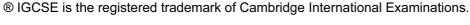
www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS


0607/42 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

				23. 3
Page	2 Mark	Scheme	Syllabus	P. Mary
	Cambridge IGCS	SE – May/June 2015	0607	42 4/20 15
				SC/OUT
bbrevia	ations			,.co.
10	correct answer only			COM
n	denendent			

Abbreviations

correct answer only cao

dependent dep

follow through after error FTignore subsequent working isw

or equivalent oe Special Case SC

nfwwnot from wrong working

seen or implied soi

		1			
1	(a)	(i)	40 000	3	M2 for 76 000 ÷ 1.9 oe or M1 for 76 000 = 190% oe soi
		(ii)	521 284 cao	3	M2 for 76000×1.9^3 or 40000×1.9^4 oe or M1 for 76000 (or <i>their</i> 40000) $\times 1.9^k$, $k \neq 1$ oe seen
	(b)		2035	2	M1 for 76 000 (or their (a)(i) or their (a)(ii)) $\times 1.9^k$ = (or $>$ or \ge) 10 000 000 seen $k \ne 1$ or evidence of at least 2 correct trials
2	(a)		Rotation [Anticlockwise] 90° oe [About] (0, 0) oe	1 1 1	Combinations of transformations – lose all 3 marks
	(b)		$\binom{7}{k}$	1	any k
			$y = \frac{1}{2}k + 3$	1	Must be $\frac{1}{2}$ their k from vector
	(c)		Triangle at (1, 2), (2, 2), (1, 6)	2	SC1 for stretch s.f. 2 with $y = 1$ invariant or triangle at $(2, 1)$, $(4, 1)$, $(2, 3)$ i.e. y -axis invariant
3	(a)		82.8 or 82.83	3	B1 for 9 h 25 m oe or 9.417 oe or 565 [min] M1 for 780 ÷ 9.416 (or <i>their</i> 9 h 25m converted to h)
	(b)		58.2 or 58.23 to 58.24 cao	3	M1 for 520 ÷ 105
					M1 for <i>their</i> 9.41666 – <i>their</i> (520 ÷ 105) or for <i>their</i> 565 – <i>their</i> 520 ÷ 105 × 60
	(c)		99.96 cao	4	M2 for $\frac{520}{100} \times 6 + \frac{their260}{100} \times 8$ soi by 52 or $31.2 + 20.8$
					or M1 for either, soi by 31.2 or 20.8
					M1 for <i>their</i> 52 × 1.63 soi by 84.76

		V. 13,	3
Page 3	Mark Scheme Sylla	bus Pa	To Take
	Cambridge IGCSE – May/June 2015 060		Although the
			_ ~~

4	(a) (b)	Good curve with x intercept reasonably placed and maximum reasonably placed on y -axis and minimum in 1st quadrant $ \begin{array}{cccccccccccccccccccccccccccccccccc$	2 1 1	B1 for basic cubic shape (max before min) SC1 if answers reversed
	(c)	2 < k < 6	2FT	FT their y values from (b) SC1 for $2 \le k \le 6$ or for $2 < k < n$ or $n < k < 6$ or for $2 < k \le 6$ or $n \le k < 6$ or for $2 < k \le 6$ or $n \le k < 6$
	(d)	Rotational [Order] 2 [About] (1, 4)	1 1 1	
	(e)	$x^3 - 3x^2 + 4$ or $(x-2)(x-2)(x+1)$	1	
5	(a)	5 points plotted correctly	2	B1 for 3 or 4 correct
	(b)	Positive	1	Ignore comments on strength
	(c) (i)	63.6	1	
	(ii)	42	1	Accept 42 000
	(d)	1.04x - 24.4	2	or $a = 1.044$, $b = -24.41$ to -24.40 B1 for $y = ax + b$ with either a or b correct or SC1 for $[1.[0]]x - 24$
	(e)	58 800 or 58 790 to 59 150	1FT	FT from their equation

			- n 2 1
Page 4	Mark Scheme	Syllabus	P. O O
	Cambridge IGCSE – May/June 2015	0607	42 PH/SOL
			- C/

			1	Ou
6	(a)	150	2	M1 for $\sqrt{120^2 + 90^2}$
	(b)	$\tan^{-1}\frac{90}{120}$ oe	M1	i.e. trig ratio for any appropriate angle
		53.13 or 36.86 to 36.87 or 106.26	A1	or M1 [cos =] $\frac{150^2 + 150^2 - 180^2}{2 \times 150 \times 150}$ A1 0.28 oe
		73.739	A1	2×150×150
	(c)	25 300 or 25 270 to 25 281	3	M2 for $\frac{73.74}{360} \times \pi \times 150^2 + 2 \times \frac{1}{2} \times 120 \times 90$ oe or
				M1 for $\frac{73.74}{360} \times \pi \times 150^2$ or $2 \times \frac{1}{2} \times 120 \times 90$ oe
	(d)	6.74 to 6.75 or 7	3	M2 for <i>their</i> (c) \times 8 \times 2 \div 60 000 oe
				or M1 for <i>their</i> (c) × 8 × 2 ÷ figs 6 or <i>their</i> (c) × 8 ÷ 60 000 or <i>their</i> (c) × 2 ÷ 60 000
7	(a)	x = -1 ruled y = 2 ruled y = 2x - 3 ruled	1 1 2	B1 for line with gradient 2 or <i>y</i> -intercept –3
		3x + 5y = 30 ruled	2	B1 for line with negative gradient through (0, 6) or through (10, 0)
		Correct region clearly indicated cao	1	
	(b) (i)	6.5 to 6.7 cao	1	
	(ii)	7.2 to 7.6 cao	1	
8	(a) (i)	Any counted information	1	e.g. numbers in family, numbers of letters delivered, shoe sizes, marks in a test, number of cats, etc.
	(ii)	Any measured information	1	e.g. lengths, ages, masses, heights
	(b) (i)	160 165	1	
	(ii)	165 170	1	
	(iii)	166	2	M1 for at least 3 midpoints soi
	(iv)	Continuous information oe	1	e.g. lowest/highest anywhere between 150 and 155, using mid-points, grouped data, actual heights unknown, examples of values in an interval

			1.7h 324
Page 5	Mark Scheme	Syllabus	P. Mari Sth
_	Cambridge IGCSE – May/June 2015	0607	42 Althor 15
	-		

				0,
9	(a) (i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	Out
		$\begin{bmatrix} 11 & 11 & 11 \\ \frac{5}{10}, & \frac{2}{10}, & \frac{3}{10} \end{bmatrix}$	1	
	(b) (i)	$\frac{4}{121}$ oe	2	M1 for $\frac{2}{11} \times their \frac{2}{11}$
	(ii)	$\frac{32}{110}$ oe	3	M2 for $\frac{5}{11} \times their \frac{4}{10} + \frac{4}{11} \times their \frac{3}{10}$ oe
				or M1 for one of above products without incorrect extras
	(iii)	$\frac{189}{605}$ oe	3	M2 for $\frac{5}{11} \times their \frac{2}{10} + \frac{2}{11} \times their \frac{5}{11} + \frac{2}{11} \times their \frac{4}{11} + \frac{4}{11} \times their \frac{2}{10}$ oe
				or M1 for 2 of above products or one of $\left(\frac{5}{11} + \frac{4}{11}\right) \times their \frac{2}{10}, \frac{2}{11} \times \left(their \frac{5}{11} + their \frac{4}{11}\right)$
10	(a)	Correct curve with no overlaps at 60 and 240, <i>x</i> intercepts at approximately –30, 150, 330	3	B2 for 'correct' but with overlaps and/or inaccurate intercepts B1 for 1 branch correct
		-10+ -15- -20+		DI 101 I bitalion collect
	(b)	38.2 or 38.19 to 38.2 218 or 218.1 to 218.2	1 1	
	(c)	x = 60 $x = 240$	1 1	

			23, 3
Page 6	Mark Scheme	Syllabus	P. Thomas
	Cambridge IGCSE – May/June 2015	0607	42 4th
			~C/

				OL CONTRACTOR OF THE PROPERTY
	(d)	their (a) with negative y parts reflected in x-axis		
		20 y 15- 10- 5101520-	2FT	B1FT for 1 branch correct
11	(a) (i)	117 or 116.8	4	M2 for $\sin [\theta] = \frac{70 \sin 35}{45}$ oe
	(ii)	42.4 or 42.36 to 42.37	4	or M1 for $\frac{\sin \left[\theta\right]}{70} = \frac{\sin 35}{45}$ oe M1 for $180 - their \theta$ M2 for $\left[\cos \left[\theta\right]\right] = \frac{70^2 + 80^2 - 55^2}{2 \times 70 \times 80}$ or M1 for $55^2 = 70^2 + 80^2 - 2 \times 70 \times 80 \times \cos \left[\theta\right]$ A1 for 0.739 or 0.7388 or $\frac{8275}{11200}$ or $\frac{1655}{2240}$ or $\frac{331}{448}$
	(b)	21.1 to 21.3	2FT	M1 for $45\sin(145 - their (a)(i))$ oe
12	(a)	4 nfww	2	B1 for $\frac{6}{4+1}$ oe seen or M1 for $5\left(\frac{6}{4x+1}\right)-2$
	(b) (i)	$\frac{6}{20x-7}$ final answer	2	M1 for $\frac{6}{4(5x-2)+1}$
	(ii)	$\frac{x+2}{5}$ oe final answer	2	M1 for $y + 2 = 5x$ or $x = 5y - 2$ or $\frac{y}{5} = x - \frac{2}{5}$ or better
	(c) (i)	$\frac{1}{x+1}$ final answer	3	M2 for $\frac{5x-2}{(5x-2)(x+1)}$ oe or M1 for $\frac{5x-2}{(5x+a)(x+b)}$ oe where $ab = -2$
				(5x + a)(x + b) or $a + 5b = 3$ or SC1 for $(5x - 2)(x + 1)$ seen

			.3. 2
Page 7	Mark Scheme	Syllabus	P. Lynn
	Cambridge IGCSE – May/June 2015	0607	42 PHy 195

	(ii)	$\frac{26x-13}{(4x+1)(5x-2)}$ oe final answer	3	M1 for common denominator $(4x + 1)(5x - 2)$ soi M1 for $6(5x - 2) - (4x + 1)$ oe
13	(a)	ABF = DEF (alternate angles) BAF = EDF (alternate angles) AFB = DFE ([vert] opposite angles)	1+1	One mark for first fully correct and one for second fully correct. or B1 for any 2 pairs of angles <u>identified</u> without a reason or with an incorrect reason
	(b) (i)	4.8 oe	3	Method 1 Triangles ABF, CEB [where $x = AB$] M2 for $\frac{10}{6} = \frac{8}{x}$ oe or M1 for $\frac{BC}{AF} = \frac{EC}{AB}$ oe Method 2 Triangles ABF, DEF [where $x = AB$] M2 for $\frac{8-x}{x} = \frac{4}{6}$ oe or M1 for $\frac{FD}{AF} = \frac{ED}{AB}$ oe Method 3 Triangles EFD, EBC [where $y = ED$] M2 for $ED = 3.2$ or M1 for $\frac{BC}{FD} = \frac{EC}{ED} \left[= \frac{10}{4} = \frac{8}{y} \right]$ oe
	(ii)	$\frac{4}{9}$ oe $\frac{4}{20}$ oe	1	
	(iii)	$\frac{4}{30}$ oe	2	M1 for Area of $ABF = \frac{3}{10}$ Area of $ABCD$ or ratio of EFD to $EBC = 4:25$ oe soi or correct use of $\frac{1}{2}ab\sin C$ or e.g. $\frac{\frac{1}{2} \times theirED \times 4}{10 \times theirDC}$