Cambridge IGCSE ${ }^{\text {TM }}$

CAMBRIDGE INTERNATIONAL MATHEMATICS

Paper 5 Investigation (Core)
February/March 2023
1 hour 10 minutes
You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly, including sketches, to gain full marks for correct methods.
- In this paper you will be awarded marks for providing full reasons, examples and steps in your working to communicate your mathematics clearly and precisely.

INFORMATION

- The total mark for this paper is 36 .
- The number of marks for each question or part question is shown in brackets [].

This document has 8 pages. Any blank pages are indicated.

The investigation starts on page 3.

Answer all the questions.

INVESTIGATION

SPLIT NUMBERS

This investigation looks at numbers that are split into two parts.
A start number is split into two parts
the units, called the units and the remaining multiple of ten, called the stem.

Examples

start number	stem	units
37	30	7
125	120	5
1526	1520	6

1 (a) Complete the table for the start number 163.

start number	stem	units
163		

(b) (i) For the start number 34, calculate stem - units.
(ii) For the start number 125,

$$
\begin{aligned}
\text { stem }^{2}-\text { units }^{2} & =120^{2}-5^{2} \\
& =14400-25 \\
& =14375 .
\end{aligned}
$$

For the start number 34, calculate stem $^{2}-$ units 2.
(c) For the start number 42, calculate $\frac{\text { stem }^{2}-\text { units }^{2}}{\text { stem }- \text { units }}$.
(d) Complete the table.

Use your answers to part (b) and part (c) to help you.

start number	stem	units	stem 2	units 2	stem $^{2}-$ units 2	stem - units	$\frac{\text { stem }^{2}-\text { units }^{2}}{\text { stem }- \text { units }}$
125	120	5	14400	25	14375	115	125
34							34
	40	2					
50		0	2500			50	
		1		1	22499		151
		0			49000000		

(e) What do you notice about the start number and the value of $\frac{\text { stem }^{2}-\text { units }^{2}}{\text { stem }- \text { units }}$ for each row of the
table in part (d)? table in part (d)?
\qquad

2 For the number 125, stem + units is $120+5=125$.
(a) Copy your answers from Question 1(d) into the shaded columns.

Complete the table.

start number	stem	units		stem $^{2}-$ units 2	stem + units	$\frac{\text { stem }^{2}-\text { units }^{2}}{\text { stem }+ \text { units }^{2}}$
125	120	5		14375	125	115
34					34	
	40	2			42	38
50		0			50	
		1	22499			
		0	49000000			

(b) Use your tables from Question 1(d) and Question 2(a) to complete this statement.

$$
\frac{\text { stem }^{2}-\text { units }^{2}}{\text { stem }+ \text { units }}=
$$

3 (a) Copy your answers from Question 1(d) and Question 2(a) into the shaded columns.
Complete the table.

start number	stem + units	stem - units	(stem + units) \times (stem - units)
125	125	115	14375
34	34		
50	42		22499
			49000000

(b) Use your table from Question 1(d) to help you complete this statement.

$$
(\text { stem }+ \text { units }) \times(\text { stem }- \text { units })=
$$

4 For the rest of the investigation, T is the stem and U is the units of any start number.
(a) (i) Use algebra to show that $(T-5)(T+5)=T^{2}-5^{2}$.
(ii) Write down the value of T for the start number 185 and use this to check the result in part (i).
(b) Use algebra to show that $T^{2}-U^{2}$ is always the product of the factors $(T-U)$ and $(T+U)$.

5 This question is about $T^{2}+U^{2}$. $T+U$ and $T-U$ are not always factors of $T^{2}+U^{2}$.
(a) Use the table to help you investigate the start numbers from 35 to 40 .

Find whether $T+U$ or $T-U$ or both are factors of $T^{2}+U^{2}$ for these start numbers.
You may not need to use all the columns.

start number	T	U	T^{2}	U^{2}					
35	30	5	900	25					
36	30	6	900	36					
37	30	7	900	49					
38	30	8	900	64					
39	30	9	900	81					
40	40	0	1600	0					

(b) A start number is a multiple of 10 .

Use algebra to explain why $T+U$ and $T-U$ are always factors of $T^{2}+U^{2}$.

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

