

CAMBRIDGE INTERNATIONAL EXAMINATIONS

MARK SCHEME for the May/June 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/43

Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Syllabus P. Mainscioud.com
Page 2	2 Mark Scheme	Syllabus P. The Tage
	Cambridge IGCSE – May/June 2015	0607 43 43
		-vloud.co.
Abbrevi	ations	n.
cao	correct answer only	

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied

1	(a)	13 h 35 mins or 13 h 34.8 to 35 mins	3	M1 for 11585 ÷ 852.9 A1 for 13.58
	(b)	[0]7 50 oe	2	B1 for 13 50 or 17 20 or 25 50
	(c)	825 or 825.0 to 825.1	3	B1 for 28.08 hours or $28\frac{5}{60}$ oe M1 for 23170 ÷ <i>their</i> 28.08
2	(a) (i)	Triangle (-1, 1), (-1, 2) (-3, 1)	2	SC1 for rotation 90° clockwise about (0, 0) or rotation 90° anticlockwise about another point
	(ii)	Triangle (-1, -1), (-1, -2), (-3, -1)	2FT	FT <i>their</i> (i) or SC1FT for reflection in $x = 0$
	(iii)	Reflection $y = -x$	1 1	
	(b)	Stretch [stretch factor] 3 Invariant line $x = 0$ oe	1 1 1	
3	(a) (i)	74.4[0]	2	M1 for 80 × 0.93 oe
				or SC1 for 18.4[0]
	(ii)	21.7 or 21.73 to 21.74	4	M1 for 80×0.88 oe A1 for reduction = \$4
				M1A1 implied by 70.4[0] or 14.4[0]
				M1 for $\frac{their \text{ reduction}}{18.4} \times 100$
	(b) (i)	132.5[0]	2	M1 for 143.1 ÷ 1.08
	(ii)	2.33 or 2.332	2FT	M1 for $22 \times (1.431 - their 1.325)$ oe

				mm. B. M.
Pa	ige 3	Mark Sche		Syllabus P. That Star
		Cambridge IGCSE – N	lay/Jun	e 2015 0607 43 The start of the second
4	(a)	(-4, 11)	1, 1	$ \frac{5 \text{ yllabus } P_{\bullet} \text{ mains cloud}}{0607 \text{ 43}} $ e 2015 or M1 for $\begin{pmatrix} 2 \\ 7 \end{pmatrix} + \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ or SC1 for (8, 3)
	(b)	7.21 or 7.211 or $2\sqrt{13}$	2	M1 for $\sqrt{4^2 + 6^2}$
	(c)	$y = -\frac{2}{3}x + 4 $ oe	2	B1 for gradient = $-\frac{2}{3}$ or SC1 for $y = mx + 4$
	(d)	(3, 2)	1	
	(e)	$y = \frac{3}{2}x - \frac{5}{2}$ oe	3	M1 for grad = $\frac{-1}{their}$ gradient M1 for subs of <i>their</i> (d) into $y = mx + c$ oe
	(f)	Kite	1	
5	(a)	$ \begin{array}{c} x(40-2x)(30-2x) \\ 1200-80x-60x+4x^2 \end{array} $	2 1	or B1 for $40 - 2x$ or $30 - 2x$ indep
	(b)		2	B1 for any cubic curve $(+x^3)$ with max & min
	(c)	2.19 or 2.192 10 22.8 or 22.80 to 22.81	1 1 1	
	(d)	22.8 would produce negative width/length	1	oe
	(e)	3030 or 3032 to 3032.3	1	
		28.7 or 28.68 to 28.69 or 18.7 or 18.68 to 18.69	1	
6	(a) (i)	4 <i>n</i> – 2	2	B1 for $4n + k$
	(ii)	$(4n-2) \times 10^{(n+1)}$ oe	1FT	<i>their</i> (a) $\times 10^{(n+1)}$
	(b) (i)	$2 \times 10^{[1]}, 2 \times 10^{-1}, 2 \times 10^{-3}, 2 \times 10^{-5}$	2	B1 for 2 correct or 2×10^{-3} , 2×10^{-1} , $2 \times 10^{[1]}$, 2×10^{-3}
	(ii)	$(2n-1) \times 10^{(3n-2)}$	3	B1 for $2n - 1$ B2FT for $10^{(3n-2)}$ or M1 for $10^{(n+1)-(3-2n)}$ FT dep on (a)(ii) in correct form

Dogo	- 4	Mark Scheme			Syllabus	W. M. M.	
Page	e 4	Cambridge IGCSE – N		2015	Syllabus 0607	43 ath	
7 (a	ı)	86 [.0] or 86.03 to 86.04	2	M1 for $\frac{AB}{150} = \cos 55$ of	e	MMN. MY P. Mathso	
(b))	246° or 245.5 to 245.6	4	M2 for $[\cos =] \frac{120^2 + 2}{2 \times 10^2}$	$\frac{150^2 - 235^2}{120 \times 150}$	(120.6)	
				$\begin{array}{c} \text{or W1 for} \\ 235^2 = 120^2 + 150^2 - 2 \end{array}$	×120×150cc	rs heta	
				M1 for 125 + <i>their</i> 120.	.6		
(c	2)	13 000 or 13 030 to 13 035	3	M2 for $\frac{1}{2} \times 150 \times their8$			
				$+\frac{1}{2} \times 120 \times 150 \times \sin(th)$	eirDAC) oe		
				or M1 for 1 of above as 5285 or 7746	reas soi by 52	283 to	
8 (a	ı)	6.8 or 6800	2	M1 for clear evidence of figs 68	of midpoints	used soi by	
(b))	Correct plotting 7 correct points and drawing smooth curve	5	All FTS dep on increas B2 for correct cfs seen or SC1 for correct cfs v	8, 29, 60, 83	, 93, 98, 100	
				B1FT for 7 corrects he B1FT for points plotter B1 dep FT for smooth increasing and depende	d at 5, 6, 7, 8 a curve depen	dent on	
(c	:) (i)	10	2FT	B1 dep for 90 FT depe curve	endent on inc	reasing	
	(ii)	1600 to 1900	2FT	B1dep FT for 5.8 (or 5 seen or answer 1.8 dep curve			
9 (a	a) (i)	$\frac{x}{x+40} = \frac{15}{20}$ oe	1				
		$20x = 15x + 40 \times 15$ oe	1	Accept 600 for 40×15	i		
	(ii)	121 or 120.9 or $15\sqrt{65}$	2	M1 for $\sqrt{120^2 + 15^2}$			
	(iii)	40.3 or 40.24 to 40.35 or $5\sqrt{65}$	2FT	M1 for <i>their</i> (a)(i) $\times \frac{4}{12}$	$\frac{0}{20}$ oe		

				mm. m. m.
Pa	Page 5 Mark Schem Cambridge IGCSE – Mark			Syllabus P. May
				e 2015 0607 43 3
	(b) (i)	38 700 or 38 740 to 38 752	3	$ \frac{5 \text{ yllabus } P_{\text{L}}}{6 2015} \frac{9 \text{ yllabus } P_{\text{L}}}{13 \pi \times 20^2 \times 160 - \frac{1}{3} \pi \times 15^2 \times 120} \text{ oe} $ or M1 for either $\frac{1}{3} \pi \times 20^2 \times 160$
	(ii)	5140 or 5139 to 5142	4	or $\frac{1}{3}\pi \times 15^2 \times 120$ M3FT for $\pi \times 20 \times (their (a)(ii) + their(a)(iii))$
			-	or M2FT for $\pi \times 20 \times (their (\mathbf{a})(\mathbf{i})) + \pi \times 15^2$ or M2FT for $\pi \times 20 \times (their (\mathbf{a})(\mathbf{i})) + \pi \times 15^2$ or M1 for for $\pi \times 15 \times (their (\mathbf{a})(\mathbf{i}))$ or M1 for for $\pi \times 20 \times (their (\mathbf{a})(\mathbf{i}))$ or $\pi \times 15 \times (their (\mathbf{a})(\mathbf{i}))$
10	(a)	6 4		
1	!	$\frac{6}{10}, \frac{4}{10}$ oe	1	
	ļ	$\frac{4}{9}, \frac{3}{9}, \frac{2}{9}$ correctly positioned twice	1	
	(b) (i)	$\frac{18}{90} \text{ oe}$	2	M1 for $\frac{6}{10} \times \frac{3}{10}$
	(ii)	$\frac{24}{90}$ oe	3	M2 for $\frac{6}{10} \times \frac{2}{9} + \frac{4}{10} \times \frac{2}{9}$
	ļ			or M1 for one of above products
	(iii)	$\frac{64}{90}$ oe	3	M2 for $1 - their$ (b)(i) $-\frac{4}{10} \times \frac{3}{9}$ oe
				M1 for one of $\frac{6}{10} \times \frac{4}{9}$, $\frac{6}{10} \times \frac{2}{9}$, $\frac{4}{10} \times \frac{4}{9}$, $\frac{4}{10} \times \frac{3}{9}$
11	(a)		3	M1 Basic shape A1 RH branch cuts both +ve axes A1 asymptotes approximately right with no overlap
	(b)	$\begin{array}{l} x = -3\\ y = -2 \end{array}$	1 1	
	(c)	$-2 < y \le \frac{1}{3}$	2	May be separate, B1 for either

						mm. m.	
Pa	age 6	Mark Scheme			Syllabus	Put na tota	
		Cambridge IGCSE – I	May/June	2015	0607	43 The 's	
	(d)		2	Correct shape B1 for reflection of any		hww.mymainscioud.con	3
	(e)	-4.75 -2.125 or -2.12 or -2.13	1 1				
12	(a) (i)	-2	1				
	(ii)	-7	1FT				
	(b) (i)	6-6x oe	2	B1 for $4 - 2(3x - 1)$			
	(ii)	$\frac{4-x}{2}$ or $2-\frac{x}{2}$ oe	2	B1 for $x = 4 - 2y$ or $2x$	x + y = 4		
	(iii)	$\frac{11-13x}{(3x-1)(4-2x)}$	3	M2 for $\frac{2(4-2x)-3(3x)}{(3x-1)(4-2x)}$	$\left(\frac{x-1}{2x}\right)$		
				or B1 for $2(4-2x)-3$	(3x-1)		
				or SC2 for $\frac{5-13x}{(3x-1)(4-x)}$	$\overline{2x)}$		
				or M1 for common den	nominator (32	(x-1)(4-2x)	