www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2013 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			W	14 2 20/
	Page 2	Mark Scheme		
		IGCSE – May/June 2013	0580	Than Marks
Abbr	eviations			.36
cao	correct answ	wer only		5C/040
cso correct solution only				0401
dep	dependent			.0
ft	follow thro	ugh after error		CON
isw	ignore subs	equent working		.7
oe	or equivale	nt		

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www anything rounding to art seen or implied soi

Qu	Answers	Mark	Part Marks
1 (a) (i)	$\frac{6}{5+6+3} \times 560 [= 240]$	2	Accept 'of' used instead of \times M1 for $560 \div (5 + 6 + 3)$
(ii)	120	1	
(b)	90	2	M1 for $\frac{3}{8} \times 240$ oe
(c) (i)	96120 final answer	2	M1 for <i>their</i> (<i>a</i>)(ii) × 75 + (560 – <i>their</i> (<i>a</i>)(ii)) × 198 oe
(ii)	187.5[0] final answer	3	M2 for $\frac{198}{1+0.056}$ oe
(d)	184[.2]	3	or M1 for $(100 + 5.6)[\%] = 198$ oe seen M2 for $\frac{36 \times 0.75 - 9.5}{9.5} \times 100$ oe or M1 for $\frac{36 \times 0.75}{9.5} \times 100$ or $36 \times 0.75 - 9.5$ [17.5] used
(e)	69.4 and 69[.0] cao	3	implied by answer 84.2 or SC1 for final answer 284[.2] SC2 for one correct or both correct but reversed M1 for two of 10.85, 10.95, 23.65 or 23.75 seen or 2(23.7 + 10.9) + 4(0.05) or 2(23.7 + 10.9) - 4(0.05)

			4	1
Page 3	Mark Scheme	Syllabus	·3.	7
_	IGCSE – May/June 2013	0580	丁少か	%
	-			

vector)
x = -1 or vertices only
rtices on grid or in working $ \begin{pmatrix} 2 & 2 & 4 & 4 \\ -4 & -7 & -7 & -5 \end{pmatrix} $
es correct or complete shape in out wrong position
only n and size, wrong position
31 for 2 correct
nts nts
s] on curve
t clearly used
of contact at (0, 2) within ½ small square
tangent from (0, 2) in (d)(i) and answer– check on tangent for f 1
at a tangent from (0, 2) in (d)(i)

			4	1
Page 4	Mark Scheme	Syllabus	·3.	1
	IGCSE – May/June 2013	0580	1/2	1

			1	10
4	(a)	227 or 226.95 to 227.01	2	M1 for $\pi \times 8.5^2$
	(b)	5.35	1	
	(c)	39.0[0] to 39.0[1]	2	M1 for $\sin [MOB] = \frac{their \ b}{8.5}$ oe
				Dep on their $b < 8.5$
	(d)	30.2 or 30.3 or 30.24 to 30.27	3	M2 for $\frac{360-4\times39}{360} \times 2 \times \pi \times 8.5$ oe
				or M1 for $\frac{a}{360} \times 2 \times \pi \times 8.5$ oe
				where $0 < a < 360$
				Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.14 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8
	(e)	AB = BC $TA = TC$	1 1	isw comments or reasons
		TB = TB	1	If 0 scored SC1 for "all <u>three sides</u> the same" oe [SSS] and no mention of angles
5	(a)	$\frac{27}{x}$ final answer	1	
	(b)	$\frac{25}{x-2}$ final answer	1	
	(c)	$\frac{25}{x-2} - 4 = \frac{27}{x}$ oe	M1	FT their (b) $-4 = their$ (a) oe must be eqn in x
		25x - 4x(x - 2) = 27(x - 2) oe	M1	FT $\frac{25}{x-2} + 4 = \frac{27}{x}$ oe only for 2^{nd} and 3^{rd} M mark If all on one side then condone omission of $= 0$
		$4x^2 + 27x - 25x - 8x - 54[= 0] \text{ oe}$	M1dep	Dep on 2 nd M1 Must see brackets expanded before this award and terms on one side of eqn
		$2x^2 - 3x - 27 = 0$ without error seen	A1	Must see $4x^2 - 6x - 54 = 0$ first
	(d)	-3, 4.5	3	B2 for $(2x-9)(x+3)$ or SC1 for $(2x+a)(x+b)$ where <i>a</i> and <i>b</i> are integers and $a+2b=-3$ or $ab=-27$
	(e)	6 cao	1	

			4	1
Page 5	Mark Scheme	Syllabus	·3.	
	IGCSE – May/June 2013	0580	1/2	

6	(a) (i)	$12^2 + 21^2 - 15^2$	M2	M1 for $15^2 = 12^2 + 21^2 - 2.12.21\cos M$ A1 for [cos =] 0.714 or 0.7142 to 0.7143 or
		2×12×21 44.41 to 44.42	A2	A1 for [cos =] 0.714 or 0.7142 to 0.7143 or $\frac{360}{504}$ oe
	(ii)	88.2 or 88.15 to 88.19	2	M1 for $0.5 \times 12 \times 21 \times \sin(44.4)$ oe
	(b)	7.74 or 7.736 to 7.737 www	4	B1 for 55 soi
				M2 $\frac{6.4}{\sin(theirR)} \times \sin 82$ oe
				or M1 for $\frac{6.4}{\sin(theirR)} = \frac{PR}{\sin 82}$ oe
7	(a) (i)	$\begin{pmatrix} 15 \\ 21 \end{pmatrix}$	1	
	(ii)	not possible oe	1	
	(iii)	(2) final answer	2	M1 for 30 – 28
	(iv)	$ \begin{pmatrix} 4 & 13 \\ 0 & 0 \end{pmatrix} $	1	
	(v)	$ \begin{pmatrix} 4 & 13 \\ 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} -5 & -9 \\ 1 & 0 \end{pmatrix} $	2	B1 for one correct row or column
	(b)	$\begin{bmatrix} \frac{1}{2} \begin{pmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix} \text{ or better isw}$	2	B1 for $k \begin{pmatrix} 3 & -4 \\ -1 & 2 \end{pmatrix}$ seen or implied
				or $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen
8	(a)	hat $\frac{5}{8}$, $\frac{3}{8}$	1	1 mark per pair in correct place
		$\begin{vmatrix} 8 & 8 \\ scarf & \frac{2}{2} & \frac{1}{2} \end{vmatrix}$	1	
		hat $\frac{5}{8}$, $\frac{3}{8}$ scarf $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{6}$ $\frac{5}{6}$	1	
	(b) (i)	$\left[\frac{15}{48} \text{ oe } \left[\frac{5}{16}\right]\right]$	2FT	FT their $\frac{3}{8} \times \frac{5}{6}$ correctly evaluated
				M1 $\frac{3}{8} \times \frac{5}{6}$ FT from <i>their</i> tree
	(ii)	$\frac{5}{24}$	2FT	FT their $\frac{5}{8} \times \frac{1}{3}$ correctly evaluated
				M1 $\frac{5}{8} \times \frac{1}{3}$ FT from their tree

Page 6	Mark Scheme	Syllabus
	IGCSE – May/June 2013	0580

			hun a series of the series of
Page 6	Mark Scher	ne	Syllabus
	IGCSE – May/Jui	ne 2013	0580
			Pr.
(iii)	$\frac{13}{48}$ cao	2	Syllabus 0580 M1 for their $\frac{3}{8} \times \frac{1}{6}$ + their (b)(ii) soi
(c)	$\frac{170}{240}$ or $\frac{85}{120}$ or $\frac{34}{48}$ or $\frac{17}{24}$ cao	3	M2 for $1 - \frac{5}{8} \times \frac{2}{3} \times \frac{7}{10}$ FT their tree or $\frac{3}{8} + \frac{5}{8} \times \frac{1}{3} + \frac{5}{8} \times \frac{2}{3} \times \frac{3}{10}$ oe
			or M1 for ["wears all" =] $\frac{5}{8} \times \frac{2}{3} \times \frac{7}{10}$ FT their tree seen
9 (a)	371 or 371.1	4	M3 for $(6 \times 4 \times 12) + (2 \times 6 \times 0.5 \times 4 \times 4 \times \sin 60)$ oe or M2 for area of 1 or 2 hexagons
			or M1 for area of one relevant triangle or trapezium or rectangle within hexagon
			If 0 scored SC1 for 288 shown
(b) (i)	1740 or 1743.6 to 1744.2	4	M3 for $\frac{12000}{4} \div (\pi \times 0.74^2)$ oe
			or SC2 for figs 174[3] or 174[4]
			or B1 for $\pi \times 0.74^2$ seen [1.72]
(1)	07	5	or B1 for 12000 / 4 soi by 3000
(ii)	87 cao www 5	3	B4 for 87.39 to 87.43 or M3 for $[r=] \sqrt{\frac{figs 12}{\pi \times figs 5}}$ oe
			or M2 for $[r^2 =] = \frac{figs 12}{\pi figs 5}$ oe
			or M1 for figs $12 = \pi r^2 \times figs 5$
10 (a) (i)	final answer $\frac{25-8x}{20}$	2	M1 for $\frac{5 \times 5 - 4 \times 2x}{5 \times 4}$ or better seen
(ii)	final answer $\frac{2x^2 + 5x + 9}{3(x+3)}$	3	B1 for $2x^2 + 6x - x - 3$ soi
	3(x ± 3)		and B1 for denom $3(x+3)$ or $3x+9$ seen
(b)	$x = \frac{2}{3}$ oe or 0.667 or 0.6666 to 0.6667	3	M1 for correct method to eliminate one variable A1 for $x = \frac{2}{3}$ oe or 0.667 or 0.6666 to 0.6667
	y = -3		or $y = -3$

			4
Page 7	Mark Scheme	Syllabus	
	IGCSE – May/June 2013	0580	

Page 7		Mark Scheme IGCSE – May/June 2013	
	IGCSL - IVIAY	Julie 2013	0580
(c)	final answer $\frac{7}{2x+3}$ www	4	Syllabus 0580 B1 for $7(x+3)$ in numerator and B2 for $(2x+3)(x+3)$ in denominator or SC1 for $(2x+a)(x+b)$ where a and b are integers and $a+2b=9$ or $ab=9$
			After B1 scored, SC1 for final answer $\frac{7}{2(x+1.5)} \text{ or } \frac{3.5}{x+1.5}$
11 (a)	$3^2 + 1^2$	1	Ignore attempt to evaluate $\sqrt{10}$
(b) (i)	$\frac{\sqrt{10}}{3}$ final answer	1	
(ii)	$\frac{10}{3}$ final answer	2	M1 for their $\frac{\sqrt{10}}{3} \times \sqrt{10}$ or their $\left(\frac{\sqrt{10}}{3}\right)^2 + \left(\sqrt{10}\right)^2$
(c)	$\frac{100}{27}$ or $3\frac{19}{27}$ isw conversion or 3.7[03] to 3.7[04]	2	implied by 3.33 seen M1 for $3 \times \left(\frac{\sqrt{10}}{3}\right)^n$ oe where n is 3 or 4 or for $[OP_4 =] \sqrt{\frac{1000}{81}}$
			or for their (b)(ii) $\times \left(\frac{\sqrt{10}}{3}\right)^n$ where n is 1 or 2
(d) (i)	18.43	2	M1 for tan $[P_1OP_2] = \frac{1}{3}$ oe
(ii)	18.4[3]	1	
(iii)	20	3	SC2 for 19 or M1 for $\frac{360}{10.4[2.1]}$