CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/33 Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

S CAMBRIDGE

Pag	e 2	Mark Scheme IGCSE – May/June 2013		Syllabus 0607	NAME OF THE PARTY
(a)	42.6[0]	final answer	1		ALASCIA SI

1	(a)	42.6[0] fina	l answer		1	ALL STATES
	(b)	4.26 final answer			2 FT	M1 for 10/100. FT from th. (a) ET their (b)
						(a)
	(c)	46.86 final a	answer		1 FT	FT their (b)
	(d)	15.62 final a	answer		1 FT	FT their (c)
	(e)	4.38 final ar	nswer		1 FT	FT their (d)
2	(a)	a = 138 $b = 77$			1	
		c = 103			1 1 FT	FT their (b)
	(b) (i)	All 4 lines o	of symmetry drawn		2	B1 for 2 lines drawn
	(ii)	4			1	
3	(a)	129.969			2	M1 for correct answer not to 3 decimal places (129.9692308) at least 3 sf
	(b)	130			1 FT	
	(c)	$1.3[0] \times 10^2$			1 FT	
4	(a)	stem	leaf		2	M1 for diagram with the numbers in the correct place but
						not in order, allowing one error.
		1	3 7 8 8 8 9 9			
		2	0 0 1 3 5 5 6			
		3	1 2 3 4 6 6			
		4	0 1 3			
		Key 1 3 =	13		1	
	(b) (i)	30			1 FT	FT their ordered stem leaf
	(ii)	25			1	
	(iii)	19			1	SC1 if (iii) and (iv) reversed
	(iv)	34			1	

		The state of the s	1
Page 3	Mark Scheme	Syllabus	1278
	IGCSE – May/June 2013	0607	(A)
			Dx. Colo

5(a)	41		All Silver
5(a)		2	B1 for 3 correct points P
(b)	Negative	1	
(c) (i)	3.32	1	
(ii)	60.4	1	
(iii)		1 FT	
(d)		2 FT	Accurate (by eye) ruled line through <i>their</i> mean point. B1 for ruled line through <i>their</i> mean point with negative gradient.
(e)	32 – 50	1	
6 (a) (i)	Angle ADE or ABC or BAC o.e.	1	Accept any other unambiguous indication in parts (i) and (ii).
(ii)	BDE o.e.	1	
(iii)	BC and AC or DE and AE o.e.	1	
(b) (i)	90°	1	
(ii)	45°	1	

Г	Page				Syllabus		
			IGCSE – May/June 2013		0607		
7	(a) (i)	1600+	$\frac{1600}{-1400 + 500} \times 87.5 \ [= 40] \ \text{o.e.}$	2	M1 for 87.5 ÷ (1600 500) o.e. Reverse method must be complete showing 87.5 If M1 can accept answer embedded with other two values for full marks		
	(ii)	35		2	M1 for $\frac{1400}{their 3500} \times 87.5$ o.e.		
	(b)	15968.	75 final answer	2	M1 for $87.5 \times 0.50 \times 365$. Accept any correct rounding up to 3 s.f. to imply M1		
	(c)	1065		2 FT	FT their (b) ÷ 15 rounded up to integer M1 for their (b) divided by 15, implied by answer in the range 1064 – 1067.		
8	(a) (i)	Row 2 Row 3		1 1			
	(ii)	3 <i>n</i> o.e.		1			
	(iii)	30		1 FT	FT from their part (a)(ii)		
	(b) (i)	7, 9		1, 1			
	(ii)	19		1			
	(iii)	2n-1	o.e.	2	B1 for $2n \pm k$ Condone $n = 2n - 1$		
9	(a)	Shape v	with vertices at (-1, 2), (-2, 2), (-2, 4) and (-4, 1)	2	SC1 for reflection in <i>x</i> -axis or 3 correct vertices.		

Shape with vertices at (2, 4), (4, 4), (8, 2) and (4, 8)

(b)

Allow freehand

SC1 for enlargement scale factor 2, correct orientation, or 3 correct vertices. Allow freehand

2

		The same of the sa	1
Page 5	Mark Scheme	Syllabus	2
	IGCSE – May/June 2013	0607	3.0

10 (a	-			
	a)	g, i	1	15C/01
(1	b)	S m a g b r d e	2 FT	B1 for at least 6 entries in correct place.
(0	(i)	$\frac{5}{9}$ o.e.	1 FT	
	(ii)	1 o.e.	1 FT	
	(iii)	$\frac{3}{9}$ o.e.	1 FT	
(0	d)	$\frac{2}{5}$ o.e.	2 FT	M1 for $\frac{k}{5}$ where $0 < k < 5$
		S		FT their Venn diagram.
11 (a	a)	15	2	M1 for distance / time
(lt	b)	48	2	M1 for distance / speed
(0	(c)	20	3	M1 for total distance ÷ total time M1 for total time correct (40/60 + their 0.8 + 32/60) or (40 + their 48 + 32) and correctly changing to hours later.
12 (a	a) (i)	correct diagram drawn	1, 1 FT	1 for FG and 1FT for GH (relative to G) in approximately the correct direction, condoning absence of labels. SC1 if no lines are drawn but G and H shown.
	(ii)	Dep on diagram. 50 and 40 marked or 130 and 140 marked or clear diagram, with values, leading to correct result	2	Dep on diagram. B1 for either 50° or 40° or 130° or 140° seen in the correct place or other clear indication.
(k	b) (i)	361 (360.5 – 360.6)	2	M1 for $200^2 + 300^2$ or better.
	(ii)	56.3°	2	M1 for $\tan BAC = 300/200$ o.e.

	Page 6		Mark Scheme		Syllabus 70 3
			IGCSE – May/June 2013		0607
					To the state of th
13	(a) (i)	0.503	or 0.5026 – 0.5027	2	Syllabus 0607 M1 for $4 \times \pi \times 0.2^2$. 0.16 π o.e. as final answefull marks. M1 for dividing 50 by their
	(ii)	99		2	M1 for dividing 50 by <i>their</i> 0.503
	(b) (i)	10100	or 10050 or 10053 to 10054.4	2	M1 for $2 \times \pi \times 8 \times 200$. Accept 3200π as final answer for full marks. SC1 for figs 101, 1005, 10053 to 100544
	(ii)	40200	or 40210 to 40220	2	M1 for $\pi \times 8^2 \times 200$. Accept 12800π as final answer for full marks. or SC1 for figs 402 or 4021 to 4022
14	(a)			2	B1 for smooth curve and maximum in approximately the correct place, B1 for curve above the <i>x</i> -axis and <i>x</i> -axis asymptote at both ends. Condone curve touching <i>x</i> -axis not between – 3 and 3.
	(b)	(0, 2)		1	
	(c)	y = 0		1	Allow x-axis
	(d)	0 < y =	≤ 2 o.e.	3	Allow $0.118 \le y \le 2$ for full marks. Allow as 2 inequalities or in words for full marks B2 for identifying interval but inequalities not clear e.g. from 0 (or 0.118) to 2, 0 (or 0.118) < y < 2 etc. B1 for one correct inequality or for 0 (or 0.118) and 2 identified