

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

MATHEMATICS
Paper 1 (Core)
MARK SCHEME
Maximum Mark: 56

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\bf @}$ IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

	wh. D	Mains Cloud Com
Syllabus	Pilly	
0580	11 %	The state of the s
		°C/0/1
		40,C0
		O/B

Abbreviations

Page 2

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Question	Answer	Mark	Part marks
1	Thirty million[s]	1	
2	-7	1	
3	$\frac{1}{8}$ cao	1	
4 (a)	[0].0402	1	
(b)	[0].040	1	
5	Fully correct triangle with correct arcs	2	B1 for correct triangle without arcs or for correct position of arcs If zero scored, SC1 for fully correct reversed triangle with arcs ie AB = 6 cm and AC = 7 cm or for triangle with only one of AB or AC correct length with suitable arcs
6	$\sqrt{0.33}$, 58%, $\frac{18}{31}$, $\frac{7}{12}$, 0.59	2	B1 for 4 in correct order or M1 for 3 of the following or better 0.583, 0.574, 0.58, 0.5806 or 58.5%, 57.4%, 58.06%, 59%
7	$\begin{pmatrix} 12 \\ -16 \end{pmatrix}$	2	B1 for one correct component or for $\begin{pmatrix} 10 \\ -12 \end{pmatrix}$ seen

Mark Scheme

Cambridge IGCSE - October/November 2016

			mm n 12
Page 3	Mark Scheme	Syllabus	P. Maria
	Cambridge IGCSE – October/November 2016	0580	11 9/1/20 75

8	$\frac{8}{12}$ and $\frac{3}{12}$ oe	M1	Correct fractions with common denominator
	$\frac{5}{12}$ cao	A1	
9	50.3 or 50.26 to 50.272	2	M1 for $2 \times \pi \times 8$ oe
10	216	2	M1 for 48 ÷ 2 [× 9]
11 (a)	Е	1	
(b)	0 or zero	1	
12 (a)	Positive	1	
(b)	Zero oe	1	
13 (a)	8	1	
(b)	6	2	M1 for ordered list of at least the first 6 or last 6 values provided any following work is an attempt at the median
14 (a)	72	1	
(b)	6	1	
(c)	17	1	
15	Correctly eliminating one variable	M1	
	[x =] -1 and $[y =] 5$	A1 A1	If zero scored, SC1 for 2 values that satisfy one of the original equations or SC1 if no working shown, but 2 correct
	Correctly eliminating one variable $[x =] -1$ and	M1 A1	SC1 for 2 values that satisfy or equations or

			mm m
Page 4	Mark Scheme	Syllabus	P. May
	Cambridge IGCSE – October/November 2016	0580	11 9//20 15
			O

16	(a)	Accurate arc, centre <i>B</i> , radius 5cm meeting both <i>BA</i> and <i>BC</i>	1	
	(b)	Accurate bisector through angle B with 2 pairs of correct arcs and reaching to at least AC	2	B1 for accurate line from <i>B</i> to at least <i>AC</i> or M1 for correct arcs
	(c)	Correct region identified	1	
17		24.9 or 24.925 or 24.9[24]	3	M2 for $[x =]$ $\frac{15}{\sin 37}$ or $[x =]$ $\frac{15}{\cos 53}$
				or M1 for sin $[37 =]\frac{15}{x}$ or $x \sin 37 = 15$ oe
18	(a)	6n + 1 oe final answer	2	B1 for $6n + c$ or for $kn + 1$, $(k \neq 0)$
	(b)	$(n+2)^2$ final answer	2	M1 for any quadratic expression or reaching second difference of 2
19	(a)	54	1	
	(b)	61 Angle[s] [in a] triangle [add to] 180	1	Independent mark
	(c) (i)	48	1	
	(ii)	42	1	FT 90 – <i>their</i> (c)(i) if <i>their</i> (c)(i) is acute

					P. May Mains
Page 5	Mark Scheme		Syllabus	P. My	
Cambridge IGCSE – October/November 2016				0580	11 9/1/2015
				•	11 THE CHOUCH
20 (a)	(1, 4)	1			OD, COM
(b)	Point plotted at $(5, -2)$	1			

		I	1	
20	(a)	(1, 4)	1	
	(b)	Point plotted at (5, -2)	1	
	(c)	Isosceles	1FT	Strict FT of their (b)
	(d)	$\begin{pmatrix} -4 \\ -6 \end{pmatrix}$	1	
	(e)	(-5, 3)	1	
21	(a)	2	2	M1 for one correct step
				e.g. $4x = 11 - 3$ or $x + \frac{3}{4} = \frac{11}{4}$ or better
	(b)	$[x =] \sqrt{\frac{y+2}{4}} \text{or} \sqrt{(y+2)/4}$ or $\frac{\sqrt{y+2}}{2}$ oe final answer	3	M1 for one correct step e.g. $y + 2 = 4x^2$ or $\frac{y}{4} = x^2 - \frac{2}{4}$ M1 for a further correct step
				e.g. $\frac{y+2}{4} = x^2$ or $\frac{y}{4} + \frac{2}{4} = x^2$