www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				h 1
Page 2		Mark Scheme: Teachers' version	Syllabus	
		IGCSE – October/November 2010	0580	12
Abbr	eviations			· Mymarns
cao	correct answ	er only		°C/6
cso	correct solut	ion only		Cloud
dep dependent				.0
ft follow through after error				0
isw	ignore subse	quent working		
oe	or equivalen	$ar{t}$		

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www anything rounding to art seen or implied soi

Qu.	Answers	Mark	Part Marks
1	(a) (i) 1088 (ii) Their 1088 × 2	2	M1 for 3136 ÷ (17 + 32) soi by 64 or 2048
	and (3136 – their 1088) × 4.5 2176 + 9216	M1 E1	2048 may be 32 × 64
	(b) 11.9 to 11.9031 www	3	M2 for $\frac{(12748 - 11392) \times 100}{11392}$ oe
			or M1 for $\frac{12748 - 11392}{11392}$ soi by 0.1119
			or $\frac{12748}{11392}$ (×100) soi by 111.9 or 112 or 1.119
	(c) 8900	3	M2 for 11392 ÷ 1.28 oe or M1 for 11392 = 128(%) oe
2	(a) (i) Correct reflection $(1,-1)$ $(4,-1)$ $(4,-3)$	2	SC1 for reflection in <i>y</i> -axis or vertices only of correct triangle
	(ii) Correct rotation (-1, 1) (-1, 4) (-3, 4)	2	SC1 for rotation 90 clockwise about O or vertices only of correct triangle
	(iii) Reflection only	1dep	Two transformations scores 0 Dependent on at least SC1 scored in both (i) and
	y = x oe or $y = -x$ oe	1	Only from 2 and 2 or SC1 and SC1 scored Only from 2 and SC1 or SC1 and 2 scored
	(b) (i) $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ oe	2	B1 for either column correct or determinant = 1
	(ii) Rotation, 90° clockwise, origin oe	2	B1 for rotation and origin B1 for 90° clockwise oe

Page 3	Mark Scheme: Teachers' version	Syllabus	1.2. A
	IGCSE – October/November 2010	0580	1/2 /3.
•			72

3	(a) $72 - 2x$ oe seen $x (72 - 2x) = 72x - 2x^2$	M1 E1	No errors or omissions
	(b) $2x(36-x)$ or $-2x(x-36)$	2	isw solutions B1 for answers $2(36x - x^2)$ or $x(72 - 2x)$ or correct answer spoiled by incorrect simplification
	(c) 630, 640, 70	3	B1 for each correct value
	(d) 8 correct plots	P3ft C1	ft for their values ft P2 for 6 or 7 correct plots ft P1 for 4 or 5 correct plots Curve of correct shape through minimum of 7 of their points No ruled sections
	(e) (i) 7.5 to 8.5 27.5 to 28.5 (ii) 641 to 660	2	B1 for either value correct
	(f) 41	2	M1 for 500 ÷ 12 soi by 41.6 to 42
4	(a) $1.5^2 + 2^2$ (l =) 2.5 $\pi \times 1.5 \times \text{their } 2.5$ $2 \times \pi \times 1.5 \times 4$ Addition of their areas for cone and cylinder 49.45 to 49.5	M1 A1 M1 M1 M1	soi by 6.25 May be on diagram Their $2.5 \neq 2$ soi by 11.77 to 11.8 or 3.75π soi by 37.68 to 37.715 or 12π soi by 15.75 π This M mark is lost if any circles are added www 6
	(b) (i) $\pi \times 1.5^2 \times 4$ $\frac{1}{3}\pi \times 1.5^2 \times 2$ Addition of their volumes 32.9(7) to 32.99 (ii) 84(.0) to 84.1 www	M1 M1 M1 E1 3	soi by 28.26 to 28.3 or 9π soi by 4.71 to 4.72 or 1.5π 10.5π implies M3 M1 for $\frac{1}{2}\pi \times 0.5^2$ soi by 0.392 to 0.393 or $\frac{\pi}{8}$ and M1 for their $33 \div (\frac{1}{2}\pi \times 0.5^2)$ soi by $264/\pi$ or SC1 for 42 to 42.1 as answer
	(c) (i) 33000 (ii) 18min 20s cao	1 2	M1 for their 33000 ÷ 1800 soi by 18.3(3) or correct in mins and secs for their 33000

			4 1 2 0
Page 4	Mark Scheme: Teachers' version	Syllabus	· 2
	IGCSE – October/November 2010	0580	1/2 () () () ()
			All Color

	<u> </u>			The state of the s
5	(a) 8 cor	rect plots	Р3	P2 for 6 or 7 correct plots P1 for 4 or 5 correct plots
	Ioine	ed by curve or ruled lines	C1ft	P1 for 4 or 5 correct plots ft their points
	Joine	d by curve of futed files	CIII	Must join minimum of 7 points
	(b) (i)	161 to 162	1	1
		171 to 172	1	
	(iii)	Their (b)(ii) – 150	1ft	Strict ft provided > 0
	(c) (i)	$\frac{55}{200}$ oe $\left(\frac{11}{40}\right)$	1	isw incorrect cancelling for both parts of (c)
	(ii)	$\frac{1100}{39800}$ oe $\left(\frac{11}{398}\right)$	3	M2 for 2 × their $\frac{55}{200}$ × $\frac{10}{199}$ oe soi by 0.0276
				or M1 for their $\frac{55}{200} \times \frac{10}{199}$ oe $\left(\frac{11}{796}\right)$ soi by
				0.0138
	(d) (i)	30, 35, 20	2	B1 for 1 correct value
		Blocks in correct position		
		w = 1 cm, fd = 4	1	
		w = 1 cm, fd = 6 w = 2 cm, fd = 3.5	1ft 1ft	Strict ft from their 30 unless 0
		w – 2cm, 1d – 3.3	111	Strict ft from their 35 unless 0
6	(a) (i)	13 cao www	2	M1 for $\frac{PQ}{19.5} = \frac{11}{16.5}$ oe or sf = 2/3 or 1.5 seen
				or correct trig
	(ii)	10.39 to 10.4 www	3	M2 for $\sqrt{19.5^2 - 16.5^2}$ or explicit trig
				or M1 for $x^2 + 16.5^2 = 19.5^2$ or implicit trig
	(iii)	57.76 to 57.81 www	2	M1 for $\sin = \frac{16.5}{19.5}$ oe
	(iv)	655 to 655.4	2	M1 for $0.02 \times (32)^3$
	(b) (i)	163.5 to 164 www	4	M2 for $67^2 + 105^2 - 2 \times 67 \times 105\cos 143$ or M1 for implicit form A1 for 26732 to 26896
	(ii)	100.8 to 100.9 or 101 www	4	B1 for (DEF =) 78° May be on diagram
				and M2 for $\frac{105 \times \sin 70}{\sin \text{ their } 78}$ provided their $78 \neq 32$ or 70
				FF 105
				of WH for $\frac{1}{\sin 70} - \frac{1}{\sin \frac{1}{8}}$ be their $\frac{1}{8} \neq 32$
				or 70

			4	1.
Page 5	Mark Scheme: Teachers' version	Syllabus	·3.	2
	IGCSE – October/November 2010	0580	ールカ	% 3.
		· ·		

		1	974
7	(a) $w = 59$ (angle in) isosceles (triangle)	1 1	The marks for the reasons are dependent correct angle or correct ft angle Any incorrect statement in reason loses that mark
	x = 31 (angle in) semicircle (= 90) oe	1 ft 1	ft 90 – their <i>w</i> Allow diameter
	y = 62 (angles in) same segment	1	
	or (on) same arc (are =)	1	
	z = 28 (angles in) triangle (= 180)	1 ft 1	ft $180 - \text{their}(w + x + y)$ or $90 - \text{their } y$
	(b) (i) $\binom{2}{3}$	1	
	(ii) $\begin{pmatrix} -2\\4 \end{pmatrix}$	2ft	$ft\begin{pmatrix}0\\7\end{pmatrix}-\text{their (i)}$
			B1 ft for one correct element
	(c) (i) $\frac{1}{3}$ t final answer	1	
	(ii) $\frac{1}{3}(-\mathbf{t}+\mathbf{r})$ final answer	2	M1 for correct unsimplified answer or $\overrightarrow{TR} = -\mathbf{t} + \mathbf{r}$ oe
			or $\overrightarrow{TP} = \frac{1}{3} \overrightarrow{TR}$ oe
	(iii) $\frac{1}{3}$ r final answer	2	M1 for correct unsimplified answer or $\overrightarrow{QT} + \overrightarrow{TP}$ oe for any correct path
			or $\frac{1}{3}$ t + their (ii)
	(iv) $QP = \frac{1}{3}OR$ oe	1dep	Dependent on correct answer in (iii)
	QP is parallel to QR or \mathbf{r}	1dep	Dependent on multiple of r as answer in (iii)

			4	1
Page 6	Mark Scheme: Teachers' version	Syllabus	· /2.	1
·	IGCSE – October/November 2010	0580	1/2	100

8	(a) (i) 3 (ii) 4	1 1	nsc/ol
	(iii) $4x - 3$ final answer	2	M1 for $2(2x-1)-1$
	(iv) $\frac{x+1}{2}$ oe final answer	2	M1 for $x = 2y - 1$ or $\frac{y+1}{2}$ oe or $\frac{f(x)+1}{2}$ oe
	(v) $-\frac{1}{2}$ and $1\frac{1}{2}$	4	B1 for $(2x-1)^2$ soi M2 for $2x-1=\pm 2$ M1 for $4x^2-2x-2x+1$ or M1 for $2x-1=2$ and M1 for $(2x+1)(2x-3)$ or correct substitution in formula soi by $(4 \pm \sqrt{64})/8$
	(b) (i) $y = \frac{16}{x}$ oe	2	Condone $y = k/x$ and $k = 16$ stated M1 for $y = \frac{k}{x}$ oe
	(ii) 32	1	
9	(a) (i) 21 (ii) $P_6 = \frac{1}{2} \times 6 \times 7$ or better (= 21) (iii) 1275 (iv) 3825 (v) 11325 (vi) 7500	1 1 1 1ft 1 1ft	Allow 3(6 + 1) ft for 3 × their (iii) ft their (v) – their (iv) provided > 0
	(b) (i) 56 (ii) $S_6 = \frac{1}{6} \times 6 \times 7 \times 8$ or better (= 56) (iii) 1540	2 1 1	M1 for $1 \times 6 + 2 \times 5 + 3 \times 4 + 4 \times 3 + 5 \times 2 + 6 \times 1$
	(c) $56 - 35 = 21$	1	
	(d) Correct algebraic proof with no errors	3	M1 for $\frac{1}{6}n(n+1)(n+2) - \frac{1}{6}(n-1)(n)(n+1)$ oe and M1 for $\frac{1}{6}n(n+1)(3)$ oe
	(d) Correct algebraic proof with no errors	3	M1 for $\frac{1}{6}n(n+1)(n+2) - \frac{1}{6}(n-1)(n)(n-1)$ and M1 for $\frac{1}{6}n(n+1)(3)$ oe