MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

www.nymathscloud.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Mark Scheme Cambridge IGCSE – October/November 2015

Page 2	Mark Scl	neme	Syllabus P. 37
	Cambridge IGCSE – Oct	ober/Novembe	er 2015 0580 41 41
Question	Answer	Mark	Part marks
(a)	6	3	B2 for $5\frac{1}{4}$ or 5.25 shown in working isw or M1 for $\frac{3}{4} \times 7$ soi by answer 5
(b)	21.45 cao final answer	2	M1 for 17.16 × 0.25 or 17.16 × 1.25
(c)	16.5[0] nfww	3	M2 for 17.16 ÷ 1.04 oe or M1 for 17.16 associated with 104[%] oe isw
(d)	1.34 cao final answer	2	M1 for $13.32 \div 0.72$ soi by $18.5[0]$ or for any correct complete longer method If zero scored, SC1 for 0.96 [euros] seen
(e) (i)	750	1	
(ii)	4.7 cao	3	B2 for 4.658 to 4.66 or M2 for $\sqrt{their(\mathbf{e})(\mathbf{i}) \div 11\pi}$ or M1 for $11\pi r^2 = their(\mathbf{e})(\mathbf{i})$
(iii)	6	2	M1 for 2 ³ or $\frac{1}{2^3}$ oe seen or for $\pi \times (2 \times their (e)(ii))^2 \times 22$ If zero scored, SC1 for answer 6 000
(f)	8950	1	
(g)	210	2	M1 for 0.07 × 3 000
(h)	160 000	3	M2 for $2 \times 60 \times 100^3 \div 750$ oe or M1 for figs 16 as answer or 100^3 seen
(a)	1.62 or 1.62	1	
(b) (i)	7	1	
(ii)	4	1	
(iii)	7	1	
(iv)	$\frac{1}{3}$ oe	1	

Mark Scheme Cambridge IGCSE – October/November 2015

Page 3	Mark Scher	Syllabus PL That	
	Cambridge IGCSE – Octob	er/Novembe	er 2015 0580 41 V
Qu	Answers	Mark	Part Marks
(c) (i)	0.25 oe and 1	2	B1 for each
(ii)	Correct curve	4	B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots
(iii)	2.3	1FT	Correct or FT where $y = 5$ on <i>their</i> graph
(iv)	y = 3x - 1 oe 3 term equation	3	B2 for $3x - 1$ or $y = 3x [+ c]$ oe or for $m = 3$ and $c = -1$
			or M1 for [gradient =] $\frac{8-2}{3-1}$ or so iby $3x$
			and M1 for substitution of $(1, 2)$ or $(3, 8)$ into <i>their</i> $y = mx + c$
(v)	-1.7 to -1.5 and 2	2	B1 for either or M1 for $y = x + 2$ seen or drawn
(a) (i)	25.4 or 25.35 nfww	5	M2 for $\sqrt{60^2 - 50^2}$ oe soi by 33.1 to 33.2 or M1 for $TB^2 + 50^2 = 60^2$ oe and M2 for tan $= \frac{theirTB}{70}$ oe or B1 for recognising angle <i>TCB</i> as required angle
(ii)	109 or 109.0 to 109.1	4	M2 for $50^2 + 70^2 - 2 \times 50 \times 70 \times \cos 130$ M1 for implicit cos rule A1 for 11 899 to 11 900
(iii)	1 340 or 1 340.0 to 1 341	2	M1 for $\frac{1}{2} \times 50 \times 70 \times \sin 130$ oe
(b)	51.5 or 51.50 to 51.51	4	M3 for $[XY] = \sqrt{45^2 + 22^2 + 12^2}$ or M2 for $[XY^2 =]$ 45 ² + 22 ² + 12 ² soi by 2653 or M1 for 45 ² + 22 ² oe or 45 ² + 12 ² oe or 12 ² + 22 ² oe

Mark Scheme Cambridge IGCSE – October/November 2015

Page 4	Mark Scheme Cambridge IGCSE – October	e /Novembe	sr 2015 0580 41 15	
Qu	Answers	Mark	Part Marks	
4 (a) (i)	$x \ge 5 \text{ oe}$ $y \le 8 \text{ oe}$ $x + y \le 15 \text{ oe}$ $y > x \text{ oe or } y \ge x + 1$	4	Condone $5 \le x \le 15$ Condone $0 < y \le 8$ B1 for each - 1 for first occurrence of strict inequalities used in first 3 inequalities	
(ii)	x = 5 ruled y = 8 ruled x + y = 15 ruled y = x ruled broken line	1 1 1 1	Allow $y = x + 1$ ruled only after $y \ge x + 1$ in (a)(i)	
	Correct region indicated	1dep	Dependent on all marks for lines earned Accept R written in correct quadrilateral or any other unambiguous indication or accept in triangle if $y = x + 1$ used and all marks for lines earned	
(b)	78	2	B1 for $(7, 8)$ chosen or M1 for a calculation shown of the form 6x + 4.5y where (x, y) is clearly in <i>their</i> region and both x and y are integers	
5 (a)	37 or [angle] <i>BAD</i>	1		
	[Angles in] same segment [are equal]	1dep	Dependent on 37 or [angle] BAD	
(b)	74 or 2 [× angle] <i>BAD</i> or 2 [× angle] <i>BED</i>	1		
	Angle at <u>centre</u> is twice angle at <u>circumference</u>	1dep	Dependent on 2×37 or $2 [\times angle] BAD$ or $2 [\times angle] BED$ Must use the terms circumference, centre and angle	
(c)	143 or 180 – [angle] <i>BAD</i> or 180 – [angle] <i>BED</i>	1		
	[Opposite angles of] cyclic quad [are supplementary]	1dep	Dependent on $180 - 37$ or $180 - [angle] BAD$ or 180 - [angle] BED	

Mark Scheme Cambridge IGCSE – October/November 2015

Page 5		Mark Sch Cambridge IGCSE – Octo	Syllabus P. J. er 2015 0580 41	
Qu		Answers	Mark	Part Marks
6 (a)		1.35 nfww	4	M1 for 0.5, 1.5, 2.5, 3.5, 4.5, 5.5 soi, M1 for Σfm soi by 162 where <i>m</i> is in correct interval including boundaries M1 dep for $\Sigma fm \div 120$ or $\Sigma fm \div \Sigma f$ dependent on second M1 earned
(b) (i)		93, 102, 113, 118	2	SC1FT for 1 error
(ii)		Correct diagram	3	 B1FT for correct vertical plots and B1 for correct horizontal plots and B1FT dep on at least B1 for reasonable increasing curve or polygon through <i>their</i> 6 points
				If zero scored, SC1FT for 5 out of 6 correct plots
(iii)	(a)	0.6 to 0.85	1	
	(b)	1.3 to 1.7	2	B1 for UQ = 1.7 to 1.9 or LQ = 0.2 to 0.4
	(c)	0.3 to 0.6	2FT	Allow in correct range provided there is no evidence of reading at 35 or FT <i>their</i> reading at 42 B1 for 42 soi
(c) (i)		30 and 18	2	B1 for each
(ii)		0.75 and 0.3	3FT	FT (<i>their</i> 30) ÷ 40 and (<i>their</i> 18) ÷ 60 B2FT for either 0.75 or 0.3 or M1 for <i>their</i> 30 ÷ 2 or ÷ 20 or for <i>their</i> 18 ÷ 3 or ÷ 20
7 (a)		123 to 127	1	
(b)		288 to 292	1	
(c)		[1:] 1 000 000	1	

Mark Scheme Cambridge IGCSE – October/November 2015

					mm. n. M
Page 6	Mark Scheme		S	yllabus	Pilna
	Cambridge IGCSE – October/	Novembe	r 2015	0580	41 102
Qu	Answers	Mark	Part	Marks	
(d)	Correct ruled perpendicular bisector of <i>CB</i> with correct arcs Correct two pairs of arcs	2	B1 for correct perper without/wrong arcs	ndicular bi	sector
	Correct ruled bisector of angle <i>ACB</i> with correct pair of arcs	2	B1 for correct bisected without/wrong arcs	or of angle	e ACB
	Ruled line parallel to <i>CB</i> in triangle	1	Provided this line is a bisector of AC	not the per	rpendicular
	1.3 to 1.7 cm from <i>CB</i> in triangle	1			
	Correct region indicated	1dep	Dependent on at leas	st B1,B1,1	,1 earned
(e)	40	2	M1 for 0.4×10^2 oe		
8 (a)	(x-5)(x+2) final answer	2	B1 for $(x - 5)(x + 2)$ or M1 for $(x + a)(x + a)(x + b) = -3$ or integers]	seen and t (-b) (-b) = -10	then spoiled [<i>a</i> , <i>b</i>
(b) (i)	x(x+2) + 3(x+1) = 3x(x+1) or $x^2 + 2x + 3x + 3 = 3x^2 + 3x$	M2	M1 for $x(x+2) + 3(x+2) + 3(x$	(x + 1) or b mitted brack k	better seen ckets for M
	$0 = 2x^2 - 2x - 3$	A1	Brackets expanded c errors or omission of	orrectly and for the brackets	nd/or no seen
(ii)	$\frac{[]2\pm\sqrt{([-]2)^2-4(2)(-3)}}{2(2)}$	B2	B1 for $\sqrt{([-]2)^2 - 4(0)^2}$ or $\sqrt{1.75}$ oe in comp	$\overline{(2)(-3)}$ or obletion of s	$\sqrt{28}$
	or $0.5 \pm \sqrt{1.75}$		and B1 for in form -	$\frac{p+\sqrt{q}}{r}$ or	$\frac{p-\sqrt{q}}{r},$
			p = -2 and $r = 2(2)or (x - 0.5)^2 oe in con$	2) or better mpletion o	of square
	– 0.823 and 1.823 final answer	B1 B1	If B0B0 for answers, SC1 for – 0.82 or – 1.82 or 1.822 as fin or – 0.823 and 1.823 or –1.823 and 0.823	, 0.822 a al answers seen as final an	nd S

			mm. M
Page 7	Mark Scheme Cambridge IGCSE – October/	Novembe	Syllabus P. Junation or 2015 0580 41
Qu	Answers	Mark	Part Marks
(c)	$\frac{x^2 + 3x + 3}{(x+2)(x+1)} \text{ or } \frac{x^2 + 3x + 3}{x^2 + 3x + 2} \text{ final}$	4	M1 for $(2x+3)(x+1) - x(x+2)$ oe isw
	answer nfww		B1 for common denominator = $(x + 2)(x + 1)$ isw or $x^2 + 3x + 2$ isw
			B1 for $2x^2 + 2x + 3x + 3$ or better or $-x^2 - 2x$ or $x^2 + 3x + 3$
) (a) (i)	16	1	
(ii)	n^2	1	
(b) (i)	43	1	
(ii)	7	1	
(c)	$a = \frac{5}{2}$ oe, $b = \frac{5}{6}$ oe with supporting working	6	M1 for any correct substitution eg $\frac{2}{3}(2)^3 + 2^2a + 2b$ A1 for one of eg $\frac{2}{3} + a + b = 4$ or better eg $\frac{16}{3} + 4a + 2b = 17$ or better
			eg $\frac{3}{54}$ + 9a + 3b = 43 or better
			A1 for another of eg $\frac{2}{3}$ + a + b = 4 or better eg $\frac{16}{3}$ + $4a$ + $2b$ = 17 or better eg $\frac{54}{3}$ + $9a$ + $3b$ = 43 or better
			M1 for correctly eliminating one variable from two of <i>their</i> equations in <i>a</i> and <i>b</i> A1 for $a = \frac{5}{2}$ oe A1 for $b = \frac{5}{6}$ oe After zero scored, SC2 for 2 correct answers without supporting working or SC1 for 2 of 17, 43, 86, 150, 239 seen

			mm. m. m
Page 8	Mark Scheme	Syllabus	P. M. Ast
	Cambridge IGCSE – October/November 2015	0580	41 4th
			°C/

Page 8	Mark Scheme Syllabus P. Mark				
	Cambridge IGCSE – Octob	er/Novembe	er 2015 0580 41 073 0580		
Qu	Answers	Mark	Part Marks		
10 (a)	$\mathbf{b} - \mathbf{a} \text{ or } - \mathbf{a} + \mathbf{b}$	1			
(b)	$\frac{4}{5}$ b - $\frac{3}{10}$ a or $\frac{1}{10}$ (8 b - 3 a)	4	B3 for correct unsimplified expression in a and b		
			or		
			M1 for $\overrightarrow{XA} + \overrightarrow{AC} + \overrightarrow{CM}$ or $\overrightarrow{XB} + \overrightarrow{BM}$		
			or $-\frac{1}{5}$ (their (a)) + b $-\frac{1}{2}$ a		
			or $\frac{4}{5}$ (their (a)) + $\frac{1}{2}$ a		
			and M1 indep		
			for $\pm \frac{1}{5}$ oe or $\pm \frac{4}{5}$ oe used		
			After zero scored, SC2 for answer $\frac{1}{2}$		
			$\frac{1}{4}(3\mathbf{b}-\mathbf{a}) \text{ or } \frac{3}{4}\mathbf{b}-\frac{1}{4}\mathbf{a}$		