Cambridge IGCSE ${ }^{\text {TM }}$

CANDIDATE NAME NUMBER

CAMBRIDGE INTERNATIONAL MATHEMATICS

0607/32
Paper 3 (Core)
February/March 2023
1 hour 45 minutes
You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a graphic display calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly and you will be given marks for correct methods, including sketches, even if your answer is incorrect.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π, use your calculator value.

INFORMATION

- The total mark for this paper is 96 .
- The number of marks for each question or part question is shown in brackets [].

Formula List

Area, A, of triangle, base b, height h.
$A=\frac{1}{2} b h$

Area, A, of circle, radius r.
$A=\pi r^{2}$

Circumference, C, of circle, radius r.

Curved surface area, A, of cylinder of radius r, height h.
$A=2 \pi r h$

Curved surface area, A, of cone of radius r, sloping edge l.
$A=\pi r l$

Curved surface area, A, of sphere of radius r.
$A=4 \pi r^{2}$

Volume, V, of prism, cross-sectional area A, length l.
$V=A l$

Volume, V, of pyramid, base area A, height h.
$V=\frac{1}{3} A h$

Volume, V, of cylinder of radius r, height h.
$V=\pi r^{2} h$

Volume, V, of cone of radius r, height h.
$V=\frac{1}{3} \pi r^{2} h$

Volume, V, of sphere of radius r.

$$
V=\frac{4}{3} \pi r^{3}
$$

Answer all the questions.
$\begin{array}{lllllllll}1 & \text { (a) } & 121 & 122 & 123 & 124 & 125 & 126 & 127\end{array}$
From this list, write down a number that is
(i) even
.. [1]
(ii) a square
(iii) a cube
(iv) a multiple of 7
(v) prime.
(b) (i) Find the value of $\sqrt[3]{3.628}$.

Give your answer correct to 3 decimal places.
(ii) Find the value of $\frac{36.2 \times 21.4}{0.23}$.

Give your answer correct to the nearest hundred.

2 The table shows the number of babies born to each of 25 hamsters.

Number of babies	2	3	4	5	6	7	8
Frequency	3	3	4	2	5	6	2

(a) Write down how many hamsters had 6 babies.
(b) Find
(i) the range
\qquad
(ii) the median
(iii) the mean.
(c) Use the information to complete the bar chart.

3 In 2019 the Louvre museum had 9609900 visitors.
(a) Write 9609900 in words.
\qquad
\qquad
(b) The Louvre museum is open 309 days of the year.

Work out the average number of visitors per day.
(c) 40% of all visitors are admitted free.
(i) Write down the percentage of visitors who have to pay.
\qquad
(ii) The admission price is 15 euros ($€$).

Work out how much money, on average, was paid to the Louvre museum each day for admissions.

4 (a) Prija changes 600 pounds ($£$) to US dollars (\$) at a bank.
(i) The bank charges 2% of the $£ 600$ to change the money.

Show that the bank charges $£ 12$.
(ii) The bank takes the $£ 12$ charge and then changes the rest of the money. The exchange rate is $£ 1=\$ 1.335$.

Work out how much money, in \$, Prija receives.

\$

(b) From the money Prija receives, she spends $\$ 150$ on food, $\$ 225$ on entertainment and $\$ 130$ on gifts.

Work out how much, in \$, Prija has left.

> \$
(c) Prija changes the remaining dollars back to pounds at a rate of $£ 1=\$ 1.347$.

The bank does not charge to make the change.
Work out how much money, in $£$, she receives.

$$
£
$$

5 Sabhina asks 180 parents how many children they have.
The results are shown in the pie chart.

(a) Write down the mode.
\qquad children
(b) Work out how many parents have
(i) 1 child
(ii) 4 children.
(c) One of these parents is picked at random.

Find the probability that they have 5 children.
Give your answer as a fraction in its simplest form.

6 (a) This is the start of a sequence.
The first term and the fifth term are missing.
....... $55 \quad 63 \quad 71$....... $87 \quad 95$
(i) Find the first term and the fifth term of this sequence.
\qquad
(ii) Find the nth term of this sequence.
(b) Another sequence has nth term $2 n^{2}+3 n$.

Work out the first 3 terms of this sequence.

NOT TO
SCALE

The diagram shows a circle, centre O.
$A C$ is a tangent to the circle at B and angle $B O C=66^{\circ}$.
$D O C$ is a straight line.
(a) Find
(i) angle $O B C$

$$
\begin{equation*}
\text { Angle } O B C= \tag{1}
\end{equation*}
$$

(ii) angle $O C B$

$$
\begin{equation*}
\text { Angle } O C B= \tag{1}
\end{equation*}
$$

(iii) angle $O D B$

$$
\begin{equation*}
\text { Angle } O D B= \tag{2}
\end{equation*}
$$

(iv) angle $D B A$.

$$
\begin{equation*}
\text { Angle } D B A= \tag{1}
\end{equation*}
$$

(b) The circle has radius 3.2 cm .
(i) Work out the area of the circle.
\qquad cm^{2}
(ii) Work out the length of $O C$.

$$
O C=
$$

8 On one day ten students record the number of hours they are online and the number of hours they sleep that night.

Number of hours online	1	1	1.5	2	2.5	2.5	3	3	3.5	5
Number of hours sleeping	10	9.5	10	8.5	7	9	6	7.5	7	5.5

(a) Complete the scatter diagram.

The first 5 points have been plotted for you.

(b) What type of correlation is shown in the scatter diagram?
(c) Find
(i) the mean number of hours online
h [1]
(ii) the mean number of hours sleeping.
\qquad h [1]
(d) On the diagram, draw a line of best fit.
(e) Another student is online for 4 hours in the day.

Use your line of best fit to estimate the number of hours sleeping for this student.
\qquad

The diagram shows the line $A B$ drawn on a $1 \mathrm{~cm}^{2}$ grid.
(a) Write down the coordinates of point A and point B.
\qquad
B(
(b) Calculate the length of $A B$.

$$
\begin{equation*}
A B= \tag{2}
\end{equation*}
$$

\qquad cm
(c) Find the coordinates of the mid-point of $A B$.
\qquad
(d) Work out the gradient of $A B$.
\qquad
(e) Find the equation of the line $A B$.
\qquad
(f) Does the point $(1.37,3.36)$ lie on the line $A B$?

Show how you decide.

(a) Shape B is a reflection of shape A in the line $y=m$.

Write down the value of m.

$$
\begin{equation*}
m= \tag{1}
\end{equation*}
$$

(b) Shape C is an anticlockwise rotation of shape A through t° about the origin.

Write down the value of t.

$$
\begin{equation*}
t= \tag{1}
\end{equation*}
$$

(c) Shape D is a translation of shape A by the vector $\binom{x}{y}$.

Write down the value of x and the value of y.

$$
\begin{align*}
& x=\ldots . ~
\end{align*}
$$

(d) Enlarge shape A with centre $(0,0)$ and scale factor 2 .

11 (a) Solve.

$$
x-6>-3
$$

(b) Solve the simultaneous equations.

$$
\begin{aligned}
2 x+3 y & =17 \\
2 x-y & =5
\end{aligned}
$$

$$
\begin{aligned}
& x=. ~
\end{aligned}
$$

(c) Simplify.

$$
2 r-5 s-3 r+s
$$

(d) Expand.

$$
2 x\left(3 x^{2}-4 y\right)
$$

(e) Find each value of x.
(i) $\frac{3^{9}}{3^{x}}=3$

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

(ii) $2^{x} \times 2^{3}=2^{6}$

$$
\begin{equation*}
x= \tag{1}
\end{equation*}
$$

(f) Write as a single fraction in its simplest form.
(i) $\frac{7 x}{3}-\frac{x}{6}$
(ii) $\frac{5 d}{9} \div \frac{d}{3}$

12

(a) On the diagram, sketch the graph of $y=\frac{3 x+2}{x}$ for values of x from -3 to 3 .
(b) Write down the equations of the two asymptotes.
\qquad
\qquad
(c) On the same diagram, sketch the graph of $y=x+3$ for $-3 \leqslant x \leqslant 3$.
(d) Find the x-coordinates of the points of intersection of $y=\frac{3 x+2}{x}$ and $y=x+3$.

$$
x=\ldots ~ a n d ~ x=
$$

