

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/42 October/November 2016

WWW. MYMathscloud.com

Paper 4 Paper 4 (Extended) MARK SCHEME Maximum Mark: 130

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

			WWW. TRYMAINSCIOUD.COM
Page 2	2 Mark Scheme	Syllabus	P. J. Mar
	Cambridge IGCSE – October/November 2016	0580	42 41/20 75
Abbrevi	ations		scioud.
cao	correct answer only		-On
dep	dependent		
FT	follow through after error		

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

seen or implied soi

	Question	Answer	Mark	Part marks
1	(a) (i)	11054.25 final answer	2	M1 for $18000 \times \left(1 - \frac{15}{100}\right)^3$ oe
	(ii)	16 500	3	M2 for $14025 \div \left(1 - \frac{15}{100}\right)$ oe or M1 for recognition of 14025 as 85% soi
	(b)	260 final answer	2	M1 for $P\left(1 + \frac{5}{100}\right)^2 = 286.65$ oe
	(c) (i)	6.18	3	M2 for $\frac{224.72 - 200}{200 \times 2} \times 100$ oe
				or $\frac{1}{2} \left(\frac{224.72}{200} \times 100 - 100 \right)$
				or M1 for $\frac{200 \times r \times 2}{100}$ or or $\frac{224.72 - 200}{200 \times 2}$ or
				$\frac{224.72}{200} \times 100 - 100 \text{ soi by } 12.36$
				If zero scored, SC1 for 56.18 or 56.2 as final answer
	(ii)	6	3	M2 for $\sqrt{\frac{224.72}{200}}$ or $\sqrt{\frac{224.72}{2}}$ soi by 1.06 or 106 or 10.6
				or M1 for $200\left(1+\frac{r}{100}\right)^2 = 224.72$ oe

Page 3	Mark Sc	Syllabus P. 47			
	Cambridge IGCSE – Oct	ober/No	November 2016 0580 42 97		
Question	Answer	Mark	Part n	Syllabus P. Mynarth 0580 42	
(a)	1 1	1 1			
(b)	Fully correct graph	4	B3FT for 6 or 7 points pl or B2FT for 4 or 5 points or B1FT for 2 or 3 points	s plotted	
(c) (i)	-1 < ans < -0.8 1.25 < ans < 1.45 2.5 < ans < 2.6	1 1 1			
(ii)	-0.7 < ans < -0.5	2	M1 for evidence of $y = -$.	x or $\frac{x^3}{3} - x^2 + 1 = -x$	
(d) (i)	y = 1 to 1.1 oe	1FT	FT only if a clear maxim	um point	
	y = -0.4 to -0.33 oe	1FT	FT only if a clear minim	um point	
(ii)	-0.4 to -0.33 oe	1FT	Correct or FT their graph	1	
(a)	$\frac{240\sin 85}{\sin 50}$	M2	or M1 for $\frac{\sin 50}{240} = \frac{\sin 85}{AB}$	- oe	
	312 or 312.1	B 1			
(b)	$\frac{1}{2} \times 180 \times 240 \times \sin A = 12000$	M1			
	33.748 to 33.749	A2	A1 for $\sin = \frac{24000}{43200}$ or b		
		_	or 0.5 or 0.5555 to 0.55		
(c)	328 or 328.3 to 328.5	5	B1 for [angle <i>A</i> =] 78.75	seen	
			M2 for $180^2 + (their AB)^2 - 2 \times 1$	$80 \times their AB \times \cos 78.75$	
			or M1 for cos78.75 = $\frac{180}{2}$		
(d) (i)	108.75 or 108.7 or 108.8	1	A1 for 107800 to 10790	J	
			FT 180 \pm their (4)(5)		
(ii)	288.75 or 288.7 or 288.8	2FT	FT 180 + their (d)(i) M1 for 180 + their (d)(i) 360 - (180 - their(d)(i))	or	

Page 4				Mark SchemeSyllabusridge IGCSE – October/November 20160580			
	Ques	tion		Answer	Mark	Part marks	
	(a)			15	2	M1 for 10 ÷ 40 [× 60]	
	(b)			49.2 nfww	4	M1 for 35, 42.5, 47.5, 52	.5, 57.5, 70 soi
						M1 for Σfx $8 \times 35 + 22 \times 42.5 + 95 \times 14 \times 57.5 + 6 \times 70$ M1 dep for <i>their</i> $\Sigma fx \div 2$	
	(c)			Fully correct histogram	4	B3 for 4 correct blocks or B2 for 2 or 3 correct block or B1 for 1 correct block If zero scored, SC1 for co	locks prrect frequency
	(d)	(i)		125, 180	1	densities 0.8, 19, 11, 2.8,	0.3 \$61
		(ii)		Correct diagram	3	 B1FT <i>their</i> (d)(i) for 6 concorrect square(including bound or correct line if should be contract line if should be contract line if should be contract vertical line and B1FT (dep on at least B1 or polygon through 6 point lif zero scored, SC1FT for scored, SC1FT for scored scored scored of the store scored scored scored scored scored score scored score scored score scor	boundaries) or touching on a grid line ends of intervals on) for increasing curve nts
			<i>.</i>			plotted	
	(1	iii)	(a)	48 to 49	1		
			(b)	55 8 to 14	1 2ET	D1FT for 196 to 102	
			(c)	8 to 14	2FT	B1FT for 186 to 192 seen	n

				4,	MWW. MY MISHINS AZ MUMANSHINS AZ MUMANSHINS CIOULD.COM
Page 5	Mark Scheme Cambridge IGCSE – October/November 2016		Syllabus 0580	P. Jmaths	
Question	Answer	Mark	Part n	narks	
5 (a) (i)	$\frac{\frac{3}{4}}{\frac{7}{8}}, \frac{1}{\frac{1}{8}}$	2	B1 for any 2 correct		
(ii)	$\frac{21}{32}$ oe	2	M1 for $\frac{7}{8} \times \frac{3}{4}$ oe		
(iii)	$\frac{441}{1024}$ oe	2FT	M1 for $\left(\frac{7}{8} \times \frac{3}{4}\right)^2$ or <i>their</i>	((a)(ii)) ² oe	
(b)	175	2	M1 for $200 \times \frac{7}{8}$		
(c)	2400	2	M1 for 1575 ÷ <i>their</i> (a)(ii)	

				www.m.	mainscioud.com
Page 6	Mark So		e Syllabus P. May		
	Cambridge IGCSE – Oc	tober/No	vember 2016	0580 42	- nsch
Question	Answer	Mark	Part ma	arks	Sud.com
6 (a) (i)	1.32	2	M1 for $0.8 \times 1.5 \times 1.1$		~
(ii)	0.725 or 0.7246 to 0.7247	2	M1 for $\pi r^2 \times 0.8 = their(a)$ oe)(i) or $\pi r^2 = 1.5 \times 1$.1
(iii)	0.513 to 0.518 nfww	5	M1 for $2(1.5 \times 1.1 + 1.5 \times 0.8 + 1)$.1 × 0.8)	
			M1 for $[2 \times] \pi \times (their (a)$	(ii)) ²	
			M2 for $\pi \times 2 \times (their (a)(ii))$ or M1 for $\pi \times 2 \times (their (a))$		
(b) (i)	$\begin{array}{l} x + y \ge 9 \text{ oe} \\ y \ge 2 \text{ oe} \end{array}$	1 1	If zero scored, SC1 for $x + and y > 2$	- <i>y</i> > 9	
(ii)	Fully correct diagram with unwanted region shaded	4	B1 for $2x + 3y = 24$ ruled		
			B1 for $x + y = 9$ ruled		
			B1 for $y = 2$ ruled		
(iii)	20 [$x = $] 7 [$y =$] 2	1 1 1	If zero scored, SC1 for 2 <i>x</i> integers	+ 3y evaluated from	n

Page 7	Mark So Cambridge IGCSE – Oc		ember 2016	Syllabus 0580	MMN. MYMali 42
(a)	54.50 final answer	2	B1 for 54.495 to 54.49 or M1 for 200 ÷ 3.67	96 or 54.5	
(b) (i)	$\frac{1000}{x(x+1)}$ final answer	3	M1 for 1000 $(x + 1) -$ M1 for denominator <i>x</i>	1000 <i>x</i>	
(ii)	$\frac{1000}{x} - \frac{1000}{x+1} = 4.5[0] \text{ oe}$	M1	Allow <i>their</i> (b)(i) for f fraction	first M1 only f	or a single
	or $\frac{1000}{x(x+1)} = 4.5$ 1000 = 4.5x (x + 1) $4.5x^2 + 4.5x - 1000 = 0$ $9x^2 + 9x - 2000 = 0$	M1dep A1	Correctly multiplying denominator Equation reached with omissions and at least the denominators of th brackets included	out any errors	clearing
(iii)	$\frac{-9\pm\sqrt{9^2-4(9)(-2000)}}{2(9)}$	2	B1 for $\sqrt{9^2 - 4(9)(-20)}$ If in form $\frac{p + \sqrt{q}}{r}$ or B1 for $p = -9$ and $r = -9$	$\frac{p-\sqrt{q}}{r}$ then	
	- 15.42 14.42	B1 B1	SC1 for answers - 15.4 or - 15.42 to - and 14.4 or 14.41 to 1 or for - 14.42 and 15 or - 15.42 and 14.42 s	15.41 4.42 42 seen but not fir	
			Answers without wor or SC1	rking only sco	re B1, B1
(iv)	69.34 to 69.37 final answer must be 2 dp	2FT	FT 1000 \div <i>their</i> positi rounded up or down to or M1 for 1000 \div <i>their</i>	o 2 dp	answer

Page 8		Mark Scheme		
	Cambridge IGCSE – C	ovember 2016 0580 42		
(a)	[u =] 80 [v =] 160	1	Syllabus P. Main ovember 2016 0580 42	
(b)	6.24 or 6.244 to 6.245	3	M2 for $\sqrt{8^2 - 5^2}$ oe or M1 for $l^2 + 5^2 = 8^2$ oe or B1 for suitable right angled triangle drawn with 5 on correct side	
(c)	5.05 or 5.052	2	M1 for $\frac{4.8}{2.5} = \frac{9.7}{MN}$ oe	
(d)	4 nfww	4	M3 for $[x^n](x+1) = 4 \times \frac{5}{12} [x^n](x-1)$ oe, $n = 1, 2$ or 3	
			or M2 for $\frac{[x](x+1)}{\frac{5}{12}[x](x-1)} = \left(\frac{2[x]}{[x]}\right)^2$ oe	
			or M1 for 2^2 or $\left(\frac{1}{2}\right)^2$ soi	
(a) (i)	1.5 oe	1		
(ii)	$\frac{3}{y-2}$ oe final answer	3	M1 for correct removal of fraction M1 for collection of terms in x and factorises OR M1 subtracts 2 from both sides M1 multiplies by x to remove fraction and M1 for correct division by expression of the form $ay + b$, a and $b \neq 0$	
(b) (i)	-3	1		
(ii)	65 536 final answer	2	B1 for $h(16)$ oe e.g. $h(2^4)$	
(iii)	-6	2	M1 for $2 - x = 2^3$ oe	
(iv)	3	1		
0 (a)	7.5	2	M1 for $3x + x + 3x + x = 60$ oe	
(b)	5	3	B2 for $3x + 4x + 5x$ [= 60] or better or M1 for $(3x)^2 + (4x)^2$ oe	
(c)	16.8 or 16.80	3	M2 for $x + x + \frac{90}{360} \times \pi \times 2 \times x$ [= 60] oe	