

MARK SCHEME for the May/June 2013 series

0607 CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/32

Paper 3 (Core), maximum raw mark 96

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page			Syllabus n 24	
		IGCSE – May/June 20)13	0607 Jnay
L	(a)	30	1	nscio,
	(b)	270	1	
	(c) (i) (ii) (iii)	90/(<i>their</i> 270) o.e. 1/3, 0.333, 0.3333 <i>their</i> 150/(<i>their</i> 270) o.e. 5/9, 0.556 or 0.5555 to 0.5556 0	1 FT 1 FT 1	Syllabus 0607 MMM. M.
	(d)	90	2	M1 for $\frac{15}{45}$ seen or <i>their</i> $\frac{270}{45}$ o.e.
2	(a)	(21, 58), (22, 61), (25, 70), (30, 82) plotted correctly.	2	B1 for 2 points correctly plotted.
	(b)	Positive cao	1	No alternatives accepted
	(c) (i) (ii) (iii)	14.6 39.4 Mean point plotted on diagram	1 1 1 FT	
	(d)		2	Line within template ($y = 2.9x$ and y = 2.9x - 5.8) almost full domain (2.5 to 30) B1 for ruled line through (<i>their</i> 14.6, <i>their</i> 39.4) almost full domain (2.5 to 30)
	(e)	18 – 23 seconds	1	
3	(a)	12c + 5j = 10 o.e. 6c + 10j = 11 o.e.	1 1	
	(b)	c = 0.5[0] o.e. p = 0.8[0] o.e.	M1 B1 B1	 M1 FT for eliminating one variable (allowing one numerical error) or sketch of both lines. Trial and improvement both correct 3. B1 for 0.5 and B1 for 0.8 No working, maximum 2 marks

PA CAMBRIDGE

Paç	je 3	Mark Scheme IGCSE – May/June		Syllabus 0607
4 (a)	7 and 9		1, 1	Aths ch
(b)	2n-1 o.e.		2	B1 for 2 <i>n</i> seen.
(c)	42		2 ft	MuSyllabus0607 m_{1} 0607 m_{2} B1 for $2n$ seen.M1 for their $2n - 1 = 83$.FT a linear formula, if answer is an integer.
5 (a)	-3 and 1		1, 1	Accept (-3, 0) and (1, 0)
(b)			1	Approx. 3 units down, vertex approx. $(-1, -5)$
		4	1	Approx. 2 units to left, vertex approx. $(-3, -2)$
6	<i>a</i> = 40		1	
	<i>b</i> = 50		1	
	<i>c</i> = 89		1	
	<i>d</i> = 90		1	
	<i>e</i> = 90		1	
	<i>f</i> =140		1	
7 (a)	(1, 9) and (7,	- 3) correctly plotted	1,1	
(b)	$\binom{6}{-12}$		1	
(c)	(4, 3)		1	
(d)	13.4 (13.41 –	13.42)	2 FT	Accept $6\sqrt{5}$ M1 for $6^2 + 12^2$. FT from part (b)
(e)	-2		2	M1 for rise/run e.g. 12/2, 2 etc.
(f)	-2x + 11		2 FT	B1 for $(their - 2)x + k$ or $y = mx + 11$ FT their gradient

PA CAMBRIDGE

Pa	age 4				Syllabus 7, 21
		IGCSE – May/June 2013	3		0607
(a)	102		1		all sch
(b)	14		2	M1 fo	or $\frac{84}{360} \times 60$ o.e.
(c)	$\frac{54}{360}$	o.e. 3/20 0.15	1	isw ca	Syllabus 0607 0607 07 $\frac{84}{360} \times 60$ o.e. ancelling etc. (as in question 1)
(a)	A	$ \begin{array}{c} c & e \\ b & d \end{array} $	2	B1 for	r 5 correct.
(b) ((i (ii (iv	i) {a, b i) {g}	, f, g, h} , c, d, e} , c, d, e, g}	1FT 1FT 1FT 1FT	Ignore	e absence of brackets in parts (i) to (i
(c)	5		1FT	FT (b)(i)
0 (a)	541	(540.8)	3		or $(500 - 50)^2 + 300^2$ or $500 - 50$
(b)	33.7	(33.67 – 33.72)	2FT		or $\tan D = 300/their (500 - k), k \neq 0$
(c)	108	(108.1 – 108.2)	3FT		or distance/time, M1 for converting 541 to m and 3 seconds to minutes.
1 (a)(c)		2	minim B1 for place.	
(b)		or -0.667 or -0.6667 to -0.6666 , or 14.81) and $(4, -36)$	1, 1		one -0.666 and accept in either orde
(c)	Line	drawn as in diagram above	1	-	pt freehand
(d)		4 (-2.044), 0.693 (0.6931), 6.35 1)	1, 1, 1	1SW J	y-coordinates

PA CAMBRIDGE

Page	5	Mark Scheme	Syllabus 7. 7. 12	
i ugo	<u> </u>	IGCSE – May/June 20	13	0607
12 (a) (i)	4240	(4240 to 4242)	3	Syllabus 0607Mu M
(ii)	2120	0-21210	2	Accept 6750 π M1 for. $\pi \times 15^2 \times 30$
(b) (i)	1410	0 (14130 - 14140)	2	Accept 4500 π M1 for $\frac{4}{3} \times \pi \times 15^3$.
(ii)	33.3 -	- 33.52	3 FT	M2 for (<i>their</i> 21206 – <i>their</i> 14137) / <i>their</i> 21206 [× 100]
				M1 for (<i>their</i> $21206 - their$ 14137) or <u>their 14137</u> their 21206
13 (a)	$2x^2-$	$\overline{x-6}$	2	B1 for 3 correct terms from $2x^2 - 4x + 3x - 6$
				-x implies 2 terms correct.
(b)	5x(2x)	c – 3)	2	B1 for $5(2x^2 - 3x)$ or $x(10x - 15)$
(c) (i)	4xy		2	B1 for $4xy^k$ or kxy .
(ii)	6 <i>s</i>		2	M1 for multiplying by $10t/3$ o.e.
(iii)	$\frac{p}{12}$		2	M1 for finding common denominator.
(iv)	8y ⁶		2	B1 for ky^6 or $8y^k$