UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

		Mark Oakamaa Taaakawa'uuwaian	hun y
Pa	age ∠		Syllabus
Abbrev	riations		- Cooo, Cool - Maths
cao	correct answ	ver only	Cloud
cso den	dependent	uon only	*.00
ft	follow throu	igh after error	m and a second sec
isw	ignore subse	equent working	
oe	or equivaler	nt	
SC	Special Cas	e	

WWW	without wrong	working
-----	---------------	---------

1 (a)	(\$) 450	B2	M1 for $650 \div (9+4) \times 9$
			$(\div 14 \text{ does not imply } 9 + 4)$
(b) (i)	(\$) 120	B2	M1 for 0.8×150 o.e.
(ii)	(\$) 80 ft	B2 ft	M1 for $(150 - \text{their}(\mathbf{b})(\mathbf{i})) \div 0.375$ o.e.
			only if +ve. After M0, SC1 for answer 320
(c) (i)	(\$) 441	B2	M1 for 400×1.05^2 o.e. or for answer 41
(ii)			If use Simple Int in (i), M0, M0 in this
			part
	$\frac{1}{2}$ their ((i) – 400) ÷ 400 × 100 o.e.	M2	i.e. a full explicit method for r
	-		If M0 ,
	5 135 an 5 13 an 5 13 a c c a manual	A 1	M1 for $400 \times r \times 2$ their (i) 400
	5.125 OF 5.13 OF 5.12 C.a.O. WWW3	AI	100 = 100
			or their (i) $\div 400 \times 100$ then -100
			their (i) - 400
			or $$
			400
			If still M0 SC1 for answers 55 125 or
			55 12 or 55 13 or 55 1 or 0.05125 or
			0.0512 or 0.0513
			[11]

2 (a)	1	B1	
(b)	2.5 o.e.	B1	
(c)	2.96 c.a.o.	B2	If B0, M1 for
			$15 \times 1 + 10 \times 2 + 7 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6$
			(allow one slip) implied by 148 seen
			Ignore subsequent rounding
(d)	60 × 2.95 (= 177)	M1	
	their 177 – their 148 (or 50 × their 2.96)	M1	Dependent on first M and <u>only if positive</u>
			or M1 for
	(Mean of new rolls =) 2.9 c.a.o. www3	A1	$\frac{\text{their } 148(50 \times \text{their } 2.96) + x(\text{or } 10x)}{-2.95}$
			60
			then M1 for
			$x(\text{or } 10x) = 60 \times 2.95 - \text{their } 148$
			(or $50 \times$ their 2.96) and <u>only if positive</u>
			[7]

					hy.
Page 3		Mark Scheme: Teachers'	version		Syllabus 20 12
i age	50	IGCSE – May/June 2	<u>version</u> 009		0580 0581
			005		
3 (a)	(sin <i>P</i>)	$= \frac{48}{0.5 \times 10 \times 14}$ o.e. <u>fraction</u>	M2	M1 for Allow but no	$r 0.5 \times 10 \times 14 \sin P = 48$ o.c $0.5 \times 10 \times 14 \sin 43.3 = 48$ for further credit
	P = 43	.29 cao	A1		
(b)	$10^2 + 1$	$14^2 - 2 \times 10 \times 14\cos 43.3 \ (= 92.2)$	M2	If M0 ,	M1 for correct implicit statement
	Evalua	ating square root	M1	M1 (de correct i.e 16c	ependent on M2) for square root of t combination (not negative) os43.3 (11.64) implies M2M0
	(OR =) 9.6(0) (9.60 to 9.603) c.a.o. ww2	A1		[7]
4 (a)	(<i>AB</i> =	$\frac{250}{\sin 126} \times \sin 23$ (s.o.i by 120)	M2	M1 for	$r \frac{AB}{\sin 23} = \frac{250}{\sin 126}$ o.e. (implicit)
	121 (1	20.7 to 121) (m) c.a.o. www3	A1		
(b) (i)	280		B 1		
(ii)	(0)69	c.a.o.	B2	SC1 f	For answer 249 [6]
			1	1	
5 (a) (i)	1.5, 3.	75, -1.5	B1,B1,B1		
(ii)	12 poi	nts plotted ft	P3 ft	P2 ft f	or 10 or 11 points,
	Curve	through at least 10 points and correct	C1	P1 ft fo	or 8 or 9 points
	shape	over full domain	CI	1.S.W. 1	I two branches joined
		parate branches, one on each side of	D1	Indono	undont
(b)	y-axis,	$r \leq 11$ and $31 \leq r \leq 34$	DI R1 R1	i s w 3	$\frac{1}{2}$
	Correc	$x \ge -1.1$ and $3.1 \ge x \ge 3.4$	M1	Long e	enough to be able to find gradient
	Evider	nce of rise/run	M1	Denen	dent – check their granh against
				gradie	nt of $1 - \text{must}$ be correct side of 1
				No tan	ngent drawn M0M0
	0.8 to	1.2	A1		
(ii)	0.8 to	1.2 inc. or same answer as (i) ft	B1 ft		
(d) (i)	Correc	et ruled line to cut curve for all	B1	Within	$\frac{1}{2}$ square of (-1, 1) and (1, -1)
	possib	le intersections (at least 2)			
(ii)	-1.3 to	D –1.05, 1.05 to 1.3 inclusive	B1, B1	i.s.w. a	any extra answers
(e)	y = kx	with $k \ge \frac{1}{2}$ o.e. or $x = 0$	B2	If B0 , a	allow SC1 for $y = kx$ with $k < \frac{1}{2}$ or
		-		for <i>v</i> -a	xis stated
					[19]

		ny.
Page 4	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0580, 0581

ËLS.

6 (a) (i)	$0.5 [(x+6) + (x+2)] \times (x+1) (= 40)$ or	M1A1	M1 for any algebraic use of half base
	better		height
			(Brackets may be implied later)
	0.5(2x+8)(x+1) (= 40) o.e.		May be first line
	$0.5(2x^2+10x+8) (=40)$ o.e.		If this first line, then M0
	$x^2 + 5x + 4 = 40$ o.e.	E1	Dependent on M1A1 . Fully established –
	$x^2 + 5x - 36 = 0$		no errors throughout and at least 2 steps,
			one with 40 or 80, after first line
(ii)	-9,4	B1,B1	If B0, SC1 for +9 and -4
(iii)	$(BC^2 =)$ (their $x + 1$) ² + (their $x + 2$) ²	M1	Their <i>x</i> must be positive
	(BC =) 7.81(0) c.a.o. www2	A1	Ignore any extra solutions
(h) (i)	0^{5} or $108+5$ or $9 \times 12+5$ 565	E1	Must be fractional form
	$9_{\frac{12}{12}}$ or $\frac{12}{12}$ or $\frac{12}{12}$ or $\frac{12}{60}$		Condone $113/12 \times 60 = 565^{\circ}$
	$9 \times 60 + 25$		$9 \times 60 + 25 = 565$
	or $\frac{3 \times 60 + 22}{60}$ seen		Not for decimals
	60		
(ii)	$\frac{3y+2}{y+1}$ or $\frac{y+4}{y+1}$	B 1	
	3 2		
	2(3y+2) + 3(y+4)	D1	6y + 4 + 3y + 12
		DI	or $\frac{6}{6} + \frac{6}{6}$ o.e.
(2(9v+16) 113	M	
(111)	$\frac{1}{12} = \frac{1}{12} = \frac{1}{12}$ 0.e.	MI	o.e. means with common denominator or
	12 12	4.1	better
(!)	y = 4.5 c.a.o. WWW2	AI M1	(1 rial and error scores 2 or 0.)
(IV)	$(1 \text{ otal dist} =) (3 \times \text{their } y) + 2 + (\text{their } y) + 4$	INI I	(= 24)
	0.e.		
	(Average speed =) $\frac{\text{their } 24}{24}$ o.e.	M1	(dependent) Must be km divided by hours
	$9\frac{5}{12}$		o.e. for full method
	2.55 (km/h) (2.548 – 2.549) c.a.o. www 3	A1	Accept fractions in range
			[15]

		hun
Page 5	Mark Scheme: Teachers' version	Syllabus 7.7
	IGCSE – May/June 2009	0580, 0581
ŀ		PATA

	IGCSE – May/June 2	2009	0580, 0581
			Ath Cas
7 (a)	$250x^2 = 4840$ o.e.	M1	Allow M1 for $250 \times 4.4^2 = 4840$
	$x^2 = 19.36$ or $(x =) \sqrt{4840 \div 250} (= 4.4)$	E1	Then E1 for $250 \times 19.36 = 4840$
(b)	42.6 (kg) cao (42.592 or 42.59)	B2	SC1 for figures 426 or 4259
(c)	26.4 (cm) c.a.o.	B2	If B0 , M1 for any of following
			$88 \div 4.4 = 20$ and $120 \div 20 = 6$ (accept 6
			bars high o.e.) or $88h = 4 A^2 \times 120$
			or $250 \times 88 \times h = 120 \times 4840$
(d) (i)	4840 ÷ 4200 (implied by 1.15(2))	M1	$4200 \times \frac{4}{3} \pi r^3 = 4840$
	$\div \frac{4}{3}\pi$ (implied by 0.274 to 0.276)	M1	$(r^3 =) 4840 \div (4200 \times \frac{4}{3}\pi)$
	$\sqrt[3]{}$ (seen or implied by correct answer to	M1	$\sqrt[3]{}$ Third M dependent on M1M1
	more than 2 dp)	dep	
	0.649 – 0.651	A1	Must be 3dp or better
(ii)	5.31 (5.306 – 5.31) (cm ²)	B1	
(iii)	$\frac{4200 \times \text{their (ii)}}{4200 \times 100} \times 100$	M3	If M0 , M1 for 4200 × their (ii) (22299)
	$2 \times 4.4^{2} + 4 \times 4.4 \times 250^{1100}$		and M1 (independent) for correct method
			for surface area of solid cuboid (4438.72)
	501.9 – 503 (%) c.a.o. www4	A1	[15]
			[15]
8			Throughout the question ratios score zero.
			If using decimals, 2 s.f. correct answers to
			parts (c) and (d) – penalty of 1 once Use of words $a = 1$ in 400 or 1 out of 400
			Correct answers – penalty of one
			For method marks only accept
			probabilities p and q between 0 and 1
(a)	$p = \frac{1}{20}, q = \frac{19}{20}$ o.e.	B1	Could be on diagram
(b) (i)	$\frac{1}{400}$ 0.e. c.a.o.	B2	0.0025 allow M1 for $(\text{their } p)^2$ o.e.
(ii)	$\frac{38}{400}$ 0.e. c.a.o.	B2	0.095 allow M1 for 2 (their p)(their q) o.e.
(c)	$\frac{38}{8000}$ o.e. c.a.o.	B2	0.00475 allow M1 for 2(their p) ² (their q)
			0.e.
(d)	their (b)(i) \pm their (a)	M1	including their (ii) \times their p
(u)	$\frac{58}{58}$ 0.0 0.0 0		0.00725
(a)	$\frac{1}{8000}$ 0.c. c.a.o.		A coont 7 on 8 on an aquivalent integer A
(e)	their (a) \times 1000 = 7.25 o.e. It	BII	Accept / or 8 or an equivalent integer ft
	l		[10]

		mm
Page 6	Mark Scheme: Teachers' version	Syllabus
	IGCSE – Mav/June 2009	0580.0581

Ś

9 (a) (i)	174 to 174.25 (cm) c.a.o.	B 1	J.C.
(ii)	167 (cm) c.a.o.	B 1	OU
(iii)	12 (cm) c.a.o.	B 1	*0
(iv)	37 c.a.o.	B2	If B0 , B1 for 63 seen in working space
(b) (i) (ii)	10, 25 155, 165, 175, 185 (their 10×155 + their $25 \times 165 + 47 \times 175$ + 18×185)	B1 M1 M1	s.o.i. allow 1 slip Use of $\Sigma f x$ where the x's are in/on their
	÷ 100	M1	(dependent on second M) ÷ 100
	172 or 172.3 (cm) c.a.o. www 4	A1	[10]

10 (a) (i)	-2,	B1	
(ii)	26,	B 1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\frac{y+1}{2}(=x)$	M1	If switch x and y first then M1 for $x = 2y - 1$ or
	$(f^{-1}(x) =) \frac{x+1}{2}$ o.e. www2	A1	If use a diagram/chart then M1 for any evidence of +1 then result ÷ 2
(c)	$z = x^2 + 1$		
	$z - 1 = x^2$	M1	Correct rearrangement at any stage for <i>x</i> or x^2 .
	$(x=) \sqrt{z-1}$ www2	M1	Correct sq root at any stage
			Ignore +, – or \pm in front of $$
(d)	$(2x-1)^2 + 1$	M1	
	$=4x^{2}-4x+2$ or $2(2x^{2}-2x+1)$	A1	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	
(f)	$2(2x-1) + x^2 + 1 (= 0)$ or better	B1	
	$(x^{2} + 4x - 1 = 0)$ - 4 \pm \sqrt{4^{2}} - 4(1)(-1)	M1	$\sqrt{4^2 - 4(1)(-1)}$ or better seen
	$(x=) \frac{1}{2 \times 1} ft$	M1	If in form $\frac{p + or - \sqrt{q}}{r}$ for -4 and 2×1
	(x =) -4.24, 0.24 c.a.o. www 4 (final answers)	A1,A1	or better Ft their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for - 4.2 or - 4.235 or -4.236 and 0.2 or 0.235 or 0.236 The SC1's www imply the M marks
(g) (i)	Straight line with positive gradient and	L1	
	U-shape Parabola	C1	
	vertex on positive y-axis	V1	Dependent [18]

		nh l
Page 7	Mark Scheme: Teachers' version	Syllabus
	IGCSE – May/June 2009	0580, 0581

ટુ

11 (a)	15, 21, 28, 36	B2	B1 for 3 correct
(b) (i)	10 + 15 = 25, 15 + 21 = 36 etc	B1	Any two complete and correct statemen.
(ii)	Square	B1	
(c) (i)	2	B1	0
(ii)	$\frac{4\times 5}{2} = 10 \text{o.e.}$	E1	
(iii)	16 290 c.a.o.	B1	
(d) (i)	$\frac{(n+1)(n+2)}{2}$ or $\frac{n^2 + 3n + 2}{2}$ seen	M1	Denominator could be their k May be implied by next line
	$\frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2} \text{ or } \frac{n^2 + n}{2} + \frac{n^2 + 3n + 2}{2}$ $\frac{(n+1)}{2}(n+n+2) \qquad \qquad \frac{2n^2 + 4n + 2}{2}$	M1	This line must be seen and at least one more step, without any error, to gain the E mark
	$\frac{2}{(n+1)(2n+2)} = \frac{n^2+2n+1}{(n+1)^2}$ $\frac{2}{(n+1)(n+1)} = \frac{2}{(n+1)^2}$	E 1	Dependent on M1M1 Fully established
	$\frac{1}{2} = (n+1)^2$	1.1	no errors
(ii)	1711 and 1770 final answers c.a.o.	B2	SC1 for 59 or 58 or 1711 or 1770 seen
			[12]

Graph for Question 5

