## www.mymathscioud.com MARK SCHEME for the October/November 2011 question paper

## for the guidance of teachers

## **0580 MATHEMATICS**

0580/23

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.



|     |                               |                                | why 1                               | A   |
|-----|-------------------------------|--------------------------------|-------------------------------------|-----|
| Pag | ge 2                          | Mark Scheme: Teachers' version | Syllabus 5                          |     |
|     |                               | IGCSE – October/November 2011  | 0580                                |     |
| cso | correct answ<br>correct solut | 5                              | Syllabus<br>0580<br>N.M. Mathscioud |     |
| -   | dependent                     |                                | 4.                                  | 0   |
|     |                               | igh after error                |                                     | ~0~ |
|     |                               | equent working                 |                                     | 1   |
| oe  | or equivalen                  | ht                             |                                     |     |

## Abbreviations

| cao | correct answer only        |
|-----|----------------------------|
| cso | correct solution only      |
| dep | dependent                  |
| ft  | follow through after error |
| isw | ignore subsequent working  |
| 00  | or aquivalant              |

oe or equivalent

SC Special Case

without wrong working www

| Qu. | Answers                                                                                | Mark | Part Marks                                                                                                  |  |  |
|-----|----------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------|--|--|
| 1   | 112                                                                                    |      | <b>M1</b> for $240 \div (7+8) \times 7$                                                                     |  |  |
| 2   | (a) 211 cao                                                                            | 1    |                                                                                                             |  |  |
|     | <b>(b)</b> 216 cao                                                                     | 1    |                                                                                                             |  |  |
| 3   | (x =) -3 $(y =) 5$                                                                     | 2    | M1 for correctly eliminating one variable                                                                   |  |  |
| 4   | $\frac{16}{81}$ cao                                                                    | 2    | <b>B1</b> for $\frac{81}{16}$ , $\frac{k}{81}$ , $\frac{16}{k}$ or $(2/3)^4$ seen                           |  |  |
| 5   | (a) $1.28 \times 10^5$                                                                 | 1    |                                                                                                             |  |  |
|     | <b>(b)</b> 128 500                                                                     | 1    |                                                                                                             |  |  |
| 6   | 882                                                                                    | 2    | <b>M1</b> 800 × 1.05 × 1.05                                                                                 |  |  |
| 7   | $\frac{1}{9}, \frac{1}{4}$                                                             | M1   | Both fractions seen                                                                                         |  |  |
|     | $\left(\frac{1}{9} + \frac{1}{4} = \right)\frac{4}{36} + \frac{9}{36} = \frac{13}{36}$ | E1   | Both fractions over a common denominator and added to give $\frac{13}{36}$                                  |  |  |
| 8   | 0.186                                                                                  | 2    | <b>B1</b> for 2.477 to 2.478 or 13.29 seen                                                                  |  |  |
| 9   | (a) 5 or -5                                                                            | 1    |                                                                                                             |  |  |
|     | <b>(b)</b> -0.714 (-0.7143 to -0.7142) or $-\frac{5}{7}$                               | 2    | <b>M1</b> for $-2 + 2 + 1 - 3 - 1 - 2$ and $\div 7$                                                         |  |  |
| 10  | 9 h 12 min                                                                             | 3    | M1 for 8 × 1.15 A1 for 9.2<br>B1 ft independent for their 9.2 correctly<br>converted into hours and minutes |  |  |
| 11  | x(p-2q)(p+2q)                                                                          | 3    | M2 for $(px - 2qx)(p + 2q)$ or $(p - 2q)(px + 2qx)$<br>or M1 for $x(p^2 - 4q^2)$                            |  |  |
| 12  | 225.(23112)                                                                            | 3    | <b>M2</b> for (800 ÷ 3.8235 – 150) × 3.8025<br><b>M1</b> for 800 ÷ 3.8235                                   |  |  |
| 13  | 68.5 www                                                                               | 3    | <b>M2</b> for 67.13 ÷ 0.98<br>or <b>M1</b> for 67. 13 is 98%                                                |  |  |
| 14  | $66\frac{2}{3}$ or 66.7 www                                                            | 3    | <b>M2</b> for $\frac{\frac{4}{3}\pi r^3}{\pi r^2(2r)}$ (× 100) or <b>M1</b> for $\pi r^2(2r)$               |  |  |
| 15  | $p = \frac{c}{a - x}$                                                                  | 3    | M1 one correct move<br>M1 second correct move<br>M1 third correct move marked on answer line                |  |  |

|    |                                                                       |                                                                 |          |                                                                                                                                                 | 4                                                                                   | 'nn.                                       | AMA ASHIS<br>SILINSCIOUD.COL |  |
|----|-----------------------------------------------------------------------|-----------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------|------------------------------|--|
| F  | Page 3                                                                | Mark Scheme: Teachers' version<br>IGCSE – October/November 2011 |          | Syllabus                                                                                                                                        | + 7/2                                                                               | 24                                         |                              |  |
|    |                                                                       | IGCSE – October/                                                | November | 2011                                                                                                                                            | 0580                                                                                |                                            | A CAT                        |  |
| 16 | (a) $t = 2$                                                           | $\sqrt{l}$                                                      | 2        | <b>M1</b> for $t = k$                                                                                                                           | $\sqrt{l}$                                                                          |                                            | inscl                        |  |
|    | <b>(b)</b> 3                                                          |                                                                 |          | Ft dependent                                                                                                                                    | ULA .                                                                               |                                            |                              |  |
| 17 | (ii)                                                                  | 7                                                               | 1        |                                                                                                                                                 |                                                                                     |                                            | .00                          |  |
|    | (ii)                                                                  | 4                                                               | 1        |                                                                                                                                                 |                                                                                     |                                            |                              |  |
|    | <b>(b)</b> $\frac{7}{13}$                                             | oe                                                              | 1ft      | Ft their Venn diagram or their (a)(i)/13                                                                                                        |                                                                                     |                                            |                              |  |
| 18 | $\frac{1-5x+x}{x(1-2x)}$                                              | $\frac{x^2}{x^2}$ or $\frac{1-5x+x^2}{x-2x^2}$                  | 4        | M1 for $(1 - x)(1 - 2x) - x(2 + x)$ seen<br>B1 for $1 - x - 2x + 2x^2$ or $1 - 3x + 2x^2$ seen<br>B1 for $x(1 - 2x)$ oe as a common denominator |                                                                                     |                                            |                              |  |
| 19 | 4.32                                                                  |                                                                 | 4        | <b>M1</b> for $\frac{50}{360} \times \pi \times 9^2$                                                                                            |                                                                                     |                                            |                              |  |
|    |                                                                       |                                                                 |          | M1 for $0.5 \times 9^2 \times \sin 50$<br>M1 for subtracting their triangle from their sector (dependent on at least M1)                        |                                                                                     |                                            |                              |  |
| 20 | (a) (i)                                                               | (a) (i) $2 \times 2$                                            |          |                                                                                                                                                 |                                                                                     |                                            |                              |  |
|    | (ii)                                                                  | (20)                                                            | 1        | Brackets esse                                                                                                                                   | ential                                                                              |                                            |                              |  |
|    | <b>(b)</b> $\frac{1}{2} \begin{pmatrix} - & - \\ - & - \end{pmatrix}$ | $\begin{pmatrix} 4 & -3 \\ 2 & 2 \end{pmatrix}$ oe              | 2        | <b>M1</b> for $\frac{1}{2} \begin{pmatrix} a \\ c \end{pmatrix}$                                                                                | $\begin{pmatrix} b \\ d \end{pmatrix}$ or $k \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ | $\begin{pmatrix} -3\\2 \end{pmatrix}$ seen |                              |  |
| 21 | <b>(a)</b> 84(.0                                                      | (a) 84(.00)                                                     |          | <b>M2</b> for cos (.                                                                                                                            | $\dots) = \frac{2.7^2 + 4.5^2 - 2 \times 2.7 \times 4}{2 \times 2.7 \times 4}$      | $\frac{5^2}{5}$ or                         |                              |  |
|    |                                                                       |                                                                 |          |                                                                                                                                                 | $2.7^2 + 4.5^2 - 2 \times 2$<br>5 (implied by co                                    |                                            |                              |  |
|    | <b>(b)</b> 136                                                        |                                                                 | 1ft      | 220 – their (a                                                                                                                                  |                                                                                     |                                            |                              |  |
| 22 | (a) Angl                                                              | es in same segment                                              | 1        |                                                                                                                                                 |                                                                                     |                                            |                              |  |
|    | (b) (i)                                                               | 8.2(0)                                                          | 2        | <b>M1</b> for $\frac{CX}{3.84}$                                                                                                                 | $=\frac{9.4}{4.4}(=2.136)$ o                                                        | e                                          |                              |  |
|    | (ii)                                                                  | 24.7                                                            | 2        | <b>M1</b> for $\frac{\Delta}{5.41}$                                                                                                             | $=\left(\frac{9.4}{4.4}\right)^2 (= 4.564)$                                         | oe                                         |                              |  |
| 23 |                                                                       | $3(3)$ or $\frac{2}{15}$                                        | 2        | <b>M1</b> for 40 ÷                                                                                                                              | 300 seen                                                                            |                                            |                              |  |
|    | <b>(b)</b> $33\frac{1}{3}$                                            | or 33.3                                                         | 3        |                                                                                                                                                 | under graph attemp<br>ect total area statem                                         |                                            |                              |  |