + \pi r \left(\sqrt{(3r)^2 + r^2}\right) = 377$ or M1 for $r^2 + (3r)^2$ oe
8	(a)	[<i>a</i> , <i>b</i> , <i>c</i> =] -2, 1, 2	1, 1, 1	In any order
		[d=] 0	1	
	(b)	- 1	1	
	(c)	- 1	1	
	(d)	Parabola vertex downwards and vertex below <i>x</i> -axis	M1	
		Cuts given graph in 5 places	A1	
9	(a)	11	1	
	(b)	$\frac{7}{23}$ oe	1	
	(c)	$\frac{110}{182}$ oe	3	M2 for $\frac{their(a)}{their(a)+3} \times \frac{their(a)-1}{their(a)+2}$ or M1 for a single product of two fractions with first fraction $\frac{their(a)}{their(a)+3}$
	(d)		1	

Page 6	Mark Scheme	Syllabus	P
	Cambridge IGCSE – May/June 2016	0607	42

ſ	Page 6	Mark Scheme Cambridge IGCSE – May/		Syllabus P. M. 0607 42 42 Part Marks B1 for [f(7) =] 12 12
Q	Juestion	Answer	Mark	Part Marks
10	(a)	31	2	B1 for $[f(7) =]$ 12 or M1 for $2(x^2 - x - 30) + 7$
	(b)	$\frac{x-7}{2}$ oe	2	M1 for $y - 7 = 2x$ or $x = 2y + 7$ or $\frac{y}{2} = x + \frac{7}{2}$
	(c)	(2x+13)(2x+1) final answer	3	B2 for $(2x+7+6)(2x+7-6)$ or for $4x^2 + 28x + 13$ or M1 for $(2x+7)^2 - 36$
	(d)	$\frac{x+5}{x+6}$ final answer nfww	4	B2 for $(x - 6)(x + 5)$ or SC1 for $(x + a)(x + b)$ where ab = -30 or $a + b = -1$
				and B1 for $(x + 6)(x - 6)$
11	(a)	5.4[0] or 5.396	2	M1 for $\tan 34 = \frac{AB}{8}$ oe or better
	(b)	20.4 or 20.38 nfww	5	B1 for angle $D = 146$
				M2 for $[\sin C =] \frac{8\sin(theirD)}{19}$ or M1 for $\frac{8}{\sin C} = \frac{19}{\sin(theirD)}$ oe A1 for $[\text{angle } C =]$ 13.6 or 13.61 to 13.63 OR B1 for angle $A = 56$ M2 for $[\sin C =] \frac{their AB \times \sin(theirA)}{19}$ or M1 for $\frac{their AB}{\sin C} = \frac{19}{\sin(theirA)}$ oe A1 for $[\text{angle } C =]$ 13.6 or 13.61 to 13.63
	(c)	48[.0] or 48.1 or 48.04 to 48.12 cao	2	M1 for $0.5 \times their(a) \times 19 \times sin(90 + their(b))$ oe
12	(a)	n^3 cao	1	
	(b) (i)	392	2	B1 for second differences 14, 20, 26 and 32
	(ii)	$n^3 + n^2$ oe	2	M1 for cubic expression but not n^3 or kn^3 only