MARK SCHEME for the October/November 2008 question paper

www.nymathscloud.com

0580 and 0581 MATHEMATICS

0580/04 and 0581/04 Paper 04 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			Mun Mun An Asins
Page	2 Mark Scheme	Syllabus	Pap no total
	IGCSE – October/November 2008	0580/0581	04 ditte dis
Abbreviatio	ons		04 Sthscioud.com
cao co	rrect answer only		17

Abbreviations

_

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working

			mm.m. m
Page 3	Mark Scheme	Syllabus	Papunar
	IGCSE – October/November 2008	0580/0581	04 the

Pag	e 3 Mar	k Scheme	Syllabus	Papting
	IGCSE – Octo	ber/November 2008	0580/0581	04 thscio
(a) (i)	(\$) 6 000 cao	B2	M1 for $0.1 \times 10\ 000 + 0.25$	Pa↓ na Pa↓ na 04 na × 20 000 oe oe
(ii)	15 (%) cao	B2	M1 for $\frac{their(a)(i)}{40000} \times 100$	
(b)	(\$) 11 200 ft	B1 ft f	ft 17200 – <i>their</i> (a)(i)	
(c) (i)	(\$) 7500 cao		M1 for $\frac{12000}{5+3} \times 5$ oe After M0 , SC1 for 4500	
(ii)	9/80 cao		gnore decimals or %'s seer Mark final fraction	1
(d)	(\$) 8640 cao	B2 1	M1 for 10 800 ÷ 1.25 oe	

2 (a) (i)	x(x+4)/2 = 48 oe	M1	Eqn must include 48
	$x^2 + 4x - 96 = 0$	E1	Dep on M1 + shows one intermediate algebraic step with no errors seen
(ii)	- 12 or 8	B1B1	Allow deletion of negative root
(iii)	12 (cm) correct or ft	B1ft	Accept 12 or ft their positive root in part (ii) (if only one) + 4.
(b)	$\frac{4}{5}$ oe	B2	M1 for $\frac{x}{x+4} = \frac{1}{6}$ oe
(c) (i)	$(x + 4)^{2} + x^{2} = 9^{2}$ oe or $x^{2} + 8x + 16 + x^{2} = 81$	M1	Accept 2^{nd} line for M1 or $2x^2 + 8x + 16 = 81$
	$\frac{x^{2} + 6x + 10 + x^{2} - 81}{2x^{2} + 8x - 65 = 0}$	E1	Dep on M1 with no errors, expanded brackets step needed
(ii)	$\frac{p+(-)\sqrt{q}}{r} \text{ where } p = -8 \text{ and } r = 2 \times 2$ and $q = 8^2 - 4(2)(-65)$ oe (584)	M1 M1	Allow second mark if in form $p \pm \frac{\sqrt{q}}{r}$
	– 8.04, 4.04 cao www	A1A1	SC2 if correct solutions but no working shown or SC1 for -8.041522987 and 4.041522987 rounded or truncated
(iii)	21.08 or 21.1 (cm) strict ft	B1ft	ft 4.04 in part (ii) or $2 \times a$ positive root + 13
		dep	[14]

_				· ?,
	Page 4	Mark Scheme	Syllabus	Paptn
Ī		IGCSE – October/November 2008	0580/0581	04

Pag	Page 4 Mark Schem		-	0.00	Syllabus 0580/0581	Papunat
IGCSE – October/Nove		mber 20	108	0580/0581	04 750	
(a)	5.(04), 0	(.0), 8.7 or 8.66(6) or better seen	B3	1 each		Pap nymathsc
(b)	10 correct within co Reasonal condone	axes for domain and range ct points, on correct grid line or prrect 2mm square vertically ble curve through 10 points curvature around $x = -0.2$ and 0.2 arate branches	S1 P3ft C1ft B1ft	P1ft for 6 Correct sha (curves co	or 9 correct or 7 correct ape, not ruled, withi uld be joined) nt but needs two 'cu xis	
(c) (i)		ruled correctly - 2.6, - 0.75 to - 0.6, 0.5 to 0.6	L1 B2	shorter) B1 for 2 co isw y – val	lues y for each extra valu	
(ii)	(<i>a</i> =) 3	(<i>b</i> =) –1	B1B1	After 0,0	SC1 for $x^3 + 3x^2 - 3x^2 $	-1 = 0
(d)	e	to their curve ruled at $x = -2$ using correct scales	T1 M1	daylight < Dep on T1	reasonable tangent a 1mm (implied by answe working if answer	er 3 to 4.5)
	-4.5 to -	-3	A1			[17]

4 (a)	72	B1	
(b) (i)	$0.5 \times 15 \times 15 \sin (their 72)$ oe	M1	not for 90°
	106.9 to 107 (cm ²) cso	A1	www2
(ii)	534.5 to 535 (cm ²) ft	B1 ft	ft <i>their</i> (i) \times 5
(iii)	$\pi \times 15^2 \times 50$	M1	(707 or 35350) or $\pi \times 15^2$
	their (ii) $\times 50$	M1	(26750) or $\pi \times 15^2$ - their (b) (ii)
	Vol of cylinder – prism	M1	Dep on M2 then $\times 50$
	8590 - 8625 (cm ³) cao	A1	www4
(c)	$(AB =) 15 \sin(their 36) \times 2$ oe (17.63) (not 30° or 45°)	M1	or $\sqrt{15^2 + 15^2} - 2 \times 15 \times 15 \times \cos(their 72)$ Not for 90° or 60° or sine rule
	Area of one rectangle = their $AB \times 50$	M1	dep on 1^{st} M (881.5) not 15×50
	5 (50 × a length) + 2 × <i>their</i> (b)(ii)	M1	Indep (4407.5 + 1070)
	5470 - 5480 (cm ²) cao	A1	www4 [12]

Page 5	Mark Scheme	Syllabus	Paptn
	IGCSE – October/November 2008	0580/0581	04 oths

Pag	e 5	Mark Scheme			Syllabus	Par 43
		IGCSE – October/Nove	r/November 2008		0580/0581	WWW. My Man My Ma Pap 04
			1	1		500
(a)	(60 + 40)		M1) could be in parts	
	to minute	nethod to convert a decimal time	M1	ft a decin	nal Il answer or decimal j	point $\times 60$
	to minut				(428), 171.(4)or 2h	
	14 46 or	2 46 pm cao	A1	www3	(120), 171.(1)01 21	551015111
		1				
(b) (i)	260		B1			
(ii)	145		B1ft	ft their (I	b) (i) - 115	
(c)	$(AC^2 =)$	$40^2 + 60^2 - 2 \times 40 \times 60 \times \cos 115$	M2	M1 for c	orrect implicit versio	n
		of a correct combination	M1		nt (7229)	
	85(.0 km		A1	www4		
	00(10 111) ••••				
(d)	sin A	sin115 oe	M1	Implicit e	equation	
	$-\frac{1}{60} =$	their(c) oe			se cosine rule M1 for	implicit
	00			and M1 f	for explicit form	
		sin115	M1	Dep on N	M1 Explicit equation	n
	$(\sin A =)$	$\frac{\sin 115}{their(c)} \times 60$	IVII	Depon		511
		39.8 cao	A1	www3		
(e)		+ 60sin35 oe	M2		$\times \sin(100 - their (d))$	
	(39.4)	(34.4)			(c) $\times \cos(\text{their}(\mathbf{d}) - \text{their}(\mathbf{d}))$ wither 40sin80 or 60sin	
					tither 40sin80 or 60si	
	73.76 - 7	73.81 (km) cao	A1	www3	it ung version using <i>l</i>	
						[15]

6	(a) (i)	30	B1	
_	(ii) (ii)	30, 30.5, 31	B1 B1	Penalty 1 for each extra value
			B1	Ignore repeated values
	(iii)	$\frac{10 \times 30 + 7 \times 31 + x \times 32}{10 + 7 + x} = 30.65$	M1	
		correct clearance of fraction	M1	Dep on M1
		3 cao	A1	e.g. $517 + 32x = 521.05 + 30.65x$ oe www3
	(b) (i)	$35 \times 15 + 115 \times 21 + 26 \times 23 + 24 \times 27$	M3	(4186/200) M1 for use of 15, 21, 23, 27 (allow
		200		one error) and M1 for use of $\sum fx$ with value of x in
				correct range used (allow one further error)
				and M1 dep on 2^{nd} M for dividing by $\sum f$ or
				200
		20.93 or 20.9 cao	A1	www4 Accept 21 after M3 earned
	(ii)	2.6 cao	B1	
		0.7 and 0.8	B4	B3 for one correct
				or B2 for 3.5 and 4 seen
				or B1 for 4 seen
				[16]

_				· · · · ·
	Page 6	Mark Scheme	Syllabus	Paptn
		IGCSE – October/November 2008	0580/0581	04

Page 6		Mark Scheme IGCSE – October/November 2008		0.9	Syllabus 0580/0581	Papthat	
			i/november 20	00	0360/0361	04 7/SC/	
(a) (i)	Translati	on only	B1		ut parts (i) to (v) if nation is given then n		
	$\left \begin{pmatrix} 0 \\ -11 \end{pmatrix} \right $	e	B1				
(ii)	Reflection $x = 1$ oe		B1 B1	Accept M			
(iii)	Reflection $y = -x$ oe	•	B1 B1	Accept M			
(iv)	(centre)(nent only 2, 0), only ctor) 0.5 oe only	B1 B1 B1	Accept E			
(v)	Stretch c (factor) 2 <i>x</i> -axis oe		B1 B1 B1	Accept S Ignore parallel to <i>y</i> -axis			
(b) (i)					B1 each column		
(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$		B2	B1 for right hand column [16]			

8(a) $x = 78$ alternate anglesB1 R1Dep on B1 Accept Z angle, extras can sp Accept longer reasons using correct lang and clarity with angles used. e.g. allied angles gives 102° and angles o straight line = 180° either $y = 144$ or $z = 102$ (opposite angles of) cyclic quad (= 180)B1 R1Dep on B1, extras can spoiland $z = 102$ or $y = 144$ Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)B1 R1Dep on B1, extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provid $y \neq 180$.	age
i i	age
either $y = 144$ or $z = 102$ (opposite angles of) cyclic quad (= 180)B1 R1Dep on B1, extras can spoiland $z = 102$ or $y = 144$ Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)B1 R1Dep on B1 extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
(opposite angles of) cyclic quad (= 180)R1Dep on B1, extras can spoiland $z = 102$ or $y = 144$ B1B1Angles (in (a)) quadrilateral (= 360)R1Dep on B1 extras can spoilor (opp angles of) cyclic quad (= 180)R1Could also use their angles x and y provide(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
and $z = 102$ or $y = 144$ Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)B1 R1Dep on B1 extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)R1Dep on B1extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)R1Dep on B1extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)R1Dep on B1extras can spoil(b)Their $z + 36 \neq 180$ oeR1Could also use their angles x and y provide	
Could be a longer reason involving angle be clearly explained.	
(c) 72 or 288 B1	
(d) 51 cao B1	

Pag		Mark Scheme			Papting	
	IGCSE – October	r/November 20	08	0580/0581	04 msc	
(a)	(p =) 5 cao, (q =) 12 cao (r =) 1 ft	B1 B1 B1ft		correct order if no $18 - their p - their q$		
(b) (i)	17 cao	B1				
(ii)	12 cao	B1				
(c) (i)	26 cao	B1				
(ii)	57 ft	B1ft	ft 45 + <i>the</i>	eir q		
(d) (i)	$\frac{8}{100}$ oe isw	B1				
(ii)	$\frac{45}{100}$ oe isw	B1				
(e)	Any fraction with denominator 74 set $\frac{37}{74} \times \frac{36}{73}$ $\frac{18}{73}$ oe isw cao	een B1 M1 A1	$\frac{k}{l} \times \frac{k-1}{l-1}$ $\frac{1332}{5402} w$	F fraction i.e. one taken off each part $\frac{-1}{-1}$ N.B $\frac{1}{2} \times \frac{36}{73}$ gets B1M1 www3 (if decimal then 0.247 or better) accept ratio or in words [12]		
) (a) (i)	$8 \times (8 + 1)$					
., .,	$\frac{8 \times (8+1)}{2} = 36$ 1+2+3++8=36	E1 E1				
(ii)	80 200	B1				
(b) (i)	(i) $2(1+2+3++n) =$ $2 \times \frac{n(n+1)}{2} = n(n+1)$		both steps	both steps must be shown		
(ii)	40 200	B1				
(iii)	40 000	B1ft)(ii) – <i>their</i> (b)(ii))(ii) – 200 ft	ver	

B1

B2

e.g. $2n^2 + n$

M1 for *their* (c)(i) – n(n + 1)or n(n + 1) - nor n/2(2+2(n-1))

[9]

 $\frac{2n(2n+1)}{2}$ of final answer

(c) (i)

(ii)

 n^2 cao