

www.mymathscioud.com MARK SCHEME for the May/June 2010 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/23

Paper 23 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

		hun
Page 2	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2010	0580

Γ

0			S.
Qu.	Answers	Mark	Part Marks
1	(a) -5	1	
	(b) 11	1	
2	$\frac{53}{11} > 4.80 > \sqrt{23} > 48\%$	2	M1 for decimals seen 4.7958 0.48 (4.80) 4.81()
3	500	2	M1 for $600 \times 0.6 \div 0.72$ seen
4	70	2	M1 for $252 \times 1000 \div 60 \div 60$ oe
5	18	2	M1 for 21.6 ÷ 1.2 oe
6	x + 8	2	M1 3 ⁸ seen
7		2	B1 for one correct Venn diagram
8	$\frac{5x-3}{6}$	2	B1 for $5x - 3$ seen SC1 $\frac{5}{6}x - \frac{3}{6}$ on answer line
9	$5(.00) \times 10^5$	2	SC1 for 5×10^k or 500 000 on answer line
10	220.5 cao	2	M1 for 73.5 seen
11	16.8	3	M2 tan 17 = $\frac{h}{55}$ or tan 73 = $\frac{55}{h}$
			of Wi tan? $-\frac{h}{h}$ of tan? $-\frac{h}{55}$ if angle seen in
12	$9-2x^2$	3	B1 for $x^2 - 3x - 3x + 9$ or $2x^2 - 6x - 6x + 18$ B1 for $4x^2 - 6x - 6x + 9$ or $-4x^2 + 6x + 6x - 9$
13	(a) 0	1	
	(b) 2	1	
	(c) plane across centre of shape	1	Three possibilities
14	6	3	M1 for one correct first step which leads towards simplifying
			$3y - 12 + \frac{y}{2} = 9$
			or $6(y-4) + y = 18$
			or $y - 4 + \frac{y}{6} = 3$
			M1 correctly collecting their terms to $pv = a$

					hun	
Page 3 Mark Scheme: Te		eachers' version		Syllabus .	2	
		IGCSE – May	y/June 2	010	0580	Tat a
15	(a) g h		1			ary is
15	(a) g = n	2	1		→ 1	°C/O,
	(b) $\frac{1}{4}$ g + $\frac{3}{4}$ h		2	M1 for \overrightarrow{OH} + \overrightarrow{H}	\overline{N} or $\mathbf{h} + \frac{1}{4}$ (a)	U.C.
				\overrightarrow{OG} + \overrightarrow{GR}	\vec{N} or $g - \frac{3}{4}$ (a)	-OM
16	$\frac{5A}{r} - 2$ or $\frac{5A - 2r}{r}$		3	M1 for correctly multiplying by 5 M1 for correctly dividing by <i>r</i> M1 for correct subtraction in any order		
17	(a) 10.9		2	M1 for $\frac{40}{360} \times \pi \times \pi$	5.6 ²	
	(b) 15.1		2	M1 for $\frac{40}{360} \times \pi \times 2 \times 5.6$ (= 3.91)		
18	(a) 64		2	B1 for evidence of	f(-2) = 6	
	(b) 9		2	M1 for $3x - 5 = 22$	2 or $\frac{x+5}{3}$ seen	
19	(a) $\frac{3}{4}$ or ().75	1			
	(b) 2.6		3	M1 for finding the M1 for their 39 ÷	e area under the graph or 15	
20	$x \ge 0$		1	L1 <i>x</i> R 0		
	$y \ge \frac{1}{2}x$	oe	2	L1 y R $\frac{1}{2}x$		
	$x + y \le 4$	oe	2	L1 $x + y$ R 4 when B2 all inequalities	re R is any one of = <> correct or B1 2 correct	$\leq \geq$
21	(a) 18.7		3	M2 for $\sin R = 50$ or M1 for $\frac{\sin R}{50} =$	$\times \frac{\sin 140}{100} \ (= 0.3219)$ $\frac{\sin 140}{100} \ \text{oe}$	
	(b) 261(.3	3)	2 ft	M1 360 – 80 – the	eir (a)	
22	Perpendic	ular bisector of AC	2	B1 accurate line B1 two pairs of co	rrect construction arcs	
	Bisector o	f angle A	2	B1 accurate line B1 two pairs of co	rrect construction arcs	
	Shaded reated to left of p above bise	gion inside triangle and erp bisector of <i>AC</i> and ector of angle <i>A</i>	1	B1 dep on first B1	being scored for both 1	ines
23	(a) (-5	7)	2	B1 either correct in	n a (1×2) matrix	
	(b) $\frac{1}{4} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} 1\\3 \end{pmatrix}$ oe	2	M1 for $\begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix}$	seen or $2 \times 31 \times -$	2 (=4)
	(c) $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\1 \end{pmatrix}$ or I cao	1			