

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2004 question papers

0580/0581 MATHEMATICS

0580/04, 0581/04

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2004 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the November 2004 examination.

	maximum	minimum mark required for grade:					
	mark available	A	С	E	F		
Component 4	130	85	49	30	N/A		

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

TYPES OF MARK

Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
f.t.	Follow through
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
\checkmark	Work followed through after an error: no further error made
	-

November 2004

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 Extended

						www.m	12
Pag	e 1	Mark Sc	heme		Syllabus	Paper	n Jar
		IGCSE EXAMINATIONS	- NOVEM	IBER 2004	0580/0581	4	dit ous
							mainscioud.com
1 (a)	15 : ⁻	13 or 13 : 15	B1		, or 1 : <i>n</i> , where	<i>n</i> is	.0

1 (a)	15 : 13 or 13 : 15	B1	Allow <i>n</i> : 1, or 1 : <i>n</i> , where <i>n</i> is 15/13, 13/15, 1.15 (3 or 4), 0.866 (6 or 7)
(b)	0.28 × 45 000 o.e. 12 600	M1 A1	
(c)	$\frac{16000}{39000}$ × 100 o.e.	M1	
	41.0 or better	A1	Condone 41 41.0 (2 or 3)
(d)	<u>45000</u> o.e.	M1	
	20 000	A1	SC1 for 36 000
(e)	$\frac{5}{30} \times 84000\text{o.e}$	M1	Their attempt at 45 000 +
	14 000	A1	39 000 and their '30'
0 (-) (')		D4	[9]
2 (a)(i)	p = 12 q = 1.5 r = 1.2	B1 B1 B1	lf not labelled, mark in order given
(ii)	Scales correct	S1	To 11 horizontally and 12 $$ vertically are possible
	12 correct points plotted within 1 mm	P3√	P2√ for 10 or 11 correct. P1√ for 8 or 9 correct.
	Smooth curve through all points	C1	Within ½ small square, none ruled, correct shape.
(iii)	Tangent drawn at (3, 3)	T1	Allow a parallel line below curve, <i>slight</i> chord, but not an intended chord
	Attempts $\frac{increase in y}{increase in x}$ for their tangent	M1	dep. on T1. If no working must fit tangent acc (0.1) for 1 cm horizontally
	-0.6 to -1.0 www	A1	If correct method shown allow answer in range even with slight
(b)	Correct straight line ruled and complete for range 0 to 8	B2	slip. B1 for any straight ruled line with <i>y</i> -intercept 8 (except <i>y</i> = 8) or gradient –1
(c)(i)	$\frac{12}{x+1} = 8 - x$	M1	
	$x^{2} + 1$ 12 = 8x + 8 - x^{2} - x o.e. seen x^{2} - 7x + 4 = 0	E1	Must be seen to expand the brackets correctly
(ii)	<i>x</i> = 0.5, 0.6, 0.7 or 0.8	B1	Must be correct for their graph (1 mm)

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0580/0581	4

Pag	e 2	Mark Sc			Syllabus	Paper
		IGCSE EXAMINATIONS	<u>– NOVEMI</u>	BER 2004	0580/0581	4
						Paper 4
	or 6.	2, 6.3, 6.4 or 6.5	B1	to get 6.4 a	um for use of fo and 0.6 unless it is a check. es get B0	ormula
						[17]
(a)		.0 ² × 110 600 to 553 000	M1 A1	or 0.553 <u>m</u>	3	
(b)	1.6 × their		M1	(22.4)	Accept alternate	e methods
	1.6×	<u> </u>	M1 A2		ct answer secs = 411mir mins or 6.85 t	
				After A0, S (6 hrs 52 m	$C1 \text{ for } \div 3600$	s.o.i.
(c)	-	100 ² (a) ÷ (70 × 100 ²) /w	M1 M1 A2	Dep. could	be 0.553 ÷ 70 C1 for digits 78	
	Com		64			[10]
(a)		ect scales ect triangle	S1 T1	(Acc is 2 m	9 8 for <i>x</i> and <i>y</i> nm)	
(b)	A ₁ (–	7, 5) B ₁ (–4, 5) C ₁ (–4, 7)	TR2√	SC1 for an	y translation	
c)	A ₂ (2	2, -4) B ₂ (5, -4) C ₂ (5, -6)	R2√	SC1√ for re	eflection in $x = -$	–1 or <i>y</i> = 1
d)	A ₃ (-	-2, 4) B ₃ (4, 4) C ₃ (4, 8)	E2 √	SC1 for en ray method	largement SF2 d but o.o.r.	or correct
e)(i)		-2, -2) B ₄ (-2, -5) -4, -5)	B2 √	SC1√ for 2	correct points	
(ii)		e ction only e <i>y</i> = - <i>x</i> o.e.	B1 B1	with no ext	ras	
f)(i)	A ₅ (3	8, 2) B ₅ (7.5, 2) C ₅ (7.5, 4)	B2 √	Or stretch	correct points factor 1.5 with z_5 (2, 3) B ₅ (5, 3	
(ii)	(1.5 0	0 1)	B2	SC1 for a c position	correct column	in correct
						[16]
(a)(i)	(cos) (0.79	$A = \frac{40^2 + 70^2 - 45^2}{2 \times 40 \times 70}$	M2		00 M1 for corre	•
	37		E1	Accept 36.	9–37	
(ii)		9 14.1 40 × 70 × sin36.9 – 37	B1 M2	Allow comp	plete alternative	e methods
	o.e.		A1			

Page 3	Mark Scheme	Syllabus	Paper	SI
	IGCSE EXAMINATIONS – NOVEMBER 2004	0580/0581	4	

Page 3 Mark Scheme Syllabus IGCSE EXAMINATIONS – NOVEMBER 2004 0580/0581 o)(i) 70sin51 o.e. (= 54.4) E2 (ii) $\frac{q}{70}$ = cos51 o.e. M1 for $\frac{p}{70}$ = sin51 o.e. (iii) $\frac{q}{70}$ = cos51 o.e. M1 (iii) $\frac{q}{70}$ = cos51 o.e. M1 (iii) $\frac{q}{70}$ = cos51 o.e. M1 (c) angle D = 94 B1 (BD =) $\frac{45 sin 54}{sin 180 - 86}$ M2 a.r.t. 36.5 c.s.o A1 (a)(i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x}$ (2.125) M2 M1 for (0 or 3) + 10 + 24 + 27 + 4x} (2.125) M2 M1 for (0 or 3) + 10 + 24 + 27 + 4x} (a)(i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x}$ (2.125) M2 M1 for (0 or 3) + 10 + 24 + 27 + 4x} (b)deals with the fraction correctly (iii) 1 strict f.t.	on
(ii) $\frac{q}{70} = \cos 51 \text{ o.e.}$ 44.1 or better (c) angle D = 94 $(BD =) \frac{45 \sin 54}{\sin 180 - 86}$ a.r.t. 36.5 c.s.o (a) (i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x} (2.125)$ 6 $M1$ M1 for $\frac{BD}{\sin 54} = \frac{45}{\sin 180 - 86}$ A1 M2 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}$	[15] 27 + 4x. on
(ii) $\frac{q}{70} = \cos 51 \text{ o.e.}$ 44.1 or better (c) angle D = 94 $(BD =) \frac{45 \sin 54}{\sin 180 - 86}$ a.r.t. 36.5 c.s.o (a) (i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x} (2.125)$ 6 $M1$ M1 for $\frac{BD}{\sin 54} = \frac{45}{\sin 180 - 86}$ A1 M2 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}$	[15] 27 + 4x. on
$\begin{array}{c c} \hline & \hline & \hline & \hline & \hline & \hline & 70 \\ \hline & 44.1 \text{ or better} \\ \text{angle D = 94} \\ (BD =) & \frac{45 \sin 54}{\sin 180 - 86} \\ \text{a.r.t. } 36.5 \text{ c.s.o} \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } \frac{BD}{\sin 54} = \frac{45}{\sin 180 - 86} \\ \text{a.r.t. } 36.5 \text{ c.s.o} \\ \hline & \text{A1} \\ \hline & \text{ww4} \\ \hline & \text{M2} \\ \hline & \text{A1} \\ \hline & \text{ww4} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 + 4x} \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{A1} \\ \hline & \text{M2} \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 + 24 + 27 \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 \\ \hline & \text{M1 for } (0 \text{ or } 3) + 10 \\ \hline & \text{M1 for } (0 \text{ or } 3) \\ \hline & \text{M1 for } (0 $	27 + 4 <i>x</i> . on
(c) angle D = 94 (BD =) $\frac{45 \sin 54}{\sin 180 - 86}$ a.r.t. 36.5 c.s.o (a)(i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x}(2.125)$ 6 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}(2.125)$ M2 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}(2.125)$ M2 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}(2.125)$ M2 M1 for $(0 \text{ or } 3) + 10 + 24 + 27 + 4x}(2.125)$ M2 Depdeals with the fraction correctly www4 or T and I gets 4	27 + 4 <i>x</i> . on
$\begin{array}{c c} (BD =) & \frac{45 \sin 54}{\sin 180 - 86} \\ a.r.t. & \textbf{36.5 c.s.o} \end{array} & \textbf{M2} & \textbf{M1 for } \frac{BD}{\sin 54} = \frac{45}{\sin 180 - 86} \\ \textbf{A1} & ww4 \end{array}$ $\begin{array}{c c} (a)(i) & \frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x} (2.125) \\ 61 + 4x = 2.125 (34 + x) \text{ o.e.} \end{array} & \textbf{M2} & \textbf{M1 for } (0 \text{ or } 3) + 10 + 24 + 24 \\ \textbf{M1} & \text{Depdeals with the fraction correctly} \\ \textbf{6} & \textbf{A1} & ww4 \text{ or T and I gets 4} \end{array}$	27 + 4 <i>x</i> . on
a.r.t. 36.5 c.s.oA1ww4(a)(i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x}$ (2.125)M2M1 for (0 or 3) + 10 + 24 + 261 + 4x = 2.125 (34 + x) o.e.M1Depdeals with the fraction correctly6A1ww4 or T and I gets 4	27 + 4 <i>x</i> . on
(a)(i) $\frac{(0 \text{ or } 3) + 10 + 24 + 27 + 4x}{34 + x} (2.125)$ 61 + 4x = 2.125 (34 + x) o.e. 6 M1 Depdeals with the fraction correctly www4 or T and I gets 4	27 + 4 <i>x</i> . on
61 + 4x = 2.125 (34 + x) o.e.M1Depdeals with the fractio correctly 6 A1www4 or T and I gets 4	on
61 + 4x = 2.125 (34 + x) o.e.M1Depdeals with the fractio correctly 6 A1www4 or T and I gets 4	
'ii) 1 strict f.t. B1 $\sqrt{1}$ for $x \le 18$, 2 for $19 \le x \le 60$	-
If no answer in (i) accept 1	6
b)(i) (a) 21 B1	
(b) 30 B1	
(ii) 1.4 B2 M1 for $42 \div 30$ or $1 \text{ cm}^2 = 5 \text{ s}^2$	seen
iii) $(10.5 + '30'.15 + 25.22.5 + '21'.27.5 + 42.45)$ M2 (3 530 for Σfx) f.t. values 21 from (b)(i) '128' Allow 1 slip in figures for M2 M1 for 4 of mid values 5, 15 27.5, 45 or method correct b values up to ± 0.5 .	2 5, 22.5, but mid
27.57 to 27.6 c.s.o A1 If 0 scored, SC1√ for '128' s	seen [12]
(a)(i) 5 B1	
(ii) $x^2 - 2x - 3$ (= 0) M1 Implied by correct factors or	r use of
x = -1 and 3 A1 formula If A0, SC1 for $(x - 3) (x + 1)$	
(4.0) and (2.0)	
(-1, 0) and $(3, 0)$ A1 -1	
ii)(1, -4)B2Or clear 1 and -4 in correctB1 for either correct value	order
(i) Reflection in <i>x</i> -axis or turns upside down o.e. B1	ı both
(ii) Correct statement referring to (0, 0) as minimum value	

			MM. M. M.
Page 4	Mark Scheme	Syllabus	Paper 7 Paper
	IGCSE EXAMINATIONS – NOVEMBER	2004 0580/0581	4 Athons
			Paper Ny Thaths Cloud Co
02-	$0 \downarrow 0 \downarrow 0 \downarrow 1 \downarrow 1^2 \downarrow 1 \downarrow 1 \downarrow 0$		ff size to (O

(ii)	$3^{2}a + 3b = 0$ and $4^{2}a + 4b = 8$ o.e. Attempts to eliminate <i>a</i> 's or <i>b</i> 's	M1 M1	e.g. accept equates coefficients (2 out of 3 terms) and attempts to subtract their equations
	a = 2 b = -6	A1 A1	www4 [13]
8 (a)(i)	32.2	B1	
(ii)	550	B1	
(iii)	 (a) 2 × 9.2 + 1.6 × 8 o.e. 31.2 (b) 8.7 or better 	M1 A1 B1√	If 0 scored SC1 for answer 3120 Their $31.2 \div 3.6$ correctly evaluated 2 s.f. (or better) (8.6 r), accept correct fraction
(b)(i)	figs 395 ÷ 25 × 100 indep 15.8	M1 M1 A1	Implied by figs 158 www www3
(ii)	figs 128 × 25 ² 80 000 www	M1 A1	Ignore subsequent unit conversions
(iii)	figs 250 ÷ 25 ³ × 1000 indep 16	M1 M1 A1	Implied by figs 16 www3
			[13]
9 (a)(i)	2 – 3 <i>x</i> = 7 – <i>x</i> o.e. – 2.5 o.e.	M1 A1	e.g. 5/–2
(ii)	Correct first step of rearrangement $2 - x$	M1 A1	e.g. $y - 2 = 3x$ o.e. or division by 3 or $(2 - y)/3$ SC1 for inverse of 7 - x (from f(x) =
	$\frac{2-x}{3}$ o.e.		(7 - x)
(iii)	26 www	B3	B1 for $gf(2) = 16$ www and B1 for $fg(2) = -10$ www in correct order.
(iv)	$2 - 3x^2$	B1	Final answer
(b)(i)	4	B1	
(ii)	$-\frac{1}{27}$	B1	Accept 1/–27
(iii)	7.5 ^{7.5} 3.65 to 3.66 × 10 ⁶	M1 A1	Implied by figs 36 to 37 or 3.7×10^{6}
(iv)	Square root of a negative number o.e.	B1	Must make reference to square root or <u>square</u>
(v)	5	B1	[14]

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2004	0580/0581	4

						www.m	12
Page	ə 5	Mark Sch			Syllabus	Paper	ma ary
		IGCSE EXAMINATIONS	<u>– NOVEME</u>	<u>3ER 2004</u>	0580/0581	4	Mainscioud.com
10 (a)(i)		asonable rhombus sketched	1 1				.7
(ii)	Rea: Kite	asonable kite sketched	1 1	., .,) reversed give correct otherw		
(b)	2 <i>x</i> 180	– 2x o.e.	1 1		eats but not che eats but not che		
(c)	0.5. 120	× 12 × 20 o.e.	M1 A1				
(d)	a co	es Pythagoras' or considers prrect triangle/rhombus area ation with variables i ned	M1	Equation f.t Accept alge	t. from (c) ebraic Pythago	oras'	
	13 w		A2	diagonals s shorter leng triangle.	nd 24 as lengt soi e.g. by 5 an gths of right-an if no working s	nd 12 as ngled	
	L					[11]	