

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/43 October/November 2018

www.mymathscloud.com

Paper 4 (Extended) MARK SCHEME Maximum Mark: 130


Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Generic Marking Principles

October/ Mymathscloud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit • is given for valid answers which go beyond the scope of the syllabus and mark scheme. referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors
- marks are not deducted for omissions •
- answers should only be judged on the quality of spelling, punctuation and grammar when these • features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the guality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

October/1 "Mun My Markets

Abbreviations

cao	correct answer	only

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	Reflection $y = -1$	2	B1 for each
1(a)(ii)	Triangle at $(0, -3), (4, -1), (4, -3)$	2	B1 for translation $\begin{pmatrix} -2\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ -5 \end{pmatrix}$ or for three correct vertices
1(a)(iii)	Triangle at (-2, 2), (-2, 6), (-4, 6)	2	B1 for rotation about (0, 0) 90° clockwise or 90° anticlockwise with wrong centre or for three correct vertices
1(a)(iv)	Triangle at $(-3, -1)$, $(-3, -2)$, $(-1, -1)$	2	B1 for scale factor $-\frac{1}{2}$ with wrong centre or scale factor $\frac{1}{2}$ with centre (0, 0) or for three correct vertices
1(b)(i)	$\begin{pmatrix} 2\\4 \end{pmatrix}$ cao	1	
1(b)(ii)	4.47 or 4.472	2	M1 for $(their 2)^2 + (their 4)^2$
1(b)(iii)	(7, 10)	2	B1 for each
1(b)(iv)	y = 2x - 4 oe	3	M1 for gradient = $\frac{6-2}{5-3}$ oe or answer $y = mx - 4$ M1 for substituting (3, 2) or (5, 6) into y = their mx + c or into $y - k = their m(x - h)or into their y = mx - 4$
1(b)(v)	(0, -4)	1	FT their (b)(iv)
2(a)(i)	$\frac{240}{(23+25)} \times 23$	M1	
2(a)(ii)	11:10	2	M1 for 110:100 or better or SC1 for 10:11, following boys 100, girls 110

)580/43		IGCSE – I PUBLISHE	Mark Scheme D Mark Scheme D Partial Marks M1 for $240 \times (1 + \frac{15}{10})$ oe
Question	Answer	Marks	Partial Marks
2(a)(iii)	276	2	M1 for $240 \times \left(1 + \frac{15}{100}\right)$ oe or B1 for 36 seen
2(a)(iv)	150	3	M2 for $\frac{240}{100+60}$ [× 100] oe or M1 for evidence of 160[%] associated 240
2(b)	464 000	3	M1 for $256000 \times \left(1 + \frac{2}{100}\right)^{30}$ oe A1 for 463700 to 463710 B1 for <i>their</i> more accurate answer seen and rounded to nearest 1000
2(c)	4.5[0]	3	M2 for $[x =] \sqrt[32]{4.09}$ oe or M1 for $(x)^{32} = 4.09$ oe If 0 scored, SC2 for answer 3.6 or 3.59 or 3.588 or SC1 for $\sqrt[32]{3.09}$ or 1.0358 to 1.036 seen
3(a)(i)	427 or 427.2 to 427.3	2	M1 for $\pi \times 8 \times 17$
3(a)(ii)	1010 or 1005	4	M2 for $\sqrt{17^2 - 8^2}$ oe or M1 for $h^2 + 8^2 = 17^2$ oe M1 for $\frac{1}{3} \times \pi \times 8^2 \times their h$ oe
3(a)(iii)	804 or 804.2 to 804.4 or 808	1	FT <i>their</i> (ii) $\times 0.8$
3(a)(iv)	396 or 395.6 to 395.8 or 392	1	FT 1200 – <i>their</i> (iii)
3(b)(i)	<u>1</u> 54	4	B3 for $\frac{\frac{4}{3}\pi r^3}{72\pi r^3}$ or better or M2 for $\frac{\frac{4}{3} \times \pi \times r^3}{\pi \times (3r)^2 \times 8r}$ or $72 \times \pi \times r^3$ or M1 for $\pi \times (3r)^2 \times 8r$ If 0 scored, SC2 for answer of $\frac{1}{18}$
3(b)(ii)	972π final answer	4	B2 for $r = \frac{9}{2}$ oe or M1 for $4\pi r^2 = 81\pi$ or better M1 for $2 \times \pi \times (3 \times their r) \times (8 \times their r)$ isw
4(a)	-1, 3	2	B1 for each

580/43	43 Cambridge IGCSE – Mark Scheme PUBLISHED Octobern Mun. Typinalitie stion Answer Marks Partial Marks (b) Correct graph 3 B2FT for 6 or 7 correct points or BIFT for 4 or 5 correct points			
Question	Answer	Marks	Partial Marks	
4(b)	Correct graph	3	B2FT for 6 or 7 correct points or B1FT for 4 or 5 correct points	
4(c)	Correct ruled tangent and $-2 \leq \text{gradient} \leq -1.5$	3	 B2 for close attempt at tangent at x = -4 and answer in range OR B1 for ruled tangent at x = -4 with no daylight and M1 for rise/run also dep on close attempt at tangent. Must see correct or implied calculation from a drawn tangent. 	
4(d)	-3, 3	1		
4(e)	Correct graph	4	B3FT for 7 or 8 correct points or B2FT for 5 or 6 correct points or B1FT for 3 or 4 correct points	
4(f)(i)	3.6 to 3.85	1		
4(f)(ii)	x > their (f)(i)	1	FT	
4(g)	$\frac{x^2}{4} = \frac{9}{x} + \frac{4}{x}$ or $\frac{x^3}{4} - 4 = 9$	M1	Allow $\frac{13}{x}$ for $\frac{9}{x} + \frac{4}{x}$	
	52	A1		
5(a)(i)	265 or 265.3 to 265.4 nfww	4	M1 for mid-values 150, 225, 275, 400 soi	
			M1 for $\Sigma f x$ where x is in correct interval including boundaries	
			M1 dep for $\Sigma fx \div 52$ dependent on second M1	
5(a)(ii)	Correct histogram	4	B1 for each correct block If 0 scored, SC1 for the four frequency densities seen	
5(b)(i)	100	1		
5(b)(ii)	56	1		
5(b)(iii)	62	1		
5(b)(iv)	24	1		
5(b)(v)	88	2	M1 for evidence of 12 written	

580/43		IGCSE – I PUBLISHE	Mark Scheme D October/i Multiply October/i Multip	y aths
Question	Answer	Marks	Partial Marks	OUN
6(a)	52[.0] or 52.02	4	M2 for $[\cos =] \frac{13^2 + 4^2 - 11^2}{2 \times 13 \times 4}$ or M1 for $11^2 = 13^2 + 4^2 - 2 \times 13 \times 4 \cos()$ A1 for $[\cos^{-1} =] \frac{64}{104}$ oe or 0.615 or 0.6153 to 0.6154	
6(b)	62.7 or 62.69 to 62.70	4	M3 for $180 - \sin^{-1}\left(\frac{8\sin 80}{13}\right) - 80$ oe or M2 for $\sin A = \frac{8\sin 80}{13}$ or M1 for $\frac{13}{\sin 80} = \frac{8}{\sin A}$ oe A1 for 37.3 or 37.30 If 0 scored, M1 for $180 - 80 - their A$	
6(c)	66.7 or 66.68 to 66.71	3	M1 for $0.5 \times 13 \times 4 \times \sin(theirACB)$ oe M1 for $0.5 \times 8 \times 13 \times \sin(their ACD)$ oe	
7(a)(i)	$\frac{3}{5} > \frac{1}{4}$ oe or $\frac{12k}{20k}$ and $\frac{5k}{20k}$ or 0.6 and 0.25 or 60% and 25%	1		
7(a)(ii)	$\frac{11}{20}$ oe	3	M2 for $\frac{3}{5} \times \frac{3}{4} + \frac{2}{5} \times \frac{1}{4}$ oe or $1 - \frac{3}{5} \times \frac{1}{4} - \frac{2}{5} \times \frac{3}{4}$ oe or M1 for $\frac{3}{5} \times \frac{3}{4}$ or $\frac{2}{5} \times \frac{1}{4}$ oe (but not as part of a larger product)	
7(b)(i)	$\frac{6}{60}$ oe	2	M1 for $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3}$ oe If 0 scored, SC1 for answer $\frac{27}{125}$ oe	
7(b)(ii)	0	1	Accept $\frac{0}{60}$	

580/43		IGCSE – N PUBLISHE	Mark Scheme D Cotober/1 Multiple Partial Marks M2 for $\frac{3}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{1}{5}$ oe
Question	Answer	Marks	Partial Marks
7(c)	$\frac{11}{25}$ oe	3	M2 for $\frac{3}{5} \times \frac{3}{5} + \frac{2}{5} \times \frac{1}{5}$ oe or $1 - \frac{3}{5} \times \frac{2}{5} - \frac{2}{5} \times \frac{4}{5}$ oe or M1 for $\frac{3}{5} \times \frac{3}{5}$ or $\frac{2}{5} \times \frac{1}{5}$ or for a correct tree showing all 25 outcomes with the 11 correct outcomes identified
8(a)(i)	4	2	M1 for correct method using similar triangles e.g. $\frac{10}{5} = \frac{8}{DX}$ oe
8(a)(ii)	36.9 or 36.86 to 36.87	2	M1 for $\tan = \frac{6}{8}$ or $\sin = \frac{6}{10}$ or $\cos = \frac{8}{10}$ oe
8(b)	[<i>v</i> =] 150	B1	
	[<i>w</i> =] 15	B2	FT $(180 - their v) \div 2$ M1 for $180 - 2w = their v$ oe or angle $POQ = 180 - their v$ oe
	[<i>x</i> =] 15	B1	FT their w
	[<i>y</i> =] 10	B2	M1 for angle $TPS = 5^{\circ}$ or angle $TXS = 20^{\circ}$ or $OXP = 20^{\circ}$ or $TXP = 160^{\circ}$ (where X is where OT and PS intersect)
8(c)	182 or 182.4	3	M2 for $\left(\frac{94}{226}\right)^{\frac{3}{2}} \left[=\frac{V}{680}\right]$ oe or M1 for ratio of lengths $=\sqrt{\frac{226}{94}}$ or $\sqrt{\frac{94}{226}}$ or better or for $\frac{V^2}{680^2} = \frac{94^3}{226^3}$ oe
9(a)	0	1	
9(b)	5	2	M1 for $3(3^x) + 4$ or better or $f(\frac{1}{3})$ or $f(3^{-1})$
9(c)	$\frac{x+1}{2}$ of final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or $\frac{y}{2} = x - \frac{1}{2}$ or better
9(d)	9 <i>x</i> + 16	2	M1 for $3(3x + 4) + 4$ oe
9(e)	$9x^2 + 24x + 16$	2	B1 for three terms from $9x^2 + 12x + 12x + 16$ correct
9(f)	27	2	M1 for $x = h(their g(2))$

0580/43		IGCSE – N PUBLISHE	Mark Scheme October/1 MMM. Mynaths D Partial Marks	SHER SHE
Question	Answer	Marks	Partial Marks	Cloud
10(a)	$\frac{8}{15}$	B1		COM
	$\frac{n+2}{2n+3}$ oe	B2	B1 for $n + 2$ as numerator or $2n + 3$ as denominator	
10(b)(i)	1 - 2n oe	2	B1 for $-2n + k$ oe or $pn + 1$ ($p \neq 0$) oe	
10(b)(ii)	$n^3 + 1$ oe	2	M1 for cubic expression	