

MARK SCHEME for the May/June 2014 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/41 Paper 4 (Extended), maximum raw mark 120

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme Syllabus Pap. 47				MMM. M. M.
	Page 2	Mark Scheme	Syllabus	Pap. The Mar
		IGCSE – May/June 2014	0607	41 4/2,000

	Page 2	Mark Scheme			Syllabus	Paper	19 KJ @	
		IGCSE – May/June	2014	0607 41			Se an	
							-loug	
1	(a)	(1,-4)	1			Pap Thaihs	COM	
	(b)	(-1, -4)	1					
	(c)	(x, -y)	2	B1 for each	h coord			
	(d)	Reflection <i>x</i> -axis oe	1 1	Any indica scores 0.	Any indication of second transformation scores 0.			
2	(a)	$\begin{pmatrix} 6\\ -2 \end{pmatrix}$	1					
	(b)	$-\frac{1}{3}$ oe	1					
	(c)	$-\frac{1}{3}x + 5$ oe	2FT	B1 for mx	b) + 5 or (<i>their</i> (b))x <i>their</i> (b) + 5	+ k or		
	(d)	(9, 10)	2	B1 for each	h coordinate			
	(e)	(15, 8)	2	B1 for each	h coordinate			
	(f)	8	1					
3	(a)	BCA	1	Must be in	this order		1	
	(b)	4.2	3		x = 42 - 3.5x or bett	ter or		
				$x = \frac{3.5}{10} \times 1$	2 oe			
					$\frac{5}{5} = \frac{x}{12 - x}$ oe or $\frac{x}{12}$	$=\frac{3.5}{10}$ oe		
	(c)	24.1 or 24.13 to 24.14	2	M1 for $\left(\frac{6}{3}\right)$	$\left(\frac{.5}{.5}\right)^2$ or $\left(\frac{3.5}{6.5}\right)^2$			

							www.n	
	Pa	ge 3	Mark Scheme	•		Syllabus	Pap	Math S
			IGCSE – May/June	2014		0607	41	Sec. 10
4	(a)		129	1			Pap Nath	-loud.com
		(ii)	309	1FT	270 < answ		y if	
	(b)		41.6 or 41.60 to 41.61	2		$B = \frac{4.23}{6.37}$ oe		
	(c)		4.92 or 4.915 to 4.916	3	A1 for 24.2	M1 for $4.23^2 + 7.42^2 - 2 \times 4.23 \times 7.42 \times \cos 39$ A1 for 24.2 or 24.16 to 24.17		
	(d)		162 or 161.6 to 161.9	4	or M2 for	B3 for (<i>ACD</i> =) 108.1 to 108.4 or 71.6 to 71.9 or M2 for sin <i>C</i> = $\frac{7.42 \sin 39}{their 4.92}$ oe (0.949)		
					or M1 for $\frac{7.42}{\sin C} = \frac{their 4.92}{\sin 39}$ oe If 0 scored SC1 for angle $ADC = 32.6$ to 32.9			_
5	(a)		72	3	M1 for on	e correct use of <i>p</i> l e correct use of log 1.86 or 1.857 their ^{1.86} soi		
	(b)		Equalise coefficients Correct addition/subtraction of their equations to eliminate one variable	M1 DM1	M1 for continuous of the matrix of the matri	equation $x = $ or $y =$ rrect substitution of equation I for sketch of each	f their $x = \text{or } y =$	n
			$ \begin{array}{l} x = -3 \\ y = -4 \end{array} $	B1 B1				
6	(a)			2	1 for corref for $x < -1$	ect graph for $x > 1$.	5 and correct graph	h
					1 for corre	ct graph for -1.5 <	<i>x</i> < 1.5	
	(b)		– 1.5 and 1.5 oe	1				
	(c)		3.25 1.98 or 1.975 to 1.976	1 1				
	(d)	(i)	[k =] 9	1				
		(ii)	0 < <i>k</i> < 9	2FT	B1FT for $a \le k < 9$ or FT their (c		k < 9 or 0 < k < b or	

	Page 4	Mark Scher IGCSE – May/Ju		Syllabus Pap. mumathson
7	(a)	2	1	
	(b)	10	1	
	(c)	3	1	
	(d)	5	2	B1 for 2 and 7 seen
	(e)	4	2	B1 for 5 and 8.5 soi by 50 and 68 or 300
	(f)	$\frac{380}{5550}$ oe	2	M1 for $\frac{20}{75} \times \frac{19}{74}$ oe
3	(a)	29, 31	1	
	(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	B2 for 1 error, B1 for 2 or 3 errors
	(c)	25, 26, 27, 30, 33, 34, 35	1 FT	FT from <i>their</i> diagram
	(d)	4	1FT	FT from <i>their</i> diagram
)	(a) (i)	216 <i>n</i> ³ oe	1 1	
	(ii)	54 $n^2 + 3n$ oe	1 2	M1 for $an^2 + bn + c$, $a \neq 0$, or second differences of 2 obtained
	(b)	271 $n^3 + n^2 + 3n + 1$	1FT 2FT	FT their (a)(i) + (a)(ii) + 1 (numerical) FT their (a)(i) + (a)(ii) + 1 (f(n)) M1 for $an^3 + bn^2 + cn + d$, $a \neq 0$, and both b and c not 0. or M1 for third differences of 6 seen

	Page 5	Mark Scheme IGCSE – May/June 2014			Syllabus 0607	Pap nymathsold	
10	(a)	[\$] 27 500	3	or B1 for 2	$0.8 \times 0.85 \times a = 18$ 23 375 or 22 000	3700	
	(b)	2018	3	soi by $n = 0$	$\frac{g\left(\frac{0.25their(a)}{18700}\right)}{\log 0.85}$ oe 6.157, 7.157 or 8.1 howing solution	57 or 5994 oe	
				or for trials 18700×08	out not showing so	12 or	
11	(a) (i)	44.2 or 44.17 to 44.18	2	M1 for $\frac{1}{16}$	$(\pi \times 15^2)$ oe		
	(ii)	0.00442 oe	1FT	FT their (a	a)(i) ÷ 10 000		
	(iii)	$\pi r^2 = \frac{1}{4} \pi 15^2$ oe	M1	for Inner A	Area/outer area = $\frac{1}{4}$	- -	
		$\pi r^2 = \frac{1}{4} \pi 15^2$ oe $r^2 = 56.25$ or $\sqrt{\frac{176.8 \text{ or } 177}{\pi}}$ oe	M1	SC1 for ve	the state is a state of the st	$\sqrt{\frac{1}{4}} = \frac{1}{2}$	
	(b) (i)	26.8 or 26.78	3	7.5 oe	$ \times 2\pi \times 15 + \frac{1}{12} \times \frac{1}{12} \times 2\pi \times 15 \text{ or } \frac{1}{12} $		
	(ii)	303 or 302.5 to 302.8	3	M2 for 8 ×	$(\mathbf{b})(\mathbf{i}) + 2 \times their$ 8 × (b)(i) oe		

						mm.n.	MAN ANSHING
	Page 6	Mark Scheme			Syllabus	Papern	Mary S
		IGCSE – May/June 2	2014		0607	41	they is
12	2 (a) $[y =]15 - 3x$ oe		2	B1 for 5 <i>x</i> -	- 10Ud.Con		
	(b) (i)	$5x^2 = (their (a))^2$ Bracket expanded and completion with no errors	M1				.7
	(ii)	$\frac{90 \pm \sqrt{(90^2 - 4 \times 4 \times 225)}}{2 \times 4}$	A1 M1	or sketch or $(x - \frac{45}{4})$			
		2.86 or 2.864 to 2.865 19.6 or 19.63 to 19.64	B1 B1	4			
	(iii)	2.86, because 19.6 would use more than 60m oe	1	Dependent on B1 B1 in (ii) e.g. 19.6 would make <i>y</i> negative			
	(iv)	81.78 to 82.44	2FT	M1 for 5 >	<i>their</i> (b)(iii)) ² < (<i>their</i> (b)(iii)) ² × 0.89 to 41.22	2 oe	
13	(a) (i)	7 points correctly plotted	3	2	square, B2 for 5 c 3 or 4 correct	correct	
	(ii)	Negative	1				
	(b) (i)	30	1				
	(ii)	3.05 or 3.045	1				
	(c) (i)	[y =] 7.22 – 0.139x oe	2	B1 for $y =$	0.1391 to - 0.1390 mx + c with eithe c 7.2 - 0.14x		
	(ii)	Rate of change or increase or decrease in time with temperature oe	1	e.g. change temperatur	e in time for every re	degree increase	in
	(iii)	3.74 or 3.75 or 3.740 to 3.745	1FT	FT their (c)(i)		

						www.m.	2
	Page 7	Mark Scheme			Syllabus	Papern	7385
		IGCSE – May/June	2014		0607	41 40	So is
14	(a) (i)		4	B1 for right B2 for mice close to (0	hand branch nt hand branch Idle branch, no ove ,0) niddle branch corre	•	POUD.COM
	(ii)	y = 1, x = -1, x = 3	3	B1 for eac	h		
	(iii)	(0, 0)	1				
	(iv)	(-3, 0.75)	2	B1 for eac	h coord		
	(b)	-1.1[0] < x < -1 or -1.098 < x < -1 3 < x < 4.1[0] or 3 < x < 4.098	3	B2 for eith or B1 for - 4.098	er interval -1.1[0] or –1.098	and 4.1[0] or	