www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	<u>, </u>			h 4 2 30
	Page 2	Mark Scheme: Teachers' version	Syllabus	· h.
		IGCSE – May/June 2012	0580	12
Abbr	eviations			My Mains
cao	correct answe	er only		°C/6
cso	correct solution	on only		Cloud
dep	dependent			.0
ft	follow throug	th after error		, com
isw	ignore subsec	quent working		
oe	or equivalent			

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www anything rounding to art seen or implied soi

Qu.		Answers	Mark	Part Marks
1 (a)) (i)	6 correct plots	2	P1 for 4 or 5 correct plots.
	(ii)	Positive	1	
,	(iii)	Line of best fit	1	Ruled line at least from $x = 5$ to $x = 48$, with at least 3 points on each side and cuts axes between $(5, 0)$ and $(0, 20)$
	(iv)	English (integer) value on line at $M = 22$	1ft	Strict ft from their single ruled line $5 \varnothing x \varnothing 48$.
(b))	$(26 + 39 + 35 + 28 + 9 + 37 + 45 + 33 + 16 + 12) \div 10$	M2	M1 for 26 + 39 + 35 + 28 + 9 + 37 + 45 + 33 + 16 + 12, condone one slip or SC1, for at least 2 values eg (26 + 39 +) ÷ 10
(c))	46 cao www 3	3	M2 for $(31 \times 12 - 28 \times 10) \div 2$ soi by $92 \div 2$ or M1 for 31×12 soi by 372 or 92
2 (a))	445 final answer www 3	3	M2 for $351.55 \div (1 - 0.21)$ oe or M1 for $351.55 = (100 - 21)$ (%)
(b))	640 or 4640 4622.5 or 622.5	2 2	M1 for $4000 \times 0.08 \times 2$ oe M1 for $4000 \times (1.075)^2$ oe or 4000×0.075 (= 300) and $(4000 + \text{their } 300) \times 0.075$ and total interest = the sum of their 2 interests.
		Alex by 17.5(0) cao final answer www 6	2	M1 for S I amount – C I amount or reverse or simple interest – compound interest or reverse

			h	1. 2 30/1
Page 3	Mark Scheme: Teachers' version	Syllabus	·3.	2
	IGCSE – May/June 2012	0580	1/2	3.
	-		1/:	

		1	4/4
3 (a) (i)	<i>x</i> > 4	1	ns _{C/a}
(ii)	<i>y</i> > 9	1	Alhscloud.
(iii)	x + y < 20	1	
(b)	5x + 10y < 170 seen	1	
(c) (i)	x = 4 ruled y = 9 ruled	1	Each line long enough to enclose their region Condone good freehand or dotted y = 9 must be between 8.8 and 9.2
	x + y = 20 ruled	2	B1 for gradient = -1 or y intercept = 20 or x intercept = 20 . Exclude lines parallel to either axis.
	x + 2y = 34 ruled	2	B1 for y intercept = 17 or x intercept = 34. Exclude lines parallel to either axis.
	Correct region indicated cao	1	Dependent on all 6 marks for the 4 lines.
(ii)	145 cao (from 11, 9) www 2	2	M1 for using $5x + 10y$ when $x + y = 20$ and integers (x, y) is in their region

		The same of the sa	1.
Page 4	Mark Scheme: Teachers' version	Syllabus	2
	IGCSE – May/June 2012	0580	1/2 3 TO

4			In all parts of (a) candidates may refer to a marked in diagram. Allow if clear even if rea more complicated as long as it is full.
			Reasons dependent on correct answers
(a) (i)	42 Alternate oe	1 1	Not alternate segment
(ii)	90 semicircle oe	1 1	Allow diameter
(iii)	42 same segment oe	1 1	same arc
(iv)	138 cyclic quad oe	1	key words must not be spoiled
(b)	10.9 (10.90 to 10.91) www 3	3	M2 for $\sqrt{12^2 - 5^2}$ oe i.e explicit or M1 for $12^2 = 5^2 + PQ^2$ oe i.e implicit Allow full marks for $\sqrt{119}$ as final answer Use of trig method must be complete to explicit expression for possible M2
(c) (i)	AD = CD and $DE = DG(Angle) CDG = (angle)ADE(Sides of) square or 90^{\circ} + angle ADGoe$	1 1 R1	Extra pair of sides loses this mark. Extra pair of angles loses this mark As in (a), for all 3 marks allow references to diagram if completely clear. R mark dep on at least one pair of sides stated or pair of angles stated
(ii)	Congruent	1	

			4
Page 5	Mark Scheme: Teachers' version	Syllabus	.4
	IGCSE – May/June 2012	0580	

			1	9/4
5	(a)	(£) 2.37 or 2.371 to 2.372 www 2	2	M1 for 34.95 ÷ 1.17 implied by 29.87or SC1 for 2.77 or 2.78 or 2.775
	(b)	154 days 4 hours cao	3	M1 for $4.07 \times 10^{12} \div (1.1 \times 10^9)$ implied by figs 3 or 154. () A1 for 3700 seen or 3.7×10^3 seen or $154\frac{1}{6}$ oe or 154 rem 4
	(c) (i)	9.25	1	
	(ii)	Lower = 51.3375 final answer Upper = 52.8275 final answer	1 1	After 0 scored SC1 for answers reversed or 9.35 and 5.65 seen or 51.3375 and 52.8275 seen
6	(a)	(x =) 64 www 3	3	B2 for $x + 2x + x = 360 - 114 + 10$ or better or M1 for $x + 2x + 114 + x - 10 = 360$
	(b) (i)	-1 $n^2 \text{ oe}$ $5n \text{ oe}$ $n^2 + 5n \text{ oe}$	1 1 1 1	
	(ii)	20	2	M1 for their $n^2 + 5n = 500$ or 20 and 25 seen
	(c)	Final answer $\frac{x-4}{2x-1}$ cao www 4	4	B1 for $(x-4)(x+4)$ B2 for $(2x-1)(x+4)$ or SC1 for $(2x+a)(x+b)$ where either $a+2b=7$ or $ab=-4$
7	(a)	(5, 3)	1	
	(b) (i)	$3\mathbf{a} + \mathbf{c}$	1	
	(ii)	$3\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(6\mathbf{a} + \mathbf{c})$	2	M1 for \overrightarrow{OM} oe e.g $OA+AM$ or correct unsimplified answer
	(iii)	$\mathbf{a} + \mathbf{c}$	1	
	(iv)	$\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(3\mathbf{a} + \mathbf{c})$	2	M1 for $-\mathbf{c} + \frac{3}{2} \times$ their (iii) or $\mathbf{a} + \frac{1}{2} \times$ their (iii) or correct unsimplified answer or any correct route
				e.g. $CE + ED$
	(c)	(CD) parallel (to OB) oe cao	1dep	Part (c) dependent on simplified (i) and (iv) Dep on (i) = $k \times$ (iv)
		$CD = \frac{1}{2} OB$ oe cao	1dep	Dep on (i) = $2 \times$ (iv) must be scalars

Page 6	Mark Scheme: Teachers' version	Syllabus	·3.
	IGCSE – May/June 2012	0580	1

			Y/X
8			Throughout question, penalise non-red fraction only once; isw any conversion and decimals in working and on branches but not fin answers if fractions not seen.
(a) (i)	$\frac{2}{3}$	1	
(ii)	$\frac{1}{3}, \frac{2}{3}, \frac{2}{5}, \frac{3}{5}, \frac{1}{6}, \frac{5}{6}$ correctly placed	2	B1 for $\frac{1}{3}$ and $\frac{2}{3}$ and $\frac{3}{5}$ or $\frac{5}{6}$ correctly placed
			For method marks in (b) and (c) , ft tree with each probability 0
(b)	$\frac{4}{9}$ cao www 3	3	M2 for $1 - \frac{2}{3} \times \frac{5}{6}$ or $\frac{1}{3} + \frac{2}{3} \times \frac{1}{6}$ or $\frac{1}{3} \times \frac{2}{5} + \frac{1}{3} \times \frac{3}{5} + \frac{2}{3} \times \frac{1}{6}$ M1 for $\frac{1}{3} + \frac{2}{3} \times \frac{5}{6}$
			or two of $\frac{1}{3} \times \frac{2}{5}$, $\frac{1}{3} \times \frac{3}{5}$, $\frac{2}{3} \times \frac{1}{6}$ added
(c)	$\frac{14}{45}$ cao www 3	3	M2 for $\frac{1}{3} \times \frac{3}{5} + \frac{2}{3} \times \frac{1}{6}$ or their $\frac{4}{9} - \frac{1}{3} \times \frac{2}{5}$ M1 for one of $\frac{1}{3} \times \frac{3}{5}$ or $\frac{2}{3} \times \frac{1}{6}$ from a maximum of two products added.
9	Accurate ruled perp. bisector with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs Ignore one extra perp. bisector
	Accurate ruled angle bisector with correct intersecting arcs	2	B1 for accurate with no/wrong arcs or M1 for correct intersecting arcs Ignore one extra angle bisector
	Compass drawn arc centre <i>F</i> radius 5.5 cm long enough to enclose region	2	M1 for compass drawn arc centre F
	Correct region indicated cao	1	Accept dotty lines but not freehand for all three

Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0580

	<u> </u>	Maril Oaka T	1		0-41-1	n	4
Page 7		Mark Scheme: Teach IGCSE – May/Ju			Syllabus 0580		64
		IGCSL - May/Ju	1116 2012		0300		
10 (a) (i) $8x^6y^9$ final answer		B1 for any two of $8, x^6, y^9$ in a sing answer			n a single te	rm Sc/C	
(ii)	(ii) $\frac{x^2}{3}$ oe but not $\frac{1}{3x^{-2}}$ oe final answer		3	B2 for $\frac{3}{x^2}$ or	$3x^{-2}$ or $\frac{1}{3x^{-2}}$	as answer	
				or B1 for $\frac{x^6}{27}$ or SC1 for 3 of	oe as answer of x^2 or x^{-2} se	y A	
(b)	$6x^2 + 11$	$xy - 10y^2$ final answer	3	2 terms)	$x^2 - 4xy + 15xy$ $x^2 - 4xy + 1$		cy implies
(c) (i)		or $\frac{V}{2\pi r^2} - \frac{r}{2}$ oe but not triple final answer	2	M1 for correct $2\pi r^2$ seen	et subtraction o	r correct div	ision by
(ii)	$\frac{V^2}{3}$ fina	ıl answer	2	B1 for $V^2 = 3$	$h \text{ or } \frac{V}{\sqrt{3}} = \sqrt{h}$	$h = \left(\frac{V}{\sqrt{3}}\right)$	3
(d)	$\frac{5x}{12}$ fina	l answer	2	B1 for 2 of $\frac{6}{12}$ ie 2 with com	$\frac{x}{2}$, $\frac{20x}{12}$, $\frac{-21}{12}$ mon denomination		2 1
11 (a)	452 or 4:	52.1 to 452.4	2	M1 for $\pi \times 12$ final answer	2 ² Allow full	marks for 1	44π as
(b)	59.9 or 5	9.86 to 59.91 cao www 5	5		4×7 (soi by 52) oe (soi by 4.60)	,	e or
				and M1 dep i	for $\frac{22}{360} \times \pi \times$	24 × 7 (soi l	oy 32.2 to
				and M1 for = 3 27.6 to 27.7)	$\frac{22}{360}$ × their (a) of	oe may resta	rt (soi by
				and M1 dep	on M3 for add	ing two area	s
(c)		50 soi by 17.(11) oe $(2)^2 + 31^2 -$	M2	M1 for cos 50	$0 = \frac{11}{AC}$ oe i.e	e. implicit	
	$2 \times \text{their}$	$AC \times 31\cos 100$ cao www 6	M2 A2	M1 for implic A1 for 1433 to			

			4	1.
Page 8	Mark Scheme: Teachers' version	Syllabus	· .	2
	IGCSE – May/June 2012	0580	一少か	10 To
	-	•		CZ

	1		9%,
12 (a)	10x + 4y = 10.7 oe 8x + 6y = 10.1 oe	1 1	Athscloud
	Multiplying or dividing equation(s) by number(s) suitable for elimination	M1	Allow one arithmetic error. If substitution, correctly making one variable the subject of one equation.
	Elimination of one variable	M1	Allow one arithmetic error. If substitution method then M is for the actual substitution.
	x = 0.85 cao y = 0.55 cao	A1 A1	SC1 for correct fractions After M0, SC2 for both correct answers
(b)	$\frac{5 \pm \sqrt{(-5)^2 - 4.2 8}}{2.2}$	В2	If working in cents, likely mark is 0 for equations, M2 for method, A2 if answers converted to dollars, A1 if left in cents B1 for $\sqrt{(-5)^2 - 4.2 8}$ ($\sqrt{89}$) B1 for $\frac{p+}{r}$ or $\frac{p-}{r}$ with $p =5$ or 5 and $r = 2 \times 2$ or 4
			Completing the square B1 for $\left(x - \frac{5}{4}\right)^2$ and B1 for $\sqrt{4 + \frac{25}{16}}$
	3.61 or –1.11 final answer	B1B1	After B0 B0 for answers, SC1 for 3.6 or 3.608 and -1.1 or -1.108 or 3.61 and -1.11 seen Correct answers without working score max 2