

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS
Paper 2 (Extended)
MARK SCHEME
Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

mm.

			3. 2
Page 2	Mark Scheme	Syllabus	
	Cambridge IGCSE – October/November 2016	0580	23
	-		

Abbreviations

correct answer only cao

dependent dep

follow through after error FTignore subsequent working or equivalent isw

oe SCSpecial Case

not from wrong working nfww

seen or implied soi

Ques	stion	Answer	Mark	Part marks
1		36	1	
2		n^7 final answer	1	
3		В	1	
4 (a))	2.47×10^6	1	
(b))	7.9×10^{-3}	1	
5		$\frac{18}{30}$ and $\frac{5}{30}$ oe must be shown	M1	$\frac{18k}{30k}$ and $\frac{5k}{30k}$
		$\frac{23}{30}$ cao	A1	
6		Thursday	2	M1 for 5.4 found or at least two of: 3.8, 3.6 and 4 found
7		$0.4^2 \ 0.6^3 \ 0.22 \ \sqrt{0.09}$	2	M1 for decimal conversion 0.216 and 0.3 and 0.16
8		4.25 4.15	2	B1 for each or both answers reversed
9 (a))	A	1	
(b))	A ruled line joining (65, 23) to (80, 28)	1	
10 (a))	2.9[0] or 2.900 to 2.901	1	
(b))	3.17 or 3.172 to 3.173	1	
11		18 360	2	M1 for $34000 \times \left(1 - \frac{40}{100}\right) \times \left(1 - \frac{10}{100}\right)$ oe
12		32.7 or 32.72 to 32.73	2	M1 for $\left[\frac{1}{2} \times \right] \frac{4}{3} \times \pi \times \left(\frac{5}{2}\right)^3$

Page 3 Mark Scheme Syllabus P. The Hark Scheme Cambridge IGCSE – October/November 2016 0580 23 Part marks

Question	Answer	Mark	Part marks
13	$\frac{2}{9}$ oe, must be a fraction	2	M1 for $2.\dot{2} - 0.\dot{2}$ oe or B1 for $\frac{k}{9}$
14 (a)	30	1	
(b)	47.5	2	M1 for 4.5×5 oe
15 (a)	68	1	
(b)	9	2	M1 for 360 ÷ 40 oe or
			$\frac{180(n-2)}{n} = 140 \text{ oe}$
16	1.25	3	M1 for $d = \frac{k}{(w+1)^2}$ or better
			M1 for $[d=]$ $\frac{their k}{(7+1)^2}$
			or M2 for $3.2(4+1)^2 = d(7+1)^2$ oe
17	y = 2x oe	3	M1 for $\frac{1-3}{12-8}$ oe
			M1 for perpendicular gradient \times their $\frac{1-3}{12-8} = -1$
			oe If zero scored, SC1 for answer $y = kx \ k \neq 2$ or 0
18 (a)	25	1	
(b)	$\frac{x^2-3}{2}$ oe final answer	1	
(c)	2x + 3 final answer	2	M1 for correct first step, e.g. $x = \frac{y-3}{2}$ or $2y = x - 3$

Page 4 Mark Scheme Syllabus P. The Hark Scheme Cambridge IGCSE – October/November 2016 0580 23 Cloud Con Mark Part marks

Q	uestion	Answer	Mark	Part marks
19	(a)	Correct tangent	B1	No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x = 0.8$ and $x = 1.2$
		2.1 ≤ grad ≤ 3.9	2	dep on B1 M1 for $\frac{rise}{run}$ also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent
	(b)	(-2, 8)	1	
20	(a)	$\begin{array}{ c c c } \hline A & B \\ \hline 7 & \sqrt{5} \\ \hline 9.3 & \pi \\ 2\sqrt{8} \end{array}$	2	B1 for 3 elements in the correct place
	(b)	\mathcal{E} C D	1	
		\mathcal{E}	1	
21	(a)	14.4 or 14.42 to 14.43	2	M1 for $\frac{1}{2} \times 6.2 \times 4.7 \times \sin 82$ oe
	(b)	30.7 or 30.72	2	$\mathbf{M1} \text{ for sin} = \frac{2050}{\frac{1}{2} \times 107 \times 75}$
22		1 3.5 1	4	B3 for 2 correct B2 for 1 correct or M1 for 2, 7, [] and 2 seen [FDs]
23		$\frac{7n}{2t+3m}$ final answer	4	M1 for $7n(6p-1)$ seen and M2 for $(2t+3m)(6p-1)$ seen or M1 for $2t(6p-1) + 3m(6p-1)$ or $6p(2t+3m) - 1(2t+3m)$

Page 5 Mark Scheme Syllabus P. Thun All Harts Cloud Combridge IGCSE - October/November 2016 0580 23 Part marks

Question	Answer	Mark	Part marks
24	$y \le -\frac{3}{5}x + 6$ oe $x \ge 2$ oe y > x oe final answers	5	SC4 for $y < -\frac{3}{5}x + 6$, $x > 2$, $y \ge x$ oe or B3 for $y \le -\frac{3}{5}x + 6$ oe or B2 for $y = -\frac{3}{5}x + 6$ oe or B1 for gradient $= -\frac{3}{5}$ oe soi and B2 for $x \ge 2$ and $y > x$ oe or B1 for either $x \ge 2$ or $y > x$ oe or for $x = 2$ and $y = x$ with incorrect inequalities
25 (a)	СВ	1	
(b)	$\begin{pmatrix} 36 & -2 \\ 18 & -1 \end{pmatrix}$	2	B1 for two correct entries
(c)	$\frac{1}{47} \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 5 & 3 \\ -4 & 7 \end{pmatrix}$ seen or det = 47 soi
(d)	The determinant is 0 oe	1	