www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

F	Page 2	Mark Scheme: Teachers' version	Syllabus	2 3	
		IGCSE – May/June 2012	0580	The The sine	
Abbre	viations			PHASE OF THE PARTY	
cao	correct answ	•		°C/0	
cso	correct solu	tion only		Cloud	
dep dependent				.0	
ft follow through after error				0	
isw	ignore subse	equent working		.7	
oe	or equivaler	nt			

Abbreviations

or equivalent oe SCSpecial Case

without wrong working www

seen or implied soi

Qu	Answers	Mark	Part marks	
1	Wednesday 22 15 or 10 15pm	2	B1 B1	
2 (a)	I cao	1		
(b)	IN cao	1		
3	$x-5 \frac{x}{5} \frac{5}{x} 5x$	2	M1 evaluating all 4 expression the range. (1 and 2 are our	
4	25 (correct working essential)	2	M1 for 18 + 4 + 3 with de (oe is possible)	enominator 12 must be soi
5	64000 or 6.4 × 10 ⁴	2	SC1 for 63800 or 6.38 × in answer space.	10^4 or figs 64 or 6.4×10^k
6	1, 2, 3, 4	3	M1 $10x < 45$ A1 $x < 4.5$	
7	4.46 or 4.456 to 4.459 cao	3	B1 for 28 seen M1 ft for $\frac{their28}{2\pi}$ oe or be	etter.
8	13500 408	3	M1 135×10^2 or 408000	$\div 10^3$ oe A1 A1
9	452	3	M1 tan $78.3 = \frac{x}{58.4}$ M1 "282" + 170	SC2 282 in answer space
10 (a)	50	1		
(b)	2 M1 finding area under graph SC1 15000		aph SC1 15000	
11	196	3	M1 $y = k(x-3)^2$ A1 $k = 4$	$\mathbf{M1} \ y = \frac{(x-3)^2}{k}$
				$\mathbf{A1} \ k = \frac{1}{4}$

Page 3	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2012	0580

				hu so
Page 3			ersion Syllabus	
		IGCSE – May/	June 20	12 0580
12	(a)	10(.0)	2	rersion Syllabus 0580 Syllabus 0580 M1 $\frac{1}{2} \times 8 \times 5 \times \sin 150$ M1 30° correctly placed at B or C oe
	(b)	210	2	M1 30° correctly placed at B or C oe
13	(a)	15	2	M1 for $\frac{(9-3)}{0.4}$ oe
	(b)	11.7(0)	2	M1 for 9 × 1.3 oe
14	(a)	Shear, SF2, <i>x</i> axis invariant	3	B1 shear B1 SF2 B1 x axis invariant
	(b)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	2ft	$\begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$ 2 marks if $k = 2$ or their SF in (a) 1 mark for any other $k, k \neq 0$
15	(a)	29 to 29.5	1	
	(b)	20 to 20.5	1	
	(c)	14 to 14.5	1	
	(d)	$\frac{13}{15}$ oe or 0.867	2	M1 8 seen
16	(a)	0.7 to 0.8 and 5.2 to 5.4	2	B1 B1
	(b)	-2 to -1 but must have a tangent at $x = 1$ for full marks	3	M1 drawing tangent at $x = 1$ M1 for using ystep/xstep on their tangent wherever it is drawn
17	(a)	(-5, 0)	2	B1 (<i>k</i> , 0) or (–5, <i>k</i>)
	(b)	-2	1	
	(c)	$2\frac{1}{2}$ or $\frac{5}{2}$	2	$\mathbf{M1} \ \frac{5}{4} = \frac{k}{2} \ \text{oe}$
18	(a)	$2(x+2)^3$ or $2x^3 + 12x^2 + 24x + 16$	2	M1 v. clear evidence of $f(x) \times 2$ then add 10
	(b)	$\sqrt[3]{(x+5)}-2$	3	M1 correct first step M1 correct second step
	(c)	0	2	M1 g(-5) seen or $2 \times -5 + 10$
19	(a)	$3\frac{1}{2}$	2	M1 $2x - 7 = 0$
	(b)	3 and –3	3	$\mathbf{M1} \ x^2 - 8 = 1 \mathbf{A1} \ x = 3 \mathbf{A1} \ x = -3$
	(c)	5	2	M1 x - 2 = 3
1		1	1	