

www.mymathscioud.com MARK SCHEME for the May/June 2011 guestion paper

for the guidance of teachers

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	+· 7, 2, 2
		IGCSE – May/June 2011	0580	L'In Take
\bbr	eviations			MW. My Maths
cao	correct answe	er only		°C/c
so	correct soluti	ion only		- United
lep	dependent			.0.
t	follow throug	gh after error		-Or
SW	ignore subsec	quent working		
e	or equivalent	t		
SC	Special Case			
www	without wron	ng working		
ırt	anything rou			
	· · ·			

ed
(

Qu.	Answers	Mark	Part Marks
1 (a)	(i) $\frac{1380}{62+53} \times 62$	1	Allow 115 for 62 + 53
	(ii) 7.27 (7.271 to 7.272)	1	
	(iii) 42	2	M1 for $\frac{3150}{75}$ oe
(b)	(i) 235	3	B2 for angle $ACS = 55$ or angle $ACN = 125$ B1 for 55 seen
	(ii) 12.6 (12.58 to 12.59)	3	M2 for $\frac{4}{6} \times 18.9$ or $4 + 4 + 2 \times 4 \times \cos 55$ or $4 + 4 + 2 \times 4 \times \sin 35$ oe
			(M1 for $\frac{4}{6}$ soi or 2×4×cos55 or
			$2 \times 4 \times \sin 35$ soi oe)
(c)	1500	3	M2 for $\frac{1380}{1-0.08}$ oe (M1 for recognition that 92% = 1380)

Pa	age 3	Mark Scheme: Tea IGCSE – May/			sths.
2 (a)	Monday	$\frac{3}{5}$, $\frac{2}{5}$	1	I'scic	Jug.
	Tuesday -	, ,	1		-OM
		$\frac{5}{7}$, $\frac{2}{7}$	1		
(b)	(i) $\frac{12}{35}$	oe cao	2	M1 $\frac{3}{5} \times \frac{4}{7}$ ft their tree	
	(ii) $\frac{9}{35}$	oe cao	2	M1 $\frac{3}{5} \times \frac{3}{7}$ ft their tree	
	(iii) $\frac{19}{35}$	oe	2 ft	35	
				M1 for $\frac{2}{5} \times \frac{5}{7}$ + their (b)(ii) or $1 - \frac{3}{5} \times \frac{4}{7} - \frac{2}{5} \times \frac{2}{7}$	
(c)	$\frac{34}{35}$ oe c	ао	3	ft their tree throughout (iv) M2 for $1 - \frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= 1 - \frac{1}{35} \right)$ (M1 for $\frac{2}{5} \times \frac{2}{7} \times \frac{1}{4} \left(= \frac{1}{35} \right)$)	
				or M2 for $\frac{3}{5} + \frac{2}{5} \times \frac{5}{7} + \frac{2}{5} \times \frac{2}{7} \times \frac{3}{4}$ (M1 for any two of these)	
3 (a)	3 www		3	M1 for $p = \frac{k}{(m+1)}$ or A1 for $k = 36$ or M2 for $4 \times 9 = p \times 12$ or	
(b)	(i) (x +	5)(x-5)	1		
	(ii) $\frac{(2x+1)}{(x-1)}$	$\frac{1}{5}$ final answer	3	B2 for factors $(2x+1)(x+5)$ or SC2 for final answer $\frac{x+\frac{1}{2}}{x-5}$ (B1 for $(2x+a)(x+b)$ where $ab = 5$ or $2b+a = 11$ or SC1 for $(x+\frac{1}{2})(x+5)$)	
(c)	<i>x</i> < 7 oe	final answer	3	M2 for $8x * 56$ where * is inequality or = sign (B1 for $5x - 20$ or $36 - 3x$)	

				muy y and
Pa	Page 4 Mark Scheme: Tea			rsion Syllabus 7 2
		IGCSE – May/Ju		0580
				ins.
4 (a)	(i) (cos	$s(HFG)) = \frac{6^2 + 14^2 - 12^2}{2 \times 6 \times 14}$	M2	Mn Mn rsion Syllabus 0580 N M1 for implicit form A1 for 0.5238 ft their (i) Concept for the first
	58.4	4 (58.41)	A2	A1 for 0.5238
		$\times 6 \times 14 \times \sin$ (their 58.4) oe 8 or 35.77 to 35.78	M1 A1 ft	ft their (i) Correct or ft their (i)
(b)	(sin (RQF	$P()) = \frac{\sin(117) \times 12}{18}$	M2	M1 for implicit form
	36.4 or 36	5.44	A1	
5 (a)	(i) Cor	rect translation (see diagram)	2	SC1 for translation by $\begin{pmatrix} -3 \\ k \end{pmatrix}$ or by $\begin{pmatrix} k \\ -2 \end{pmatrix}$
	(ii) Cor	rect reflection (see diagram)	2	SC1 for reflection in $y = -1$
(b)	(fac	etch, tor) 3, k s or $x = 0$ invariant	1 1 1	
		ation clockwise - 1)	1 1 1	Accept –90°
(c)	(i) $\begin{pmatrix} 3\\ 0 \end{pmatrix}$	0 1) ft from (b)(i)	2 ft	SC1 for $\begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ (ft from (b)(i)) or $\begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix}$
				with k algebraic or numeric but $\neq 1$ or 0
	(ii) Rot 180	o ation,	1	
	Orig		1	Accept <i>O</i> or (0,0)
6 (a)	23.6 (23.6	50)	2	M1 for $14^2 + 19^2$
(b)	2300 or 2	303 to 2304 cao	4	M3 for $2 \times \frac{1}{2} \times 14 \times 19 + 14 \times 36 + 19 \times 36 +$ their <i>BC</i> × 36 M2 for 4 of these added M1 for $\frac{1}{2} \times 14 \times 19$
(c)	4788 or 4	790 cao	2	M1 their triangle area \times 36
(d)	43(.0) or -	43.04 to 43.05 cao	2	M1 for (their (a)) ² + 36 ² or $36^2 + 19^2 + 14^2$
(e)	18.9° to	19.02° cao	3	M2 for inv sin $\left(\frac{14}{\text{their } CE}\right)$ or
				inv tan $\left(\frac{14}{\sqrt{19^2 + 36^2}}\right)$ or inv cos $\left(\frac{\sqrt{19^2 + 36^2}}{\text{their } CE}\right)$ or complete longer
				methods (M1 for clearly identifying angle <i>CEA</i>)

				nn	M. My maths t	
Pa	Page 5 Mark Scheme: Teache			Syllabus	· 71 2	1
	IGCSE – May/Ju	ine 2011		0580	_ m	Pth .
					4th	Vo
7 (a)	1(.00) 4(.00) 11.1(1) 1(.00) 0.25	3	B2 for 4 corre	ect, B1 for 3 correc	t oc	YOU
(b)	10 points plotted	P3 ft	B2 for 8 or 9 B1 for 6 or 7	.0. .Con		
	Correct shaped curve through 10 points (condone 2 points slightly missed)	C1 ft	ft their points if shape correct – ignore anything between -0.6 and 0.6		;	
	2 separate curves not crossing <i>x</i> -axis and not touching or crossing <i>y</i> -axis	B1	Independent			
(c)	-0.85 to -0.75 cao	1				
	0.75 to 0.85 cao	1	A 11 11 1 A	1 1 1 1		
(d)	Tangent drawn (ruled) at $x = 1.5$ - 3 to -2	T1 2	Allow slight Dep on T1			
			SC1 for answ	rise/run dependen ver in range 2 to 3	C	
			Answer impli	ies M but not the T	mark	
(e)	(i) $y = x - 2$ oe	1				
	(ii) line ruled to cross curve	2 ft	B1 for gradie	(i) in form $y = mx$ nt ft or y intercept t all possible points	ft but again to	0
	(iii) 2.5 to 2.7 cao	1	Dependent or	n (e)(i) correct		
8	14.2	3		$(10 \times 11 + 8 \times 12 + 8 \times 16 + 6 \times 17 + 16 \times 17)$		
				$8 \times 16 + 6 \times 17 +$ ror or omission)	9 × 18) (1005)	
				$\Sigma f(10+8+16+1)$))
			(75) (allow c	one further error or	omission)	
	14 13	2	M1 for 37th,	37.5th or 38th see	n	
(h)			B1 for 2 corre	aat		
(b)	(i) 21, 30, 15 (ii) 20 20 10 (10)	23		ch correct vertical p	nir	
	1.05 1.5 1.5 (0.9)		1, 1, 1 101 eac	n concet vertical p	Ja11	
(c)	$\frac{10 \times 2.5 + 12 \times 3 + 4n}{10 + 12 + n} (= 3.1)$	M2	M1 for either	numerator or deno	minator seen	
	multiplying across and collecting terms	M1	-	numerator and den $25 - 20 = 4h \sin(4)$		
	(<i>n</i> =) 8 www 4	A1	their $(68.2 - 2)$	(4 - 36) = their (4 - 36)	$-3.1) \times n$	

				ersion Syllabus Thymathyse Syllabus The Syllabus The Syllabus The Syllabus The Syllabus The Syllabus S	11 Sec.
Pa	Page 6 Mark Scheme: Teach			rsion Syllabus 7, 2	2
	IGCSE – May/Jun			1 0580 Jn 34	
	•			dithe is	
9 (a)	$x \ge 3$	$y \ge 2$	1, 1	Cloue	
(b)	$x + y \le 9$		1		5
(c)	$6x + 14y \leq$	84	1		?
(d)	x = 3 $y =$	2	1, 1	Accept clear and freehand lines long enough to define the correct quadrilateral	
	x + y = 9		2	SC1 for line through $(0, 9)$ or $(9, 0)$	
		0, 6) to (14, 0)	2	B1 for through (0, 6) or (14, 0)	
	Correct qua indicated	drilateral unshaded or clearly	1		
(e)	\$ 70		2	B1 for considering (7, 2)	
10(a)	$(A \ 1) \ 8 \ 2$		2	B1 for 3 correct	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16 20 6 25 36	1 2	B1 for 3 correct	
(b)	512		1		
	169		1		
(c)	25 99		1 1		
(d)		4 <i>n</i> oe	1,1		
(u)		$(1)^2 - 4n$ oe but isw	1, 1 1, 1	Likely oe is $(n-1)^2$	