

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/32

Paper 3 (Core), maximum raw mark 104

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

				Mun. m. m.
F	Page 2	Mark Scheme	Syllabus	Pap
		IGCSE – May/June 2014	0580	32 31/16
Abbre cao dep	viations correct answer only dependent	,		Munu, mu nu

Abbreviations

- correct answer only cao
- dependent dep
- \mathbf{FT} follow through after error
- ignore subsequent working isw
- or equivalent oe
- Special Case SC
- nfww not from wrong working
- seen or implied soi

Qu		Answers	Mark	Part Answers
1	(a) (i)	5 and 9 cao	1	
	(ii)	4 and 9 cao	1	
	(iii)	8 cao	1	
	(iv)	2 and 5 cao	1	
	(b)	< = < >	2	B1 for 3 correct
	(c) (i)	$(16+8) \div 4 - 2 = 4$	1	
	(ii)	$16 + 8 \div (4 - 2) = 20$	1	
	(d) (i)	$2 \times 2 \times 3 \times 7$	2	B1 for 2, 3, 7 or 2, 2, 3, 7, or 1 × 2 × 2 × 3 × 7
	(ii)	12	2	B1 for 2, 3, 4 or 6 or $2 \times 2 \times 3$ or $2^2 \times 3$ or 4×3 or 2×6 seen as ans
	(iii)	168	2	B1 for any other multiple of 168 or $2 \times 2 \times 2 \times 3 \times 7$ oe
	(e) (i)	19	1	any other terms must be correct
	(ii)	+4 oe	1	e.g. add 4
	(iii)	4n-1 oe final answer	2	B1 for $4n + k$, $qn - 1 q \neq 0$
	(iv)	accept any correct statement	1	

						Mun My	
	Page 3	Mark Sch			Syllabus	Pap	34
		IGCSE – May/	June 2014		0580	32 13 ₅ C/	
2	(a) (i)	Trapezium	1				NH.CO
	(ii)	25200	2	SCB3 for 2.52	m ²		
				M1 for $\left(\frac{180+2}{2}\right)$	$(240) \times 120$		
				or 180 × 120 +	-		
				or $\left(\frac{1.8+2.4}{2}\right)$	$\times 1.2 \text{ or } 1.8 \times 1.2 +$	$\frac{1}{2} \times 1.2 \times 0.6$ oe	
		cm ²	1				
	(iii)	6.3	2	M1 for <i>their</i> (a	a)(ii) $\times 2.5$ oe or fi	igs 63	
	(iv)	134 or 134.1 to 134.2	3		on diagram or used (their '240 – 180')		
	(b)	correct angle bisector of angle J with two pairs of supporting arcs	2	M1 for the cor arcs	rect angle bisector	of angle J without	
		arc centre H radius 4 cm	2	M1 for any arc	c centre H		
		correct region shaded	1	dep on at least	both M marks		
3	(a)	correct mirror line	1				
	(b)	2	1				
	(c) (i)	131	1				
	(ii)	103	2	M1 for 180 – 4 correct method	49 – 54 or 49 + 54 o 1	or 77 seen or fully	
	(d)	56	2	M1 for $180 - 9$ angle $B = 90$	90 - 34 or better or	indication of	
	(e)	9 with supporting working	5		l angle of P =120 - (360 ÷ 6) or (6 -	2) × 180 ÷ 6	
				M1FT for 360	- their '120' - 100) [= 140]	
				M1FT for 360	÷ (180 – their '140)')	
				if M0 then and	swer of 9 scores SC	22	

					Pap nymains
Page 4	Mark So IGCSE – May		14	Syllabus 0580	Pape mark
			•••	0000	52
(a) (i)	2	1			
(ii)	4 and a half circles	1FT	FT is 9/ <i>their</i> a (i	i) if <i>their</i> a(i) is an	n integer
(b) (i)	1	1FT			
(ii)	2 cao	1			
(iii)	6 cao	1			
(iv)	$\frac{13}{46}$ oe isw	2	M1 for 13 seen	or $(6+5+2)/46$	or $6\frac{1}{2}/23$
(c) (i)	four points correctly plotted	2	M1 for 3 points	correctly plotted	
(ii)	continuous ruled line of best fit	1	dependent on at least 9 points on graph		
(iii)	positive	1			
(iv)	65 to 70	1FT			
(v)	Е	1	FT their continu	ous ruled line of	best fit if positive
(a) (i)	461.7(0) cao	1			
(ii)	397.06 or 397.1 or 397 or 397.062	2FT	M1FT for <i>their</i>	(a)(i) × 0.86 oe	soi
(iii)	6880 or 6882 or 6882.()	2FT	M1FT for <i>their</i> soi	(a)(ii) ÷ 3 soi or <i>t</i>	heir (a)(ii) × 52
(iv)	84	2	M1 for 140 × 3	÷ (3 + 2)	
(b)	124 cao	3	B2 for 124.3(if B0 then M1 for		
			B1 for rounding nearest integer	their answer, if d	ecimal, to the
(a)	5 12	2	B1, B1		
(b)	9 points plotted correctly	3FT		8 points correctly	
	correct smooth curve through all 9 correct points	1		points correctly	μοποα
(c)	correct ruled line	1	minimum length	n must touch y axi	s and curve
(d)	2.7 to 2.8	1FT	FT their curve a	nd ruled line	

	Dee	~ F	Morte	Sahama		Sullahua	M. My
Page 5		еэ	IGCSE – Mark	Scheme ay/June 20	14	Syllabus 0580	32 Paper Patho
					 T		
7	(a)		13p-r Final Answer	2	B1 for either or $13p - r$ spectrum spectrum between the spectrum bet	13p or $-r$ in the answorld	WWW.TRYTRAITSON
	(b)		198	2	M1 for 12 × 1 or B1 for 192	$6 - 2 \times -3$ or + 6 or - (-6) seen	
	(c)	(i)	6.4 or $6\frac{2}{5}$	1			
		(ii)	-3	2	M1 for first c or $b + \frac{23}{5} = 1$	orrect step, i.e. $5b = \frac{8}{5}$ or better	8-23 or better,
	((iii)	-9	3	B1 for $2c - 20$ M1FT for con	0	
	(d)	(i)	16x + 24	1			
		(ii)	6 <i>x</i> (<i>x</i> – 2)	2		-12), $6(x^2 - 2x)$, 2(3) 2x (3x - 6) or $3x(2x)$	
	(e)	(i)	$15q^{6}$	2	B1 for $15q^n$ (<i>n</i>	$n \text{ not } 0$) or kq^6 ($k \text{ not}$	t 0)
		(ii)	t^6	1			
	(a)	(i)	$\begin{pmatrix} 10\\ -15 \end{pmatrix}$	1			
		(ii)	$\begin{pmatrix} 7\\-6 \end{pmatrix}$	1			
	(b)		$\begin{pmatrix} -4\\5 \end{pmatrix}$	1			
	(c)		(3,1)	1			
	(a)	(i)	correct reflection at $(1,-1)$, $(3,-1)$ and $(3,-5)$	1			
		(ii)	correct rotation at (-1,-1), (-3,-1) and (-3,-5)	2	SC1 for corre	ect rotation any centr	e
	((iii)	correct translation at $(-4,4)$, $(-2,4)$ and $(-2,8)$	2	B1 for one di	rection correct, i.e. 5	left or 3 up
	(b)		enlargement [centre] (0,1) [scale factor] 2	1 1 1			