

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

MATHEMATICS

0580/21 May/June 2016

www.mymathscloud.com

Paper 2 (Extended) MARK SCHEME Maximum Mark: 70

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

This document consists of 5 printed pages.

		Syllabus P. Mains Cioud.com
Page 2	2 Mark Scheme	Syllabus P. M. Say
	Cambridge IGCSE – May/June 2016	0580 21 %
Abbrevi	ations	-cloud
cao	correct answer only	· On
dep	dependent	
FT	follow through after error	

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working

not from wrong working nfww

seen or implied soi

Question	Answer	Mark	Part marks	
1	8(h) 52 (min)	1		
2	3.75 or 3 ³ / ₄	1		
3	[0].00127	1		
4	157 900 cao	2	B1 for 158000 or 157860 or 157862 to 157863	
			If zero scored, SC1 for <i>their</i> answer to more than 4 figs correctly rounded to 4 sf	
5	393	2	B1 for 393.1 to 393.2 or M1 for 2000 ÷ 5.087	
6	144	2	M1 for finding a correct product of prime factors or correctly listing a minimum of 3 multiples of 36 and 48 or for answer $2^4 \times 3^2$ oe or $144k$	
7	11	2	M1 for $-2 \times -7 - 3$ soi	
8	$\frac{py}{q}$ final answer	2	M1 for one correct step	
9	[a =] 70 [b =] 40	2	B1 for each	
10	28.35 cao	2	B1 for 9.45 seen or M1 for (9.4 + 0.05) × 3	
11 (a)	112	1		
(b)	56	1		
12	$2p^4$ final answer	2	B1 for kp^4 or $2p^k$ as answer	
13	<i>n</i> > 3.75	2	M1 for $7 + 8 < 5n - n$ oe	
14	More than 20m from <i>D</i> oe Nearer to <i>CD</i> than to <i>CB</i> oe	2	B1 for each	

Syllabus 0580

Page		Mark Scheme mbridge IGCSE – May/June 2016		Syllabus 0580	WWW. TRYTARIASCIOUC
					'SCIOL
Question Answer		Mark	Part marks		
15 (a)	- 3	1			
(b)	9 – 2 <i>n</i> oe	2	B1 for $-2n + k$ or $dn + 9$ where dn + 9 where $dn + 9$ where $dn + 9$ where $dn + 9$ where	ere $d \neq 0$	
16	$\frac{6}{7} \times \frac{3}{5}$ or $\frac{18}{21} \div \frac{35}{21}$ oe	M2	B1 for $\frac{5}{3}$ oe		
			or M1 for $\frac{6}{7} \times their \frac{3}{5}$		
	$\frac{18}{35}$ cao	A1			
17	145	3	M2 for $(6-2) \times 180 - 5 \times 1$ or M1 for $(6-2) \times 180$ <u>Alt method</u> M2 for $180 - (360 - 5 \times (180 - 10))$ or M1 for $360 - 5 \times (180 - 10)$) – 115))	
18	1.38 or 1.381 to 1.382	3	M2 for $(36 + 4.3) \div (105 \times \frac{1000}{60 \times 60})$ or M1 for $105 \times \frac{1000}{60 \times 60}$ or $\frac{1}{60}$		÷ a speed
			or SC2 for answer 1.23(4)		
19	$\frac{5}{6}$ oe	3	M2 for $1 - \frac{2}{3} \times \frac{1}{4}$ or $\frac{1}{3} + \frac{2}{3} \times \frac{1}{3}$ or $\frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{1}{4} + \frac{2}{3} \times \frac{3}{4}$ or M1 for $\frac{2}{3} \times \frac{1}{4}$ or $\frac{1}{3} \times \frac{1}{4} + \frac{2}{3}$	4	
20	27	3	M2 for $\frac{6\pi}{\pi \times 2 \times 9} \times \pi \times 9^2$ oe or M1 for $\frac{6\pi}{\pi \times 2 \times 9}$ oe		
21	2	3	M1 for $y = k\sqrt{x}$ A1 for $k = 4$ or M2 for $\frac{\sqrt{9}}{12} = \frac{\sqrt{1/4}}{y}$ oe		

	Page 4 Cambridge		Mark Schem IGCSE – Ma	e Syllabus P. Tymathsciout by/June 2016 0580 21 Part marks		
Que	estion	Answer	Mark	Part marks		
22	(a)	3	1			
	(b)	$\frac{19}{27}$ oe	1			
	(c)	$\frac{7}{10}$ oe	1			
	(d)		1			
23		69.3 or 69.28	4	M2 for height = $\sqrt{8^2 - 4^2}$ or M1 for $4^2 + h^2 = 8^2$ oe and M1 for $\frac{1}{2}(8+12) \times their$ perp height oe		
24	4 (a) $(a+2)(2+p)$ final answer		2	B1 for $2(a+2) + p(a+2)$ or $a(2+p) + 2(2+p)$		
	(b)	2(9+2t)(9-2t) oe	2	B1 for $2(81-4t^2)$ oe or $(18+4t)(9-2t)$ oe If 0 scored SC1 for $(9+2t)(9-2t)$ final answer		
25		$y = -\frac{3}{7}x + 11$ oe	6	B2 for gradient = $-\frac{3}{7}$ or M1 for [gradient =] $\frac{15-1}{10-4}$ oe or for the negative reciprocal of <i>their</i> gradient and B2 for [midpoint of AB =] (7, 8) or B1 for (7, k) or (k, 8) and M1 for substitution of <i>their</i> midpoint or (4, 1) or (10, 15) into a linear equation		

	Page	Mark Scheme Syllabus P. Instruction Cambridge IGCSE – May/June 2016 0580 21 Answer Mark Part marks Convert				MWWW. My Marins
Qu	estion	Answer	Mark	Part marks		Sud.con
26	(a)	20.1 or 20.07 to 20.08	2	M1 for $\frac{1}{2} \times 7 \times 10 \times \sin 35$ oe		.7
	(b)	5.86 or 5.858	4	M2 for $7^{2} + 10^{2} - 2 \times 7 \times 10 \times c$ A1 for 34.3 or M1 for $\cos 35 = \frac{7^{2} + 10^{2} - AC}{2 \times 7 \times 10}$		