CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

## MARK SCHEME for the May/June 2013 series

## **0580 MATHEMATICS**

0580/23

Paper 2 (Extended), maximum raw mark 70

www.mymathscioud.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| Р      | age 2           | ge 2 Mark Scheme |               | Sylla | abus           | 2      |
|--------|-----------------|------------------|---------------|-------|----------------|--------|
|        |                 | IGCSE – N        | lay/June 2013 | 05    | 80 Yn          | "ATT   |
| Abbrey | viations        |                  |               |       | abus<br>80 Nyn | Ath is |
| cao    | correct answer  | only             |               |       |                |        |
| cso    | correct solutio | •                |               |       | · Ola          |        |
| lep    | dependent       | -                |               |       | 10             |        |
| ft     | follow through  | after error      |               |       | C.             |        |
| isw    | ignore subsequ  | ent working      |               |       |                |        |
| oe     | or equivalent   | C C              |               |       |                |        |
| SC     | Special Case    |                  |               |       |                |        |
| www    |                 |                  |               |       |                |        |
| soi    | seen or implie  | d                |               |       |                |        |

|       |                                                                                                                                         | 1    |                                                                                                                                                      |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Qu    | Answers                                                                                                                                 | Mark | Part Marks                                                                                                                                           |  |  |  |  |
| 1     | £ or pound[s]<br>Correct working must be shown                                                                                          | 2    | <b>M1</b> for 425 ÷ 1.14 or 365 × 1.14                                                                                                               |  |  |  |  |
| 2     | $\frac{30}{300}$ oe www                                                                                                                 | 2    | <b>M1</b> for 30 seen or $\frac{k}{300}$ seen                                                                                                        |  |  |  |  |
| 3     | 1500 or 3 <u>pm</u>                                                                                                                     | 2    | <b>B1</b> for 1h50 or 2h[0]5<br>or <b>SC1</b> for 1255 + <i>their</i> 1h50 + 15mins<br>correctly evaluated                                           |  |  |  |  |
| 4 (a) | [±] <b>2.28</b> or 2.282 to 2.2822                                                                                                      | 1    |                                                                                                                                                      |  |  |  |  |
| (b)   | <b>0.109</b> or 0.1094[3]                                                                                                               | 1    |                                                                                                                                                      |  |  |  |  |
| 5     | $\left(\frac{2}{3}\right)^{1.5} \left(-\frac{2}{3}\right)^{\frac{2}{3}} \left(1.5\right)^{\frac{2}{3}} \left(\frac{2}{3}\right)^{-1.5}$ | 2    | <b>M1</b> for at least 2 correct decimals seen 1.3[1] 0.5[4] 1.8[3] or 1.84 0.7[6]                                                                   |  |  |  |  |
| 6     | 6                                                                                                                                       | 3    | M2 for $3 \times \sqrt[3]{\frac{288\pi}{36\pi}}$<br>or M1 for $3 \times \sqrt[3]{\frac{288\pi}{36\pi}}$ or $3 \times \sqrt[3]{\frac{36\pi}{288\pi}}$ |  |  |  |  |
| 7     | 260                                                                                                                                     | 3    | M2 for $[2 \times ](4 \times 10 + 18 \times 5)$ oe<br>or M1 for a correct area statement                                                             |  |  |  |  |
| 8     | 2500                                                                                                                                    | 3    | <b>M1</b> for $m = kr^3$<br><b>A1</b> for $k = 20$                                                                                                   |  |  |  |  |
| 9 (a) | $1.1 \times 10^{5}$                                                                                                                     | 2    | <b>B1</b> for 110 000 oe e.g. $11 \times 10^4$                                                                                                       |  |  |  |  |
| (b)   | <b>(b)</b> $5 \times 10^3$                                                                                                              |      | <b>B1</b> for 5000 oe e.g. $0.5 \times 10^4$                                                                                                         |  |  |  |  |

|        |              |                                                                      |                      |          | my .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------|--------------|----------------------------------------------------------------------|----------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page 3 |              |                                                                      |                      |          | Syllabus n. 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | IGCSE – May/ |                                                                      |                      | une 2013 | 0580 5734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 10     |              | 25                                                                   |                      | 4        | Syllabus<br>0580Mu<br>Mu<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br>Math<br> |
| 11     | (a)          | 77                                                                   |                      | 2        | M1 for 11,13,17,19 clearly identified, ignore<br>numbers less than 8 with no other numbers<br>greater than or equal to 8 besides possibly an<br>extra 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | (b)          | either                                                               | 18 or 19 or both     | 2FT      | M1 for 11,13,17 clearly identified, ignore<br>numbers less than 8 with no other numbers<br>greater than or equal to 8 besides possibly an<br>extra 17<br>or for <i>their</i> (a) – 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12     | (a)          | $\begin{vmatrix} \frac{5}{25} & 0 \\ \frac{4}{25} & 0 \end{vmatrix}$ | 0e                   | 2        | <b>B1</b> for answer $\frac{5}{k}$ or $\frac{k}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | (b)          | $\frac{4}{25}$ of                                                    | 0e                   | 2        | <b>B1</b> for answer $\frac{4}{k}$ or $\frac{k}{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 13     |              | <u>(</u> <i>x</i> –                                                  | $\frac{8x}{3)(x+1)}$ | 4        | <b>B1</b> for common denominator $(x - 3)(x + 1)$<br>seen<br><b>B1</b> for $(x + 3)(x + 1) - (x - 1)(x - 3)$ soi<br><b>B1</b> for $x^2 + 3x + x + 3$ or $x^2 - 3x - x + 3$ soi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14     | (a)          | <i>n</i> < 9                                                         |                      | 2        | <b>M1</b> for $2n < 18$ or $2n - 18 < 0$ oe<br>If 0 scored <b>SC1</b> for 9 with incorrect<br>inequality.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | (b)          | ( <i>b</i> + <i>a</i>                                                | d(a+c)               | 2        | <b>B1</b> for $b(a + c) + d(a + c)$<br>or $a(b + d) + c (b + d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 15     | (a)          | 4                                                                    |                      | 2        | M1 for attempt at sum of all numeric and $x$ terms equated to 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | (b)          | 26                                                                   |                      | 1FT      | $=18 + 2 \times \text{their}(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | (c)          | 8                                                                    |                      | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 16     | (a)          | 1.5                                                                  |                      | 2        | <b>B1</b> for [g(18) =] 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | (b)          | 2(x +                                                                | 5) or $2x + 10$      | 2        | M1 for correct first step e.g. $x = \frac{y}{5} - 5$ or<br>$\frac{x}{2} = y + 5$ or $2y = x - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|    |                  |                                                 |                                                                                                    |        |                                               |                                                                                                                                              | huy.                                                       |                    | 1.5      | 2      |
|----|------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------|--------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------------|----------|--------|
|    | Page 4 Mark      |                                                 | Mark Schem                                                                                         | Scheme |                                               | Syllabus                                                                                                                                     | ,                                                          | み,                 | 1        |        |
|    | IGCSE – May/June |                                                 |                                                                                                    | e 2013 |                                               | 0580                                                                                                                                         |                                                            | Mr.                | 63       |        |
| 17 | (a)              | $\begin{pmatrix} 7\\12 \end{pmatrix}$           | $ \begin{array}{ccc} 23 & 16 \\ 45 & 27 \end{array} $ $ \begin{array}{c} -3 \\ 3 & 2 \end{array} $ | 2      | <b>B1</b> for any be in a 2 by                | y one row or co<br>y 3 matrix                                                                                                                | olumn (                                                    | correct,           | the clou | d. com |
|    | (b)              | $\frac{1}{3} \begin{pmatrix} 6\\ - \end{cases}$ | $\begin{pmatrix} -3\\ 3 & 2 \end{pmatrix}$                                                         | 2      | <b>B1</b> for $k \left( -\frac{1}{2} \right)$ | $\begin{pmatrix} 6 & -3 \\ -3 & 2 \end{pmatrix}$ or $\frac{1}{2}$                                                                            | $\frac{1}{3} \begin{pmatrix} a & b \\ c & a \end{pmatrix}$ | $\left( 1 \right)$ |          | ·COM   |
| 18 |                  | 15.4                                            | or 15.35 to 15.36                                                                                  | 4      | <b>M1</b> for $\frac{1}{2}$                   | $\frac{20}{50} \times \pi \times 5^2 \text{ oe}$ $\times 5^2 \times \sin 120 \text{ of}$ $\frac{20}{50} \times \pi \times 5^2 - \frac{1}{2}$ | oe                                                         |                    |          |        |
| 19 | (a)              | hexag                                           | gon                                                                                                | 1      |                                               |                                                                                                                                              |                                                            |                    |          |        |
|    | (b) (i)          | - <b>b</b> +                                    | c                                                                                                  | 1      |                                               |                                                                                                                                              |                                                            |                    |          |        |
|    | (b) (i)<br>(ii)  | <b>b</b> $-\frac{1}{2}$                         | - c                                                                                                | 2      | B1 for OB                                     | $\mathbf{S} + \mathbf{B}\mathbf{A}$ or any                                                                                                   | correct                                                    | route              |          |        |
|    | (iii)            | - <b>b</b> +                                    | c                                                                                                  | 1FT    | = <i>their</i> (b)                            | (i)                                                                                                                                          |                                                            |                    |          |        |
| 20 | (a)              | [±]3                                            | 3.1623 cao                                                                                         | 2      | <b>M1</b> for $\sqrt{1}$                      | 0 seen                                                                                                                                       |                                                            |                    |          |        |
|    | (b)              | $\frac{4}{y^2-}$                                | $\frac{1}{8}$ oe final answer                                                                      | 4      |                                               | ove complete                                                                                                                                 |                                                            | •                  |          |        |
|    |                  |                                                 |                                                                                                    |        | M1 second                                     | d move compl                                                                                                                                 | eted co                                                    | rrectly            |          |        |
|    |                  |                                                 |                                                                                                    |        | M1 third n                                    | nove complete                                                                                                                                | ed corre                                                   | ectly              |          |        |
|    |                  |                                                 |                                                                                                    |        | M1 final n<br>answer line                     | nove complete<br>e                                                                                                                           | ed corre                                                   | ectly on           |          |        |