MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

www.nymathscloud.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			www.m. 12
Page 2	2 Mark Scheme	Syllabus	P. Mar
	Cambridge IGCSE – October/November 2015	0580	21 91/20 15
Abbrevi cao dep	ations correct answer only dependent		MMM. Mymainscioud.com

Abbreviations

- correct answer only cao
- dep dependent
- \mathbf{FT} follow through after error
- ignore subsequent working isw
- oe or equivalent
- SC Special Case
- not from wrong working nfww
- seen or implied soi

Question	Answer	Mark	Part Marks
1	[+]17	1	
2		1	
3	Triangle (3, -2), (4, -2), (4, -1)	2	B1 for movement 2 right or 3 down
4	628	2	M1 for $\frac{785}{1+4} [\times 4]$
5	7 nfww	2	M1 for 7.5×8 or for $(7 + 8 + 8 + y + 6 + 9 + 10 + 5) \div 8 = 7.5$ or better oe
6	$\frac{\sqrt{4} \times 30}{9-3}$	M1	Allow one error and 2 for $\sqrt{4}$ and 6 for $9-3$
	10 nfww	A1	
7	18	2	M1 for $36 = 2 \times 2 \times 3 \times 3$ soi or $90 = 2 \times 3 \times 3 \times 5$ soi or listing the correct factors of 36 and 90 showing a minimum of 2, 3, 6, 9 and 18
8 (a)	90	1	
(b)	8.29 or 8.289 to 8.29	2	M1 for $\frac{OP}{11} = \tan 37^\circ$ oe

Page 3	Mark Scheme			Syllabus	Putto
	Cambridge IGCSE -	- Octob	er/November 2015	0580	21 97
9 (a)	(a+3c)(x+y) final answer	2	B1 for $a(x + y) + 3c(x + y)$ or $x(a + 3c) + y(a + 3c)$		P. 21
(b)	3(a-2b)(a+2b) final answer	3	B2 for $3(a-2b)(a+2b)$ seen a or $(3a-6b)(a+2b)$ or $(a-2b)(3a+6b)$ or $(a-2b)(a+2b)$ or B1 for $3(a^2-4b^2)$		
10	$\frac{14}{90}$ oe must be fraction	2	M1 for $15.\dot{5} - 1.\dot{5}$ oe or B1 for $\frac{k}{90}$		
11	31.4 or 31.36 to 31.37	3	M2 for $\left[\frac{2}{2}\times\right]6.1\times\pi+2\times6.1$ o or B2 for 19.16 to 19.17 or 19.2 or M1 for $6.1\times\pi$ or for $12.2\times\pi$	e	
12	81	3	M1 for $V = k(r+1)^3$ and A1 for $k = 3$ or M2 for $\frac{V}{24} = \frac{3^3}{2^3}$ oe		
13	$[\pm] \sqrt{\frac{y-b}{a}}$ oe final answer	3	 M1 for correctly subtracting to M1 for correct division M1 for the final stage of correct root 		
14	19 nfww	4	B3 19.3 or 19.28 to 19.29 or M2 for $\frac{300 \times 60^2}{56 \times 1000}$ oe or M1 for distance divided by spe e.g. <i>their</i> 300 ÷ <i>their</i> 56 or $\frac{56}{2000}$ If B0 then B1 for seeing their a correctly written to the nearest	$\frac{6 \times 1000}{60^2}$ nswer in deci	mal form

			an my my
Page 4	Mar - Cambridge IGCSE	k Schei	me Syllabus P. The second seco
		- 00:05	
15	$\frac{x+4}{x+1}$ final answer	4	meSyllabusP.er/November 2015058021B1 for $(x-4)(x+4)$ andB2 for $(x-4)(x+1)$ orSC1 for $(x+a)(x+b)$ where $a+b=-3$ or $ab=-4$
16	198	4	B3 for 197.7 or answer 198.00 or M2 for $1800 \times \left(1 + \frac{1.5}{100}\right)^7 - 1800$ or B2 for answer 1998 or M1 for $1800 \times \left(1 + \frac{1.5}{100}\right)^7$ If B0 then B1 for seeing their answer in decimal form correctly written to the nearest integer
17 (a)	Enlargement	1	
	$\frac{1}{2}$	1	
ļ	2 origin oe	1	
(b)	$\begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$ oe	2FT	correct or FT <i>their</i> (a) allow for 2 marks $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ where $k = their$ scale factor in (a) B1 for one correct row or correct column or $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ $(k \neq 0 \text{ or } 1)$
18 (a)	$\begin{pmatrix} -9 & -5 \\ -7 & -5 \end{pmatrix}$	2	B1 for two correct elements
(b)	$\begin{pmatrix} -9 & -5 \\ -7 & -5 \end{pmatrix}$ $\frac{1}{10} \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix} \text{ oe}$	2	B1 for $\frac{1}{10} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & 2 \\ -3 & 1 \end{pmatrix}$ seen or det = 10 soi
(c)	Not the same order oe	1	

Page 5	Mark Scheme			Syllabus	-P. n.
Ŭ	Cambridge IGCSE – October/November 2015			0580	21 9/
			1		
19	281 or 280.8 to 280.9	5	M2 for $\frac{25}{360} \times 2 \times \pi \times 15 \times 5$ oe or M1 for $\frac{25}{360} \times 2 \times \pi \times 15$ oe and M1 for $[2] \times \frac{25}{360} \times \pi \times 15^2$ oe and B1 for $15 \times 5 [\times 2]$		MWW, MYM34
20 (a)	0.16 oe	2	M1 for 0.4 × 0.4 If zero scored SC1 for fully co involving a without replacement		d method
(b)	0.58 oe	4	M3 for $1 - (0.4^2 + 0.5^2 + 0.1^2)$ or M2 for $0.4^2 + 0.5^2 + 0.1^2$ ALT method M3 for $0.4 \times (0.5 + 0.1) + 0.5 \times (0.4 + 0.5)$ or M2 for addition of any three of $0.4 \times 0.5, 0.4 \times 0.1, 0.5 \times 0.4, 0.2)$ and 0.1×0.5 or M1 for addition of any two of: $0.4 \times 0.5, 0.4 \times 0.1, 0.5 \times 0.4, 0.2)$ and 0.1×0.5 If zero scored SC2 for fully co involving a without replacement	.1) + 0.1×(0.4 f: 5×0.1, 0.1×0. 5×0.1, 0.1×0.	4
21 (a)	512	2	B1 for $[f(2) =]8$ or M1 for $(x^3)^3$ or better		
(b)	6x - 2 or $2(3x - 1)$ final answer	2	B1 for $3(2x+1) - 5$ or better		
(c)	$\frac{1}{2}(x-1)$ oe	2	M1 for correct first step eg $y-1 = 2x$ or $\frac{y}{2} = x + \frac{1}{2}$ or $x = 2y + 1$ or better		