www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version		h. 3. 3.
		IGCSE – October/November 2011	0580	Mynay, Walls
Abbr	eviations			19the Ju
cao	correct answ	•		20/0
cso	correct soluti	on only		401
dep	dependent			0.0
ft	follow throug	gh after error		CON
isw	ignore subsec	quent working		.7
oe	or equivalent			

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www anything rounding to art seen or implied soi

Qu.		Answers	Mark	Part Marks
1	(a)	(i) 14.62 final answer	3	M2 for 0.85 × 20 × 0.86 oe soi by 14.6(0) or M1 for 0.85 × 20 soi by 17 or 0.85 × 0.86 soi by 0.731
		(ii) 20 www	3	M2 for 16.40 /0.82 oe or M1 for 16.40 associated with 82%
		(iii) 135 www	2	M1 for $(108 \times 5)/4$
	(b)	c + 4d = 27.10 oe	B1	Could use other variables but must be consistent
		c + 7d = 34.30 oe	B1	
		Elimination of one variable	M1	M1 for correct elimination of one variable from their equations – condone 1 arithmetic slip
		(c =) 17.5(0) and $(d =) 2.4(0)$	A1	Correct answers from no working scores SC1 only
	(c)	36 cao	3	B1 for 7h 30 min or 7.5 or 450 (mins) seen and M1 for $270/t$ where $7 \le t \le 9$
	(d)	606.744 or 606.74 or 606.7(0) or 607	2	M1 for $540 \times (1.06)^2$ oe but not $(1 + 6\%)^2$ unless recovers For step by step method, must see $572.4(0)$ and a correct method for the second year M0 if any further addition or subtraction

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – October/November 2011	0580

Page 3 Mark Scheme: Teache			Mark Scheme: Teach	ers' ve	ersion Syllabus	
	J		IGCSE – October/Nov		r 2011 0580	
					Air ins	
2	(a)	(i)	39	2	B1 for $(f(2) =) 6$ or 6^2 seen or $(4x - 2)^2 + 3$	
		(ii)	$\frac{8}{x} + 2 \text{ or } \frac{8+2x}{x} \text{ or } \frac{2(4+x)}{x}$ or $8x^{-1} + 2$ final answer	2	Syllabus The price The	.0M
	(b)	-2.5	5 oe	2	M1 for $2 + x = 0.2x$ oe or $\frac{2}{x} = 0.2 - 1$ or better	
	(c)	2.2	oe	2	M1 for $\frac{2}{\frac{5}{3}}$ ee + 1 allow 1.66 to 1.67 for 5/3	
					or $\frac{2}{\frac{2}{x}+1}+1$	
	(d)	(i)	$4x - 2 = \frac{2}{x} + 1$		oe with these four terms	
			At least 1 intermediate step and $4x^2 - 3x - 2 = 0$	E1	No errors	
		(ii)	$\frac{-(-3) \pm \sqrt{(-3)^2 - 4(4)(-2)}}{2(4)}$	B1 B1	B1 for $\sqrt{(-3)^2 - 4(4)(-2)}$ or better (41)	
					and in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$	
					B1 for $-(-3)$ and $2(4)$ or better	
			1.18 and -0.43 cao	B1B1	SC1 for 1.18 and -0.43 seen or 1.2 <u>and</u> -0.4 or 1.17 <u>and</u> -0.425	
3	(a)	Ref	lection only	B1	Two transformations scores 0	
		$x = \frac{1}{2}$	−1 oe only	B1		
	(b)	(i)	Triangle (-1, 2) (-1, 6) (-3, 6)	B2	B1 for vertices plotted only or for clockwise rotation about (0,0)	
		(ii)	Triangle $(-1, -2)(-1, -6)(-3, -6)$	B2	B1 for vertices plotted only or for reflection in $x = y$	
		(iii)	Triangle $(1,-1)(7,-1)(7,2)$	B2	B1 for vertices plotted only or for enlargement by 1.5 with correct orientation	
	(c)	(i)	Triangle drawn at (2, 3) (6, 7) (6, 9)	3	B2 for 2 correct vertices plotted or SC2 for 3 correct coordinates shown in working or SC1 for any 2 correct coordinates or M1 for $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 6 & 6 \\ 1 & 1 & 3 \end{pmatrix}$	
		(ii)	Shear (only)	B1	Two transformations scores 0	
			y axis invariant	B1	or $x = 0$ invariant	
			(factor) 1	B1		
	(d)	$\begin{pmatrix} 0 \\ -1 \end{pmatrix}$	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	B2	B1 for either column or row correct	

			4	1
Page 4	Mark Scheme: Teachers' version	Syllabus	·3.	
	IGCSE – October/November 2011	0580	1/2	Q.

					70
4	(a)	(i)	28 cao	2	M1 for $\frac{350 \times 16}{200}$ oe
					or $350 \div 12.5$ oe or 1.75×16 oe
		(ii)	420	2ft	ft for their 28 ×15
					M1 for their $28 \times \frac{240}{16}$ or $\frac{350 \times 240}{200}$ oe
					or 1.75 × 240 oe
	(b)	(r ³	$=)\frac{3\times1080}{4\pi}$ oe	M1	Correct rearrangement soi by 257 to 258
		(r =	$\sqrt[3]{\frac{3 \times 1080}{4\pi}}$ oe	M1dep	Dependent on previous M1
		6.36	or 6.37 www	A1	6.364 to 6.366
	(c)	(i)	24	B1	
		(ii)	232 (231.6 to 232.2)	3	M1 for $\pi \times 2.5^2 \times 1.8$ (soi by 35.3 to 35.4) or area = 20×30 – their $24 \times \pi \times 2.5^2$ (soi by 128.7 to 129) and M1dep for $1080 - (\pi \times 2.5^2 \times 1.8) \times$ their 24 or their area $\times 1.8$
5	(a)	63.4	15 or 63.5 cso	4	M1 for 10, 30, 45, 55, 65, 75, 85, 95 At least 6 correct mid-values soi and M1 for $\sum fx$ $(6 \times 10 + 12 \times 30 + 20 \times 45 + 5 \times 95)$ (12690) where x is in the correct interval allow one further slip and M1 for their $\sum fx \div 200$ dep on second M1
	(b)	(i)	75 117 195 200	B2	B1 for 2 or 3 correct
		(ii)	8 correct points plotted	P3ft	P2ft for 6 or 7 P1ft for 4 or 5
			Curve (or polygon) correct through 8 points	C1ft	ft their increasing curve only if at least B1 in (b)(i) . Ignore $t = 0$ to 20
	(c)	(i)	65 to 67	B1ft	Or ft their curve at $cf = 100$
		(ii)	52 to 55	B1	
		(iii)	21 to 24	B1	
		(iv)	44 to 52	B1	Must be integer
		(v)	Integer value of 200 – reading at 45 secs	2ft	B1ft for integer value of reading at 45 secs

Page 5	Mark Scheme: Teachers' version	Syllabus	.7
	IGCSE – October/November 2011	0580	

					h	in,	4
	Page 5				Syllabus	+, Wr	4
		IGCSE – October/Nov	/ember	2011	0580	- M	OL STA
	<u> </u>		T	T			The same
6	(a)	(i) 141 (141.3 to 141.4)	2	M1 for $\pi \times 4$.	5 ×10		6/0/
		(ii) 8.93 (8.93)	3	M2 for $\sqrt{10^2}$ or M1 for h^2	-4.5^2 + $4.5^2 = 10^2$ implie	ed by 79.75	oetter Con
	(b)	(i) 2.98 or 2.976 to 2.977	2ft	ft their (a)(ii) M1 for their (et to 3sf or b	petter
		(ii) Answer rounds to 15.7	2ft	or $\pi \times 1.5 \times \sqrt{}$	$\div 9 \text{ correct to } 3 \text{ sf}$ $their 2.98^2 + 1.5^2$	- !	
				or $\pi \times 1.5 \times \sqrt{}$	(a)(i) ÷ 9 or $\pi \times 1.5$ their 2.98 ² + 1.5 ²	!	
	(c)	535 or 536 (534.9 to 535.8)	5	(7.0685 or 63 and M1 for the (large cone S.)	of one circle $\pi \times 1$.617) neir (a)(i) – their (A – small cone SA 41 - 15.7) $2 \times \pi \times 9$ (curved	(b)(ii) (A) (= 125.3 to area of cyline)	125.7)
				and M1 for co	orrect collection o	of 4 areas	
7	(a)	8.7, -3.2, -10	В3	8.66() or 8.6 B1 for each c	67, -3.24, -9.99 if orrect value	given to 2	dp
	(b)	6 correct points plotted	P2ft	P1ft for 5 or	4 correct		
		Smooth curve through 6 points and correct shape	C1ft	C0 if curve co	rosses y-axis		
	(c)	Ruled tangent drawn at $x = 2$	T1	Not chord, all	low slight dayligh	ıt	
		Rise/run (using correct scales)	M1	Dep T1			
		3.4 to 4	A1				
	(d)	k > 1.85 or $k >$ any value greater than 1.85	B1	Accept ≥ Igno	ore $k < \text{any value}$	greater thar	1.85
	(e)	(i) Correct ruled line for $-3 \le x \le 3$	B2	complete line or any ruled l			
		(ii) -1.75 to -1.9	B 1				
	(f)	(i) $x^2 + \frac{1}{x} = x + 2$	B2	B1 for $x^2 - x$	$x - 2 + \frac{1}{x} = 0$ oe	seen	
				or $1 + x^3 = x^2$	+2x seen		
		(ii) $(y =) x + 2$	B1ft	or their $ax + b$	b numerical $a \neq$	$0 \text{ and } b \neq 0$)

			4	1
Page 6	Mark Scheme: Teachers' version	Syllabus	·3.	2
	IGCSE – October/November 2011	0580	2/2	63
				- CZ

				ı	100 m
8	(a)	(i)	$3^2 + 5^2 - 2 \times 3 \times 5 \cos 45$	M2	M1 for correct implicit version
			3.575 or 3.576 cao	E2	A1 for 12.78 to 12.8
		(ii)	36.3 to 36.4	3	M2 for $(\sin BCA =) \frac{3 \times \sin 45}{\text{their } 3.58}$
					or M1 for $\frac{\sin BCA}{3} = \frac{\sin 45}{\text{their } 3.58}$ oe
	(b)	(i)	76	B1	
		(ii)	17.4 or 17.42 to 17.44	3	M2 for $0.5 \times 3 \times 5 \times \sin 45 + 0.5 \times 5 \times 5 \sin \text{ their } (b)(i)$ 5.3033 + 12.1286 or M1 for $0.5 \times 3 \times 5 \times \sin 45$ or $0.5 \times 5 \times 5 \sin \text{ their } (b)(i)$
	(c)	48.2	2 (48.18 to 48.19)	2	M1 for $\cos PAB = \frac{2}{3}$ oe

			4	1,
Page 7	Mark Scheme: Teachers' version	Syllabus	·3.	1
	IGCSE – October/November 2011	0580	1/2	

	ı				102
9	(a)	(i)	$\frac{120}{336}$ oe $\frac{5}{14}$ 0.357(1)	3	Accept fraction, %, dec equivalents (3sf or bethroughout but not ratio or words isw incorrect cancelling/conversion to other forms Pen –1 once for 2sf answers M2 for $\frac{6}{8} \times \frac{5}{7} \times \frac{4}{6}$
		(ii)	$\frac{180}{336}$ oe $\frac{15}{28}$ 0.536 or 0.5357	3	or M1 for $\frac{5}{7}$ seen M2 for $\frac{2}{8} \times \frac{6}{7} \times \frac{5}{6} + \frac{6}{8} \times \frac{2}{7} \times \frac{5}{6} + \frac{6}{8} \times \frac{5}{7} \times \frac{2}{6}$
					Accept $3 \times \frac{2 \times 5 \times 6}{6 \times 7 \times 8}$ or M1 for $\frac{2 \times 5 \times 6}{6 \times 7 \times 8}$ oe seen $(\frac{60}{336}$ oe $\frac{5}{28})$
	(b)	(i)	$\frac{x}{25} \times \frac{x-1}{24} = \frac{7}{100}$	M2	M1 for $\frac{x}{25}$ or $\frac{x-1}{24}$ seen
			$\frac{x^2 - x}{600} = \frac{7}{100}$		
			or $x(x-1) = \frac{7}{100} \times 25 \times 24$	M1	Or better, min requirement is $x^2 - x = 7 \times 6$
			$x^2 - x - 42 = 0$	E1	With no errors or omissions
		(ii)	(x+6)(x-7)	B2	SC1 any other $(x + a)(x + b)$ where $a \times b = -42$ or $a + b = -1$
		(iii)	-6, 7	B1ft	Correct or follow through dep on at least SC1 in (b)(ii)
		(iv)	18	B1ft	Correct or ft 25 – their positive integer solution Dep on pos and neg answer to (b)(iii) Answer must be positive integer