

MARK SCHEME for the May/June 2008 question paper

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

_				· · · · ·
	Page 2	Mark Scheme	Syllabus	Papty
Ī		IGCSE – May/June 2008	0580, 0581	04

							Mun my mainsc	
Page	2	Mark S	Scheme			Syllabus	Pap	Y and
		IGCSE – Ma	y/June 20	008		0580, 0581	04 4th	S.S
						-	°Ç,	%,
1 (a) (i)	250			B1				-UN
(ii)	their (a	a)(i) \div 5 × 52 o.e.		M1	SC1 fo	or $12.5 \div 5 \times 52$, impli	ed by 130	
	2600 f	t	www2	A1 ft		_		
(iii)	their (a)(ii) - 2450 2450 × 100 o.e.		M1	$\frac{their (a)(ii)}{2450} \times 100 - 100, \ \frac{2450}{100} = \frac{150}{x}$		$\frac{450}{00} = \frac{150}{r}$	
	6.1 (22.) ft	www2	A1ft		A only if their (a)(ii		
(b) (i)	20÷5>	< 3		M1				
	12		www2	A1		t 12, 8 or 8, 12		
(ii)	their (b	$(b)(i) \div 3 \text{ and } (20 - their (b)(i))$	())÷2.5	M1	4 and 3 M1	3.2 or 7.2 or 7h 20 mi	ins seen imply	
	7 hour	s 12 mins cao	www2	A1	Condo	ne poor notation e.g.	7-12	
(iii)		2.777–2.778) o.e. cao		B 1		ist have units stated e	 • 	
	o.e. in other units				m/s, 46.29 – 46.30 i			
(iv)	16 07	o.e. ft		B1 ft		(b)(ii) + 08 55 iff fir d (b)(ii) has hours an		
(c)	20×10	0000÷80 o.e.		M1				
	25 000	or 2.5 × 10^4	www2	A1		seen in final ans. As s 25 or 0.00004 final		

			۱ ۱
	(x+4)(x-5)	B2	If B0, SC1 if of form $(x \pm 4)(x \pm 5)$,
(ii)	-4,5 ft	B1 ft	Only ft the SC
			-4, and 5 not from $(x - 4)(x + 5)$.
(b)	$\frac{-(-2)\pm\sqrt{(-2)^2-4.3-2}}{2.3}$		B1 for $(-2)^2 - 4(3)(-2)$ (or better) seen
	$\frac{-(-2)\pm \sqrt{(-2)}-4.3-2}{$	B1,B1	inside a square root.
	2.3		The expression must be in the form
			$\frac{p + (\text{or})\sqrt{q}}{r} \text{ then } \mathbf{B1} \text{ for } p = -(-2) \text{ and}$
			r = 2.3 or better
			Allow recoveries from incomplete lines
	-0.55, 1.22 cao	B1,B1	If B0, SC1 for –0.5 and 1.2 or both
			answers correct to 2 or more decimal
			places (rounded or truncated).
			-0.54858, 1.21525
(c) (i)	(m-2n)(m+2n)	B1	
(ii)	-12	B1	
(iii)			B1 for $(4x^2 + 6x + 6x + 9)$ or
	20x + 5 o.e. cao final ans	B2	$(x^2 - x - x + 1)$ or
			(2x+3-2(x-1))(2x+3+2(x-1))
(iv)	$4n^2 = m^2 - y \text{o.e.}$	M1	(2x + 3 - 2(x - 1))(2x + 3 + 2(x - 1)) M1 for correct re-arrangement for n^2 term
	$m^2 - v$		(may be $-n^2$)
	$n^2 = \frac{m^2 - y}{4}$ o.e.	M1	M1 for correct division by 4 or -4
	4		M1 for correctly taking square root of n^2
	$n^{2} = \frac{m^{2} - y}{4}$ o.e. $(n) = \sqrt{\frac{m^{2} - y}{4}}$ o.e. www3	M1	term
	$(n) = \sqrt{\frac{m}{4}} \text{o.e.} \qquad \text{www3}$		
	Mark final answer		SC2 for $\sqrt{\frac{y \pm m^2}{4}}$ or $\sqrt{\frac{m^2 - y}{4}}$ o.e. ww
(d) (i)	4 or -4 or ±4	B1	
(ii)	$n(m^4 - 16n^4)$ or	M1	Correctly taking out <i>n</i> or a correct factor
	$(m^2n - 4n^3)(m^2 + 4n^2)$ or		with <i>n</i> still in one bracket
	$(m^2n + 4n^3)(m^2 - 4n^2)$ or		
	$n(m-2n)(m+2n)(m^2+4n^2)$	A1	Must be final answer [17]

Page		Mark Scheme IGCSE – May/June 20	108	Syllabus Paper Numarity Syllabus Paper Numarity 0580, 0581 04 Accept all probability answers as fractions (non-reduced or reduced), decimals or percentages. Interval of the second secon
		IGC3E = May/Julie 20	000	
3				Accept all probability answers as fractions (non-reduced or reduced), decimals or percentages. -1 once for 2 sf answers or correct words. Condone numerical errors in simplifying or converting after correct answers seen. Ratio answers score zero throughout.
(a) (i)	$\frac{\frac{1}{3}, \frac{3}{8}, \frac{6}{8}, \frac{2}{8}}{\frac{2}{3} \times \frac{5}{8}}$ o.e.		B3	-1 each error bod if no letters given
(ii)	$\frac{2}{3} \times \frac{5}{8}$		M1	
	$\frac{5}{12}$ o.e.	www2	A1	$\frac{10}{24}$, etc., 0.416(6)
(iii)	their $\frac{5}{12} + \frac{1}{3} \times \frac{6}{8}$ $\frac{2}{3}$ o.e. cao	www2	M1 A1	$\frac{16}{24}, \frac{8}{12},$ etc., 0.666(6)
(b) (i)	$\frac{3}{10} \times \frac{2}{9} \times \frac{1}{8}$		M1	
	$\frac{1}{120}$ o.e.	www2	A1	$\frac{6}{720}$, etc., 0.00833(3)
(ii)	$\frac{119}{120}$ o.e.		B1ft	$\frac{714}{720}$, etc., 0.991(6) ft 1 – their (i) not for 7/10 Could start again and have a correct

4 (a) (i)	36 (36.0–36.4)	B1	
(ii)	50 (50.0–50.4)	B1	
(iii)	29 (28.6–29.4)	B 1	
(iv)	20	B2	If B0, SC1 for 19 or 21 or 180 seen
(b) (i)	p = 16, q = 4	B1,B1	If B0, SC1 if <i>p</i> and <i>q</i> add up to 20
(ii)	$\left(\frac{7220}{200}\right) = 36.1$ cso www4	B4	Answer 36 scores 4 marks after some correct working shown with no incorrect working seen M1 for using mid-values at least four correct from 5, 15, 25, 35, 45, 55, 65, 75 M1 (dep on correct mid values or mid- values ± 0.5) for $\sum fx$ (at least four correct products) M1 (dependent on 2 nd M1) for dividing sum by 200 or 180 + their p + their q
(c)	8.2 (8.19–8.20), 11.4 , 5 (5.00–5.01)	B 4	B3 for 2 correct or B2 for 1 correct
			After B0, SC2 for fd's 2.7(3) o.e.,
			3.8 o.e, 1.6(6) o.e.
			or SC1 for 2 of fd's correct (15)
5 (a) (i)	$360 \div 8$ or $(8-2) \times 180$	M1	allow 6×180

			mm.n. m
Page 4	Mark Scheme	Syllabus	Paptnat
	IGCSE – May/June 2008	0580, 0581	04 ths

Page	Page 4 Mark Scheme				Syllabus	Paptn	
	IGCSE – May/June 20		008		0580, 0581	04 4th	
	180 – t	heir (360 ÷ 8) o.e.	÷8	M1	depend	lent	Pap nymans
(ii)		ed or use implied o.e.	. 0	E1		t sketch with values	
(b) (i)	7	cos45 o.e.		M1		e. allow implicit expr	ression
) 8.49 (8.485)	www2	A1	Accept	$\sqrt{72}$, $2\sqrt{18}$, $3\sqrt{8}$,	$6\sqrt{2}$
(ii)	(PQ =)	$2 \times \text{their } PH + 12 \text{ o.e.}$		M1			
	$\sim - $	29.(0) (28.96–29.00) ft	www2	A1 ft	ft their	PH accept surd for	m
(iii)	their P.	$H \times \text{their } PH \div 2$ o.e.		M1		•	
	(Area A	4PH =) 36 (35.95–36.1) ft	www2	A1 ft	ft their	PH	
(iv)	(their <i>I</i>	$(Q)^2 - 4 \times$ their area of trian	gle o.e.	M2	If M0,	M1 for a clear collect	ction of areas
	(Area o	octagon =) 695 (694.0–697.1	l) cao		leading	g to the octagon poss	ibly without
			www3	A1	any cal	lculation shown	
(c) (i)	0.5 of t	heir PQ o.e.		M1	e.g. 6 +	<i>⊢ PH</i> , 6tan67.5°	
	14.5 (1	4.47–14.53) cao	www2	A1	accept	surd form	
(ii)	$\pi \times (th$	eir r) ²		M1	(660.5.)	
	their	<i>circle area</i> ×100		M1	Depend	dent on first M1 and	circle smaller
	their o	ctagon area		1411	-	e octagon	circle sinaller
		4.35 to 95.60) cao	www3	A1	liidii tii	c octagon	[17]

6 (a) (i)	$\begin{pmatrix} 2\\1 \end{pmatrix}$	B 1	Allow (2 1), condone omission of brackets
(ii)	$\begin{pmatrix} 2\\1 \end{pmatrix}$ ft	B1ft	Allow (2 1), condone omission of brackets ft their (i) if a vector
(b)	Translation $\begin{pmatrix} 0 \\ -4 \end{pmatrix}$ o.e.	B1, B1	Allow (0 –4), condone omission of brackets, allow in words Any extra transformation spoils both marks
(c)	y > 0 o.e. x < 2 o.e. $y > \frac{1}{2}x \text{o.e.}$ y < 2x + 4 o.e.	B1 B1 B1 B2	For all four, condone strict inequalities and only penalise first incorrect sign, which may be = or an inequality sign If B0, B1 for $2x$ or for 4 if other co-efficient is not zero
			$y < \frac{1}{2}x + 4$ gets zero [9]

7 (a) (i)	cyclic		B1	Condone concyclic
(ii)	Any one of 40, 45, 50		B1	Angle $BCT = 40^{\circ}$ is inconsistent with ST
	Any one of 20, 25, 30		B1	parallel to OB. So different values of
	Any one of 105, 110, 115		B1	angles <i>x</i> , <i>y</i> , <i>z</i> , <i>OCT</i> and <i>AOC</i> can be
				arrived at, depending on route taken.
(iii)	Any one of 80, 85, 90		B 1	
(iv)	Any one of 210 , 215 , 220 , 225 , 230		B1	
(b) (i)	Similar (or enlargement)		B1	
(ii)	$\left(\frac{7}{10}\right)^2$ or $\left(\frac{10}{7}\right)^2$ o.e. seen		M1	(0.49), (2.04)
		ww2	A1	It is possible to do (iii) then (ii) and full marks can still be scored
(iii)	1 10 1 11 20		M1	
	$\frac{1}{2} \times 10 \times height = 20$		A1	
	-	ww2		[11]

			www.p.
Page 5	Mark Scheme	Syllabus	Pap
	IGCSE – May/June 2008	0580, 0581	04

						Pap nd interest used
Page	e 5	Mark Scheme			Syllabus	Paptn
		IGCSE – May/June 20	008		0580, 0581	04 ⁴ 1/2
8 (a)			M1	M1 for	r method of compour	nd interest used
	108(.10	6) (allow 108.2(0)) www2	A1		1	
(b)	148(.02	2) 324(.3)	B1 B1			
(c)	Correc	t axes full domains	S1	Condo	ne absence of labels	
	5 corre	ct pts 100, 148 ft, 219, 324ft, 480	P3ft	P2ft fc	or 4 correct, P1ft for	3 correct
					must be in correct so	quare vertically,
					ing on line	
		n exponential curve, correct shape	C1		error – remove that p	part and try to
	through 5 points			mark t		
(d) (i)	265 - 2	270	B1ft		of range, then ft their	r graph at 25
(**)	1	0	D1	years		
(ii)	17 or 1		B1			
(e) (i)		$\frac{\langle 7 \times 20}{\rangle}$ o.e.	MI			
	(1	00)	M1 E1	No err	.	
	100 + 7	7×20 or better	EI	No erro	ors	
(ii)	380		B1			
(iii)	Correc	t straight ruled line for x – range 0 to	L2		or 2 of (0,100), (20,2	40) (40,380)ft
	35			correct	ly plotted	
(f)	27 - 29	cao	B 1			[17]

9 (a) (i)	p + r	B1	Answers in bracketed column form penalise only once throughout
(ii)	$-\mathbf{p}+\mathbf{r}$	B1	
(iii)	$-\mathbf{p}+\frac{2}{3}\mathbf{r}$	B 1	
(iv)	$\mathbf{p} + \frac{1}{2}\mathbf{r}$	B 1	
(b) (i)	$\frac{3}{2} \times (-\mathbf{p} + \frac{2}{3}\mathbf{r}) \text{ or } -\frac{3}{2}\mathbf{p} + \mathbf{r}$ isw after correct answer seen	B1 ft	ft only $\frac{3}{2}$ × their (a)(iii)
(ii)	$\overrightarrow{QP} + \overrightarrow{PS} \text{o.e.} \\ -\frac{3}{2}\mathbf{p} \qquad \qquad \text{www } 2$	M1 A1 ft	o.e. is any correct route of at least 2 vectors ft their (b)(i) – r
(c)	lie on a straight line	B 1	dependent on their (b)(ii) being a multiple of p [8]

10(a) (i)	4	B 1	
(ii)	24	B1	
(b) (i)	x + 12, x + 14 o.e.	B1,B1	Any order ignore ref to g and i
(ii)	(x + 14 - x) and $(x + 12 - (x + 2))14 - 10 or 14 - 12 + 2 or 4$		x + 12 and $x + 14$ must be seen to be used
	14 - 10 or $14 - 12 + 2$ or 4	E1	No errors seen
(iii)	(x+2)(x+12) - x(x+14)	B1	Subtraction can be implied later
	24	E1	Dep on B1 and no errors anywhere for the E mark
(c) (i)	4	B 1	
(ii)	20	B1	
(d) (i)	4	B 1	
(ii)	x + 2n o.e., $x + 2 + 2n$ o.e.	B1,B1	
(iii)	4 <i>n</i>	B1	Allow $4 \times n$, $n \times 4$, $n4$ [13]